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 تلخيص

المغناطيسي، ت   الرنين  الطبية، مثل صور  الصورة  تحليل  فعالة في  الصور خطوة  تجزئة  عتبر 

وعادة ما يتمّ القيام بذلك يدويا   لاكتشاف وتشخيص العديد من الأمراض و/أو التشوهات العضوية

للوقت.  من طرف ومستهلكا  متعبا  يجدونه  الذين  ذلك، الخبراء  عن  من   كبديل  العديد  اقتراح  تمَّ 

لتجزئة   الأوتوماتيكية  وشبه  الأوتوماتيكية  هذه    المغناطيسي.  نالرني صورالأساليب  من  الكثير 

. نحن أيضا، في هذا العمل، اخترنا تجزئة صورالرنين  للتشوهالطرائق يرتكز على النماذج القابلة  

  ا.طوبولوجيال الى جانب مقيدات  للتشوهمغناطيسي باستخدام النماذج القابلة ال

ب   اطروحتنا  والهندسية.  افتتحنا  المعيارية  للتشويه:  القابلة  النماذج  من  لنوعين  نظرية  خلفية 

لتميزّه    وركزنا نظرا  الثاني  النوع  على  سلوكه  بإيجابيات  أكثر  مثل  الاول  بالنوع  مقارنة  عديدة 

وقدرته استخدامه  وسهولة  الطوبولوجية    توافقال  على  الضمني  التغييرات  مع   .للنموذجتلقائيا 

  الخاصة بها طوبولوجيا  ال، قدمنا طريقتين لتقييد مرونة النماذج القابلة للتشويه بكيفية تحفظ  بعدها

 .المقاومة الذاتية النقطة البسيطة ومبدا قوة أمبد  :طيلة عملية التجزئة

وصفبعد     للتشويه  بالتفصيل    ان ذلك،  القابل  به  النموذج  الخاصة  الطوبولوجيا  على  الحفاظ  مع 

(TPGDM)   المغناطيسي الرنين  صور  لتجزئة  اقترحناه  ل  الدي  ناجح  دمج  نتيجة    نموذج لوهو 

  النشط. مع مبدا القوة ذاتية المقاومة الذي يعمل كمقيد لطوبولوجيا النموذج  القابل للتشويه   المقترح

لاختباراحتج البداية  في  هدا   نموذجال  نا  مساهمة  اثبات  لغرض  الطوبولوجيا  تقييد  مع  ثم  دون 

ال بتعريف  بدانا  التجزئة.  نتائج  تحسين  في  صور    نموذجالاخير  لتجزئة  المقترح  للتشويه  القابل 

المغناطيسي   فيالرنين  انتقائيةوالمتمثل  ثنائية  مستوى  نموذج مجموعة   : (SBLS)   على تعتمد 

  SBLSالنموذج  .(SBGFRLS)  لة بمرشح غاوسي ثنائية انتقائية ومعدلةد مجموعة مستوى مع

إما  ي إلى    أو محلية  تجزئة عامةحقق بنجاح  الحاجة  المعالجة  معدلة  دون  قبل  لنموذج  يمكن   .ما 

SBLS المحلية هيئته  في   ،LBLS   آن في  استخراجها  سيتم  التي  الاجزاء  عدد  في  يتحكم  أن   ،

المستوى  لا يمكنه تحقيق   SBLS واحد من بين جميع الأجسام الموجودة. ومع ذلك فإن نموذج

فيها اشكال غير مرغوب  استخراج محيطات  الى  يؤدي  قد  الدقة كما  بعدها اضفنا  .  المرجو من 
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خاصة به وبهذا توصلنا الى طوبولوجيا الالد  يقي لتالسابق    SBLS  مبدا القوة ذاتية المقاومة لنموذج

كنموذج:  ما   مستوى  اقترحناه  ومحافظة  معدلة  مجموعة  ومعدلة  انتقائية  ثنائية  غاوسي  بمرشح 

هدا ما ساعد على تحسين اداء النموذج بشكل واضح على عدة و  (TPLBLS)  على الطوبولوجيا

مستويات: زيادة في الفعالية رغم نوعية الصورة وعدم استخراج محيطات الاجزاء الغير متوقعة.  

النموذج يحتا  TPLBLS  ايضا  المعالجة  معدلة  الى    جلا  قبل  على   ما  قادر  بتجزئة   وهو  القيام 

ثنائية    معدلة  مجموعة مستوى  :  TPGBLSعامة ) ومعدلة ومحافظة على    عامةبمرشح غاوسي 

ومعدلة  خاصةبمرشح غاوسي ثنائية   معدلة  مجموعة مستوى  :  TPLBLSوخاصة )  (الطوبولوجيا

 (. ومحافظة على الطوبولوجيا

للتجزئة أحادية الهدف ) بطانة قلب واحدة وو   المقترحة  ( ئي ورم السحااللإثبات صحة المناهج 

وتجزئة هدفان في ان واحد )بطيني القلب( لاختبار فعالية التجزئة المتزامنة، قمنا باختبار كل من  

المغناطيسي حقيقية من أربع   TPLBLS و  LBLS نموذجينا للرنين  بيانات   قواعد على صور 

لتجزئة   "RVSC MICCAI 2012" من  شريحة  73عشوائيا    استخدمنامختلفة للقلب والدماغ؛  

الداخليالقل  بطين القلب   تجزئة بطينل   ”York dataset 2006”  صورة من  176و  الأيمن  ب 

الأيسر الدماغي  "Figshare" بيانات قاعدة  من    صورة  158والداخلي  الورم  للدماغ لاستخراج 

" لاستخراج بطيني القلب معا  MICCAI 2017" للقلب منصورة   66( وأخيرا  ئيورم السحا ال)

 TPLBLS و  LBLS  نموذجكل من    اأسفر عنهتقييم نتائج التجزئة التي  ب   اوفي آن واحد. قمن

ببعض   الموجودةومقارنتها  ومسافة    سابقا   النماذج  التماثل،  معامل  مختلفة:  مقاييس  باستخدام 

ن النتائج التي تم الحصول عليها كفاءة كل تبيّ   .التربيعي للخطأالجذر  معدل  هوسدورف المعدلة و

نموذج  غير أن    الموجودة  النماذج  مقارنة ببعض   TPLBLSو   LBLSين  المقترح  ينذجومن النم 

TPLBLS  التجزئة مما    عطيي نتائج  أداء ويحسن بشكل ملحوظ  أكثر   ةيوفر خطوأفضل  أولية 

 .دقة لتحليل الصورة الطبية

 

 مفتاحية كلمات 

للتشو  الصور،  تجزئة القابلة  الهندسية  مجموعالنماذج  الطوبولوجيا،  ستوىمة  ه،  على  الحفاظ   ،
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Abstract 

   Image segmentation has been considered as a vital step in analysis of medical 

image, such as MRI, to detect and identify several pathologies and/or organ 

abnormalities. This is usually performed manually by experts who find it tedious and 

time consuming. As an alternative, different automatic and semi-automatic methods 

of MRI segmentation have been proposed in the literature. Many of those methods are 

based on deformable models. We also, by this work, opted for accurate MRI slices 

segmentation using deformable models in addition to topology constraints.  

   We initiated our thesis with a theoretical background of both types of the DMs: 

Parametric deformable models (PDMs) and geometric deformable models (GDMs). 

We focused more on GDMs due to their several advantages over PDMs such as their 

intrinsic behavior, ease of implementation and ability to handle automatic topology 

changes. Then, we presented two topology preserving concepts: simple point and self-

repelling force used to constrain the DMs flexibility in a way that preserves its 

topology during the segmentation process. 

  After, we describe in detail our proposed topology preserving geometric deformable 

model (TPGDM) for MRI segmentation. It’s the result of successful combination of 

our proposed GDM with the self-repelling force topology preserving concept. We 

needed first to test the GDM without then with topology control in order to 
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demonstrate its contribution in enhancing the results of segmentation. So, we started 

by introducing the proposed deformable model for MRI segmentation: Selective 

binary level set (SBLS). It is based on selective binary Gaussian filter level set 

(SBGFRLS). It successfully provides either global or local segmentations with no 

requirement of a preprocessing phase. In its local variant, LBLS (local binary level 

set) is able to control the number of objects to be segmented simultaneously among all 

the existing ones. Nevertheless SBLS model couldn’t achieve the expected level of 

precision and it may produces unexpected contours eventually. Then we add the self-

repelling force concept to the SBLS model to constrain its topology which is in fact 

our proposed TPGDM: Topology preserving selective binary level set (TPSBLS). 

This remarkably enhances the performance of the active model in many ways; more 

robustness towards image quality and absence of undesirable contours. Also, TPSBLS 

model doesn’t need any preprocessing step and it’s also able to ensure global 

(TPGBLS: Topology preserving global binary level set) or local segmentation 

(TPLBLS: Topology preserving local binary level set). 

  To validate and compare the proposed approaches for single target segmentation 

(one heart ventricle and meningioma brain tumor) and two targets (both heart 

ventricles) simultaneous segmentation, we tested both LBLS and TPLBLS models on 

real MRI slices from four different cardiac and brain datasets; We randomly used 73 

slices from RVSC MICCAI 2012 for the segmentation of the right ventricle 

endocardium, 176 images from the York dataset 2006 for the segmentation of the left 

ventricle endocardium, 158 slices from the brain MRI figshare dataset for the brain 

tumor (meningioma) extraction and finally 66 cardiac MRI from MICCAI 2017. The 

segmentation results of LBLS and TPLBLS were evaluated and compared to some 

existing approaches using different metrics: the dice coefficient of similarity, the 
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modified Hausdorff distance and the root mean square error. The obtained results 

show the efficiency of both proposed LBLS and TPLBLS models. However, the 

TPLBLS approach provided the best performance and remarkably improved the 

results of segmentation. 

 

Key words 

 Image segmentation, geometric deformable models, level set, topology preservation, 

heart ventricles, and brain tumors. 
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Résumé 

   La segmentation d'image est une étape essentielle de l'analyse d'images médicales, 

telles que les images par résonnance magnétique (IRM). Elle a pour objectif de 

détecter et d’identifier plusieurs pathologies et/ou anomalies d'organes. Cette 

opération est généralement effectuée manuellement par des experts qui la trouvent 

fastidieuse et lente. Comme alternative, différentes méthodes automatiques et semi-

automatiques de segmentation d'IRM ont été proposées dans la littérature. Plusieurs 

de ces méthodes sont basées sur les modèles déformables (MDs) que nous avons 

choisi d’étudier dans cette thèse avec des contraintes de topologie. 

   Nous rappelons d’abord le contexte théorique des MDs avec ces deux catégories : 

Les modèles déformables paramétriques (MDPs) et les modèles déformables 

géométriques (MDGs). Nous nous sommes intéressés plus particulièrement aux 

MDGs en raison de leurs nombreux avantages par rapport aux MDPs, tels que leur 

comportement intrinsèque, leur facilité d'implémentation et leur capacité à gérer les 

changements automatiques de topologie. Puis, nous présentons deux concepts de 

préservation de la topologie : le point simple et la force auto-répulsive utilisés pour 

contraindre la flexibilité des MDGs de manière à préserver leur topologie durant le 

processus de segmentation. 
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   Ensuite, nous décrivons en détail le modèle déformable géométrique avec 

préservation de topologie TPGDM que nous proposons pour la segmentation d'images 

IRM. Celui-ci est le résultat d'une combinaison d’un MDG avec le concept de force 

auto-répulsive servant comme contrainte topologique au modèle actif. Nous voulions 

d'abord tester le MDG sans puis avec le contrôle de la topologie afin de démontrer sa 

capacité à améliorer les résultats de segmentation. Nous présentons ainsi le modèle 

déformable proposé pour la segmentation d’IRM: Ensembles de Niveau Binaire 

Sélectif (SBLS). Il est basé sur un modèle existant SBGFRLS (Ensemble de Niveau 

Binaire Sélectif Filtré Gaussien). Il fournit avec succès des segmentations globales ou 

locales sans avoir besoin d'une phase de prétraitement. Dans sa variante locale, LBLS 

(Ensemble de Niveau Binaire Local) est à même de contrôler le nombre d'objets à 

segmenter simultanément parmi tous ceux existants. Néanmoins, le modèle SBLS n'a 

pas pu atteindre le taux de précision souhaité et il peut éventuellement produire des 

contours imprévus. Ensuite, nous associons le concept de force auto-répulsive au 

modèle SBLS pour contraindre sa topologie, qui donne en fait notre modèle proposé 

TPGDM: Ensemble de Niveau Binaire Sélectif avec Préservation de Topologie 

(TPSBLS). Cela permet d'améliorer remarquablement les performances du modèle 

actif à plusieurs niveaux : plus de robustesse vis-à-vis de la qualité de l'image et 

l'absence de contours indésirables. De plus, le modèle TPSBLS n'implique aucune 

étape de prétraitement et sert également à fournir une segmentation globale ou locale. 

  Afin de valider les approches proposées pour la segmentation d'un seul objet (un 

ventricule cardiaque ou une tumeur cérébrale de type méningiome) et la segmentation 

simultanée de deux objets (les deux ventricules cardiaques), nous avons testé nos 

modèles SBLS et TPLBLS  sur des coupes (IRM) réelles provenant de quatre bases de 

données différentes cardiaques et cérébrales; Nous avons utilisé 73 images de la base 
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RVSC MICCAI 2012 pour la segmentation de l'endocarde du ventricule droit, 176 

images de la base York 2006 pour la segmentation de l'endocarde du ventricule 

gauche, 158 coupes d'IRM cérébrales de la base figshare pour l'extraction du 

méningiome et enfin 66 slices d'IRM cardiaques de la base MICCAI 2017. Les 

résultats de segmentation de SBLS et TPLBLS ont été évalués et comparés à certaines 

approches existantes en utilisant trois métriques : le coefficient de similarité (Dice), la 

distance d'Hausdorff modifiée et l'erreur quadratique moyenne. Les résultats obtenus 

montrent la robustesse des modèles SBLS et TPLBLS proposés. Cependant, 

l'approche TPLBLS a fourni les meilleures  performances et a remarquablement 

amélioré les résultats de la segmentation. 

 

Mots clés 

 Segmentation d'images, modèles déformables géométriques, ensemble de niveau, 

préservation de la topologie, ventricules cardiaques, tumeurs cérébrales. 
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(66x71 pixels) from York dataset 2006. 

70 

 Fig. 5. 6 Dice variation of left ventricle segmentation results in original 

slices (256x216 pixels) from MICCAI 2012 using GAC, CV, 

TGDM, LBGFRLS, LBLS and TPLBLS models. 
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 Fig. 5. 7 Segmentation results of LBGFRLS, LBLS and TPLBLS. Images 

with initial contour (a) and (e) -heart image from the York dataset. 

(i) and (m) - heart image from MICCAI 2012. LBGFRLS 

segmentation results (b), (f), (j) and (n). LBLS segmentation 

results (c), (g), (k) and (o). TPLBLS segmentation results (d), (h), 

(l) and (p). (b) DC=33.218, (c) DC=39.9, (d) µ=7, DC=95.7, (f) 

DC=84.21, (g) DC=87.8, (h) µ=4, DC=93.8, (j) DC=89.49, (k) 

DC=88.89, (l) µ=4, DC=42.55, (n) DC=48.5, (o) DC=89.5, (p) 

µ=7, DC=88.9, The GT is represented in orange. Initial contours 

are in red. Obtained contours in green. 
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 Fig. 5. 8 Volume representation of Left ventricle Segmentation results of 

LBGFRLS, LBLS and TPLBLS - heart images of patient P02 from 

MICCAI 2012 dataset. (i) and (m). Manual segmentations (a) and 

(e). LBGFRLS segmentation results (b) and (f). LBLS 

segmentation results (c) and (g). TPLBLS segmentation results (d) 

and (h). 
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 Fig. 5. 9 Dice variation of brain tumor segmentation results in original 

slices (256x216 pixels) from brain MRI figshare dataset using CV, 

LBGFRLS, LBLS and TPLBLS models. 
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 Fig. 5. 10 Segmentation results of LBGFRLS, LBLS and TPLBLS. Images 

with initial contour (a), (f) and (k) -brain MRI image from the 

figshare dataset. GT (b), (g) and (l). LBGFRLS segmentation 
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results (c), (h) and (m). LBLS segmentation results (d), (i) and (n). 

TPLBLS segmentation results (e), (j) and (o). (c) DC=47.9847, (d) 

DC=81.4617, (e) µ=8, DC=94.0771, (h) DC=46.6703, (i) 

DC=77.9165, (j) µ=12, DC=93.6359, (m) DC=29.903, (n) 

DC=44.902, (o) µ=12, DC=85.078. The GT is represented in 

orange. Initial contours are in red. Obtained contours in green 

 Fig. 5. 11 Segmentation results of LBGFRLS and LBLS. Images with initial 

contour (a) and (d) -heart image from the York dataset. LBGFRLS 

segmentation results (b) and (e). LBLS segmentation results (c) 

and (f). Initial contours are in red. Obtained contours are in green. 

79 

 Fig. 5. 12 Simultaneous left and right ventricle segmentation results of 

LBGFRLS, LBLS and TPLBLS. Images with initial contour (a) 

and (e) - heart image from MICCAI 2012. LBGFRLS 

segmentation results (b, f), LBLS segmentation results (c, g). 

TPLBLS segmentation results (d, h). Initial contours are in red. 

Obtained contours are in green. 
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 Fig. 5. 13 Dice variation of bi-ventricular segmentation results in slices from 

MICCAI 2017 dataset using CV, LBGFRLS, LBLS and TPLBLS 

models.  

81 

 Fig. 5. 14 Simultaneous left and right ventricle segmentation results of CV, 

LBGFRLS, LBLS and TPLBLS. Images with initial contour (a), 

(g), (m) and (s) - heart image from MICCAI 2017. GT (b), (h), (n) 

and (t). CV segmentation results (c), (i), (o) and (u). LBGFRLS 

segmentation results (d), (j), (p) and (v). LBLS segmentation 

results (e), (k), (q) and (w). TPLBLS segmentation results (f), (l), 

(r) and (x). (c) DC= 3.1760 , (d) DC= 82.5265 , (e) DC= 94.6113, 

(f) µ=12, DC= 96.3986 , (i) DC= 6.9859, (j) ) DC= 42.3077, (k) 

DC= 62.9482, (l) µ= 12, DC= 84.8168, (o) DC= 5.8365, (p) ) DC= 

80.0149, (q) DC= 81.5413, (r) µ= 8, DC= 88.0250, (u) DC= 
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1.5775 , (v) ) DC= 54.4517, (w) DC= 94.9314 , (x) µ=5, DC= 

97.1878. Initial contours are in red. Obtained contours are in green.                          
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Chapter I 

Introduction 

 

1.1 Context and problem statement 

   The recent advances in medical imaging technologies have led to providing large 

amounts of data with an increasingly high level of quality such as Magnetic resonance 

imaging. 

   It represents an accurate noninvasive imaging modality. It has proven to be more 

sensitive and capable of revealing organ abnormalities early on that may not be 

detected or that are poorly distinguished using other imaging modalities. 

   Consequently, this increases and encourages the noninvasive analyzing and 

studying of human organs anatomy and function.  

    MRI segmentation is one of the important and widely applied tasks in the purpose 

of medical image analysis. 

    Indeed, it is commonly implemented as a primary stage for any clinical application 

involving the detection, and measurement of specific objects for the purpose of 

medical state recognition and diagnosis. Therefore, the role of segmentation task is 

crucial in most high-level image processing, any failure in the segmentation process 
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leads to the failure of the entire analysis outcome including classification or 

development tracking of specific anatomical regions.  

    The segmentation of the large and complex MRI datasets is usually performed 

manually by experts. This process is often tedious, time-consuming and can be prone 

to differences from one expert to another, not to mention the huge number of slices to 

be treated.  

   These difficulties in MRI data segmentation have motivated many researchers to 

develop various computerized segmentation techniques of different accuracy and 

degree of complexity in order to assist doctors in qualitative diagnosis by dealing with 

large datasets, while achieving the accuracy of manual segmentation. 

   However, MRI segmentation remains a complicated task even for a computer due to 

the nature of MRI slices and to its quality variation, not to mention the huge 

variability of the very same medical object properties such as the shape. 

   Indeed, the low contrast between different anatomical structures or even worse, 

when different structures have similar appearances in the same image can cause 

considerable difficulties. On top of that, the image quality is often corrupted by many 

kinds of noise and artifacts introduced during the acquisition process.   

   Practically, these difficulties in MRI data segmentation are the main cause of the 

failure of many classical segmentation models. To this end many researchers have 

been motivated to develop other computerized segmentation techniques of different 

accuracy and degree of complexity in order to overcome those challenges and to assist 

doctors in qualitative diagnosis by dealing with large datasets, while achieving the 

accuracy of manual segmentation. 
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1.3 Research hypotheses and objectives 

   Image segmentation is commonly defined as the subdivision of an image into non-

overlapping regions that are homogeneous and meaningful (Lucchese and Mitra, 

2001) [1] with respect to some visual feature, such as color or texture [2]. It can be 

described also as a process of grouping together pixels that have similar properties.  

   Traditional Image segmentation techniques are generally based on one of two basic 

properties of pixel intensity values: discontinuity and similarity such as thresholding,  

edge-based segmentation, region growing segmentation and matching in some cases, 

those traditional techniques of segmentation can be properly applied. However, for 

medical imaging, a reliable and accurate segmentation is, in general, very difficult to 

achieve by purely automatic means, due to poor image contrast, noise, diffuse 

organ/tissue boundaries, and artifacts. These problems can cause considerable 

difficulties when applying traditional segmentation techniques. 

   Thus, a variety of approaches have been computerized to automate and speed up the 

segmentation process. These approaches include two major branches of methods:  

registration-based  methods [3]–[9]  and deformable models (DMs) [10], [11]. 

   The central idea of the former branch image registration for the segmentation is to 

get prior knowledge on the target image before the process of segmentation. Among 

widely used registration-based techniques are atlas-based methods, as in the work by 

Ou et al. [3] and Sun et al. [4], the U-Net approach which was applied by 

Ronneberger et al. [7] then by He et al. [8]. These registration-based techniques 

consist in matching the image being segmented with a template [3], [4], [7], [8] as a 

prior knowledge of the target generated from a sufficient training data set created by 

experts. More specifically this template can be a shape model of the target as in the 



CHAPITRE I: Introduction   [Texte ] 

4 
 

work of Grosgeorge et al. [9] constructed based on a training set of manually 

segmented shapes. The main drawbacks of these approaches are: The requirement for 

large manually segmented training sets; the high dependence of the results on the 

specific choice of a training set and the accuracy of the registration step. Moreover, 

since anatomical variability in the target may be significant from one subject to 

another they tend to fail in the case of abnormalities.  

   On the other hand, Deformable Models (DMs), also known as active contours or 

surfaces, have been proven to be powerful segmentation techniques and are widely 

used for medical image segmentation, with no training phase and with interesting 

results reported by authors such as He et al. [10] or Heimann and Meinzer [11]. 

Depending on the method of representation and implementation used, they can be 

explicit, and are known as Parametric Deformable Models (PDMs) as in the work of 

Cohen [12], Cootes et al.[13], and Xu and Prince [14], or implicit, and are referred to 

as Geometric Deformable Models (GDMs), in which only the geometric properties of 

the model are considered to describe deformations of the moving curve or surface 

[15], [16].  

   Several researchers have applied DMs for medical image segmentation, for 

example; Khotanlou et al.[17], [18] and more recently, Babu et al. [19] to extract 

brain tumors, Avendi et al.[20], [21], Nambakhsh et al. [22] and Bhan [23] to segment 

a single ventricle of the heart (right or left) or both ventricles of the heart 

simultaneously as in the work of Arrieta et al. [24], Montillo et al.[25] and Soomro et 

al. [26]. 

   According to Han et al.[27], GDMs offer several advantages over PDMs due to their 

intrinsic behavior, ease of implementation and ability to handle automatic topology 

changes. Some of the existing GDMs, known as edge based GDMs, are based only on 
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image gradient information. Authors like Caselles et al.[28], Kichenassamy et al.[29] 

next to Forcadel and Le Guyader [30] introduced their edge based GDM as Geodesic 

Active Contour (GAC). This class of GDMs becomes ineffective in the case of 

images with noise and low contrast such as medical images of the heart ventricle as 

well the brain. Region-based GDMs, in contrast, such as the Chan-Vese (CV) model 

[31] and its derivatives (Duan et al. [32], Almhdie et al. [33]) rely on region 

information: instead of detecting high gradients, they search for homogeneous 

intensity values. 

   In medical images, the topology of the target to be segmented is known beforehand 

and many authors find it beneficial to guide their models of segmentation using 

different concepts to ensure better segmentation of the target since its topology can be 

already predicted. 

   Different concepts have been proposed in the literature like topology-aware 

segmentation methods such as [34] where they proposed a new approach to train deep 

image segmentation networks robust even near topologically challenging locations 

(such as weak spots of connections and membranes). It’s based on leveraging the 

power of discrete Morse theory (DMT) to identify global structures including one-

dimensional (1D) skeletons and two-dimensional (2D) patches. V. Subeesh et al. 

presented in [35] an explicit approach that relies on adversarial learning (AL) for 

topology-aware road segmentation. They used the training methodology of generative 

adversarial networks (GAN) to reduce topological discrepancies between the 

probability maps produced by their segmentation network and that of real road 

networks. Their main contribution is a novel AL strategy for improving connectivity 

constraints on the output of road segmentation networks. We can cite also the work in 

[36] where authors used a localized topology-aware edge detection method to enhance 
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the morphological segmentation of microscopic fossils. They showed significant 

improvement on morphological segmentation of foraminifera when considering 

region-based and topology-based metrics. Other researchers [37] proposed to include 

cylindrical topological constraint, based on persistent homology, applied during 

network training while addressing the property of variable topologies of the small 

bowel to generate a topologically correct segmentation of the target. In [38], S. Shit et 

al. proposed a computationally efficient, differentiable loss function (soft-clDice) for 

training arbitrary neural segmentation networks. They introduced a similarity measure 

termed centerlineDice (short clDice), which is calculated on the intersection of the 

segmentation masks and their (morphological) skeletal in order to guarantee the 

preservation of topology. All those topology aware segmentation models, mentioned 

above, are efficient however they require and depend strongly on an appropriate 

training step. Unlike other techniques where the priory known topology is included 

with no training phase required. For example, authors who used GDMs proposed to 

exploit the topology of the target as a term of prior knowledge through a concept that 

constrains the topology of the active contour and to prevent it from undesirable 

shrinking or merging. Among these, a topology preserving concept based on pixel 

information, called the simple point, was introduced in the work of Han et al. [27] to 

constraint the GAC model [28] in their topology-preserving geometric deformable 

model (TGDM) and was subsequently employed by Bai et al. [39]. However, 

according to [40], in many applications, combining this kind of topology-preserving 

with the level set method is considered to be too restrictive; the primary concern is 

topological defects such as handles, which are difficult to retrospectively correct. Le 

Guyader and Vese [41] also stress the arbitrariness of the result produced by the 

algorithm, depending on the order in which points are treated in the narrow band. 
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Schaeffer et al. [42] and Duggan [43] combined their active contour model (ACM) 

with a concept introduced by Le Guyader and Vese [41] known as the self-repelling 

force concept, to preserve its topology.   

   In this work, our objective is to propose an efficient method for the segmentation of 

substances in MRI slices such as heart ventricles and brain tumors. To address this 

issue, we drew on the geometric deformable model proposed by Zhang et al. [44]. 

This model is known as the Selective Binary and Gaussian Filtering Regularized 

Level Set (SBGFRLS). It is a Selective segmentation model that enables one contour 

to be extracted in its Local variant (LBGFRLS) or all existing contours 

simultaneously in its global variant (GBGFRLS). This model has several advantages 

for our purposes: (i) SBGFRLS [44] selectively penalizes the level set function to be 

binary after each iteration of the process, which avoids accumulating several level set 

functions; (ii) it uses a new region-based Signed Pressure Force (SPF) that can 

efficiently stop the contours at weak or blurred edges, which is especially interesting 

in our case; (iii) the exterior and interior boundaries can be automatically detected 

with the initial contour being anywhere in the image; (iv) the level set function can be 

easily initialized with a binary function, which is more efficient to construct than the 

widely used Signed Distance Function (SDF) used in the CV model [31]–[33]; (v) the 

computational cost for traditional re-initialization can also be reduced.  

   In this study, we propose a new approach called Selective Binary Level Set (SBLS) 

[45], which contrarily to Zhang et al. [44], preserves the details of the image that are 

necessary for the next steps while reducing the computational cost especially in the 

segmentation of high resolution images. The proposed approach can be implemented 

as a Global Binary Level Set (GBLS) [45] designed to extract all existing objects with 

one initial contour, while its local variant (LBLS) [45] helps to segment either a single 
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or numerous objects simultaneously using as many initial contours as needed. 

Therefore, LBLS [45] may be suitable for the segmentation of two contours (right and 

left ventricles of the heart for example) simultaneously, similarly to the model 

presented by Arrieta et al. [24] and Budai et al. [46]. 

   Finally, the SBLS [45] is combined with the self-repelling force concept of Le 

Guyader and Vese [41] to control the topology of the active contour in a way that is 

neither dominant nor inefficient, while maintaining the other advantages of GDMs. 

The resulting model is called Topology Preserving Selective Binary Level Set 

(TPSBLS) [45]. 

   Both proposed segmentation approaches; SBLS and TPSBLS [45] were tested for 

two clinical applications; Heart ventricle and brain tumor segmentation in real MRI 

slices provided with their manual segmentations by the dataset of the 15th 

International Conference on Medical Image Computing and Computer Assisted 

Intervention (MICCAI) 2012 [47] for the Right Ventricle Segmentation Challenge 

(RVSC), the Cardiac MRI of the York dataset 2006 [48] for left ventricle 

segmentations, MICCAI 2017 [49] database of the Automatic Cardiac Diagnosis 

Challenge (ACDC) workshop held in conjunction with the 20th Conference MICCAI 

in 2017 for simultaneous segmentation of both heart ventricles and figshare dataset 

[50] for brain tumor extraction respectively. The proposed methods were also 

compared to existing models cited above such as GAC [28], CV [31], TGDM [27] 

and SBGFRLS [44] for heart ventricle and brain tumor segmentation in the same 

slices using the same conditions of initialization. 
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1.4 Thesis outline 

   This document is organized as follows. Chapter two presents history, acquisition 

techniques and some particularities of magnetic resonance imaging. Then, chapter 

three introduces the literature review of some existed techniques for medical image 

segmentation where we report some basics reviews and the use of GDMs for 

segmentation, SBGFRLS [44] next to a topology preserving deformable models [30], 

[41] discussing both successes and challenges. In the fourth chapter, we explain, in 

detail, the methodology that we proposed. The next chapter is dedicated to show and 

discuss our model results on different MRI cardiac and brain databases compared to 

some existing methods of segmentation. Finally, we conclude with a summary of our 

work and a discussion of some possible future directions.
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Chapter II 

Magnetic Resonance Imaging (MRI) 

 

2.1. Introduction 

   MRI is a noninvasive modality for imaging. It enables the observation of anatomic 

structures, physiological functions as well as molecular composition of tissues [51]. 

indeed, MRI has transformed the role of radiology in medicine since its initial 

applications in structural imaging in the early 1980s and now it encompasses wider 

areas of functional and molecular imaging [52]. MRI can provide multiplanar and true 

3D datasets of subjects in vivo with high spatial resolution of the order of millimeters 

in the clinical setting and excellent soft tissue contrast without harmful ionizing 

radiation. Thus, MRI is considered to be crucially outstanding comparing to other 

techniques such as computed tomography (CT) modality. 

2.2. History of Magnetic Resonance Imaging 

   Clinical MRI is the result of numerous scientific and engineering advances [53]. It’s 

based on nuclear magnetic resonance (NMR) which can be described as an interaction 

https://www.sciencedirect.com/topics/medicine-and-dentistry/radiology
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/molecular-imaging
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ionizing-radiation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ionizing-radiation
https://www.sciencedirect.com/topics/medicine-and-dentistry/computer-assisted-tomography
https://www.sciencedirect.com/topics/neuroscience/nuclear-magnetic-resonance
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of certain atomic nuclei in the presence of an external magnetic field when exposed to 

radiofrequency electromagnetic waves of a specific resonance frequency [54]. Felix 

Bloch and Edward Purcell successfully introduced the first NMR spectroscopy 

experiments in 1945 according to [54]. They also shared the Nobel Prize in Physics in 

1952 for the finding. Afterwards, they used NMR experiments for chemical and 

physical analysis of small samples that could be fit into small-bore 

NMR spectrometers. Next, NMR evolved into a powerful modality for detailed 

chemical analysis of molecules. In 1972, Paul Lauterbur introduced the idea of 

applying field gradients in all three dimensions using back-projection methods applied 

in CT scanning for images generation. After, wide-bore NMR systems were available 

and capable of imaging living animals and human limbs, along with larger magnets 

capable of accommodating a human body which aroused the concept of generating 

images with NMR. The first in vivo image of human anatomy was reported by Peter 

Mansfield in 1977; it was a cross-sectional image through a finger. The potential 

diagnostic value of changes in NMR relaxation was suggested by Raymond 

Damadian and others and further motivated the development of MRI for clinical use. 

To avoid the undesirable connotations of the word nuclear among the public Nuclear 

magnetic resonance imaging was renamed magnetic resonance imaging instead. In 

2003, a Nobel Prize in Medicine for MRI was shared by Lauterbur and Mansfield 

[54]. 

 

2.3. MRI acquisition techniques 

   As mentioned above, magnetic resonance imaging (MRI) is based on the principles 

of NMR [54], a spectroscopic technique used to obtain microscopic chemical and 

https://www.sciencedirect.com/topics/medicine-and-dentistry/nuclear-magnetic-resonance
https://www.sciencedirect.com/topics/medicine-and-dentistry/spectrometer
https://www.sciencedirect.com/topics/medicine-and-dentistry/spectroscopy
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physical information about molecules. More specifically, MRI is based on the 

absorption and emission of energy in the radiofrequency range of the electromagnetic 

spectrum by means of one or some of their biological elements composing the imaged 

object [55]. Indeed, due to the fact that Hydrogen nuclei have an NMR signal, clinical 

MRI primarily images the NMR signal from the hydrogen nuclei given its abundance 

in the human body [55].   

   In the presence of a magnetic field, protons behave like small bar magnets, with 

north and south poles. Nevertheless, the magnetic moment of a single proton is 

extremely small and random. Therefore, applying a constant magnetic field helps to 

assume a non-random alignment of magnetic moments represented by the free 

hydrogen nuclei (protons), resulting in the generation of detectable magnetic moment 

signals in the presence of radiofrequency energy pulses. These signals have the same 

direction as the external magnetic field and are dependent on the type of tissue and the 

speed at which the tissue “relaxes” or gives up its movement. Those signals are then 

mathematically converted into an image. For clinical use of MRI units, the strength of 

magnetic field that can be applied varies from 0.3 Tesla (T) up to 1.0 T and whole-

body scanners with field strengths up to 3 T.   

   Despite The advantages of MRI over other imaging modalities like absence of 

ionizing radiation, high soft tissue contrast resolution, and multiplanar imaging 

capabilities with high-resolution, the time of MRI image acquisition has been a major 

weakness. To address this issue, newer imaging techniques (parallel imaging), higher 

field strength systems and faster pulse sequences, have been considered to enhance 

differences in the signal of various soft tissues. The contrast of the image highly 

depends on the signal intensity (SI) of different tissues. Tissues that are rich in free 

protons, such as water and fat, are very responsive to the radiofrequency pulses and 

https://www.sciencedirect.com/topics/medicine-and-dentistry/nuclear-magnetic-resonance
https://www.sciencedirect.com/topics/medicine-and-dentistry/imaging-technique
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generate a strong signal. However other tissues with fewer free protons, such as 

cortical bone and air, are less responsive and generate much weaker signal [56].The 

strength and timing of the radiofrequency pulse, known as an MR sequence, 

determines different tissue contrasts. Common basic forms of MR sequences include 

(see Fig. 2. 1): 

T1-weighted (T1W) imaging, on which fat appears bright and fluid appears dark. 

T2-weighted (T2W) imaging, on which both fat and fluid appear bright. 

Proton density (PD) imaging, on which fat appears bright and fluid appears 

intermediate-SI. 

   The Manipulation of the MR sequences allows the demonstration of special tissue 

characteristics. For example, the signal from fat can be made dark using fat 

suppression techniques. This is very useful in case of musculoskeletal imaging to 

increase contrast between bright pathologic tissue and fat with T2 weighting. We cite 

below some of fat suppression techniques: 

-Short T1 inversion recovery (STIR) imaging. 

-Fat suppression with T2 weighting (FST2W) imaging. 

 

 

 

 

  

Fig. 2. 1. Different types of MRI acquisition. The four images are taken from the IBSR 

database, (a) T1-weighted image, (b) T2-weighted image, (c) a proton density (PD) image, (d) 

T1 image after Gadolinium injection [57]. 

 

(a)                               (b)                                 (c)                                 (d) 

https://www.sciencedirect.com/topics/medicine-and-dentistry/musculoskeletal-imaging
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2. 4. MRI artifacts  

   It is not possible to determine a standard definition of an artifact in MRI due to the 

fact the same artifact that is considered a nuisance to one application can be nothing 

but a boon to another. For example: the additional signal phase terms generated by 

blood flow can cause image artifacts, while it also provides an opportunity to measure 

its phase-sensitive velocity [5]. However, we can describe an artifact as any image 

component that does not correspond to the object being scanned. MRI artifacts can be 

caused by scanning system and hardware imperfections, motion and other data 

inconsistencies. Common kinds of MRI artifacts are cited below:  

 

2. 4. 1. Motion artifacts 

   This artifact is linked to undesired motions during the examination, either random 

motions (patient movements, eye movements, swallowing...) or periodic (breathing, 

heart rhythm...). Movements are a source of image blur and can have a great influence 

on images (see Fig. 2. 2). 

   In MRI images, those motions appear as phantom images of the moving structure in 

different parts of the resultant image. These phantom images may superimpose the 

structures of interest and therefore lead to disturbance in their grayscale which 

eventually makes the segmentation process more difficult and inaccurate. This artifact 

depends on the acquisition phase when undesired motions can occur. 
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Fig. 2. 2. Artifacts in brain MRI due to head movement: (a) and (c) No motion. (b) and (d) 

Patient motion [58]. 

 

2. 4. 2. Random artifacts 

   Practically, the data produced by the MRI system can be noisy because of the 

patient himself due to parasitic emissions caused by thermal agitation of protons 

and/or the system equipment. The ratio signal to noise is generally calculated to 

quantify noise disturbance. It represents a function of the observed signal amplitude 

relative to the noise variation magnitude. To enhance image quality this ratio must be 

improved by considering different means such as more powerful B0 magnetic field 

and suitable antennas … Even though this kind of noise can be remarkably reduced in 

the final reconstructed image, it can’t be totally eliminated. Among MRI random 

noise the Gaussian one is the most common. It usually appears in the Fourier domain 

of the resultant image, after computing the inverse Fourier transform module. In MRI 

brain for example the distribution is more like Raleigh in regions of near-zero 

intensity, such as outside the skull while in regions where it takes a Gaussian 

distribution otherwise as shown in Fig. 2. 3. 

 

 

 

(a)                            (b)                             (c)                             (d) 



CHAPITRE II: Magnetic Resonance Imaging (MRI)  [Texte ] 

16 
 

 

 

 

 

 

 

Fig. 2. 3. MRI with Random noise. (a) MRI image, (b) MRI image with noise: Rice 

distribution which can be approximated by a Gaussian distribution in regions where the image 

intensity is not close to zero. Both images are taken from Brainweb Image Base [59]. 

 

2. 4. 3. Partial volume 

   The phenomenon of partial volume (Partial Volume Effect, or PVE in English) is 

related to the discretization of the space whose voxels are only associated with one 

gray level, while they represent the data contained in a small volume. Voxels located 

at the interface between two different tissues contain data of these two tissues, and 

whose gray level cannot therefore be clearly associated with either of the two classes. 

such as the interface between the materials (MG, MB, LCR, fat, bone) and in the 

cortex folds between MG-LCR, as the thickness of the cortical furrows is usually less 

than the resolution of the images. This phenomenon may also be present in case of 

blood vessels or fine gray structures in other words when the tissues are too thin to be 

visible at the image resolution. 

 

 

(a)                                                (b) 
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2.4. 4 Intensity inhomogeneities 

   Intensity inhomogeneities represent intensity variations in the same tissue. They are 

artifacts whose spatial frequency is greater than that of the bias field; we cite two 

main kinds of them: Inhomogeneities related to practical limitations, imperfections 

and nonidealities in the hardware of an MRI scanner and those Inhomogeneities 

related to differences in the histological compositions of the tissues. The first kind 

produces slow spatial variations in intensity in the reconstructed image, known as a 

bias field. The most known of their causes is the heterogeneity of the static field B0 

static and the excitation field B1 which produces shadow areas in the image caused by 

the non-uniformity of the magnetic fields produced. Also, the quality and the 

sensitivity of the receiving antenna used for acquisition. Antennas with spatially 

stable sensitivity are usually preferred in anatomical MRIs. However, surface 

antennas are used in fMRI experiments since they provide better sensitivity in a very 

local area. The reading of the BOLD signal (Blood Oxygenation Level Dependent) is 

then finer in the region of interest. However, performing an anatomical acquisition 

without changing the antenna to locate the activated regions on the anatomy leads to 

anatomical images with a very strong inhomogeneity which makes their automatic 

processing difficult. 

   The T1 and T2 relaxation times for both white matter and gray matter tissues 

depend on age and anatomical regions. Thus, the same gray matter of different 

structures like the cortex and the basal ganglia such as the putamen can show different 

intensities on a T1-weighted acquisition. This is due to the fact that the putamen is 

crossed by a large number of bundles of myelinated fibers which are too thin to be 

visible on MRI, so the observed intensity results from a mixture of GM and WM due 

to the partial volume effect. Likewise, WM is lighter in the corpus callosum than in 
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other regions, because the myelinated fibers in the corpus callosum are more 

concentrated and oriented in the same direction. Another cause of MRI 

inhomogeneities is the magnetic susceptibility expressed by the internal 

magnetization induced by B0 (the static magnetic field) of tissues. Each tissue has a 

specific magnetic susceptibility. At the interface between two tissues, the difference 

in magnetic susceptibility causes a disturbance in the B0 field. These local 

heterogeneities are responsible for localized phase frequency and shifts, causing 

signal loss, and intensity heterogeneity. They are mainly localized at the air-tissue and 

cortical bone-tissue interfaces, and very marked in the presence of metallic material. 

In particular, this artifact is responsible for disturbances due to the mere presence of 

the patient in the imager. 

 

2.5. Conclusion 

   As mentioned above artifacts are plentiful in MRI scans. It is necessary to propose 

suitable and robust segmentation models. The segmentation model can then integrate 

a constraining term to control the evolution of the segmentation model; however, it 

shouldn’t be too strong otherwise it will lead to a solution guided more by the model 

than by the observed data. It is essential that the segmentation be as robust and 

reliable as possible, because too many segmentation errors are likely to confuse the 

other stages of interpretation in the processing chain, inferring false results. This is the 

reason why segmentation is generally considered as a crucial step in applications. 

   In the next chapter, we will present a state of the art of the different deformable 

models for image segmentation next to topology preserving concepts which can be 
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combined in order to assure more robustness and precision of the segmentation 

results.   
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Chapter III 

Literature Review 

 

3.1 Introduction 

   As mentioned before many authors used registration-based techniques approaches to 

segment MR slices relying on training phase such as atlas-based methods, as in the work by 

Ou et al. [3] and Sun et al. [4], the U-Net approach which was applied by Ronneberger et al. 

[7] then by He et al. [8], Grosgeorge et al. [9] and others ([5], [6]). These registration-based 

techniques [3]–[7], [9], [60] consist in matching the image being segmented with a template 

generated from a sufficient training data set created by experts. Therefore, they require large 

manually segmented training sets and the right choice of a training set.   

   DMs have been considered as the most active and successful research areas especially in 

medical image segmentation. They are also known as Active contour or surface models and 

have been considered as powerful image segmentation since their introduction by Kass et al. 

[61].  

   In general, these models [61] may represent curves, surfaces, or higher-dimensional 

geometric objects, deforming within two-dimensional (2D) or three-dimensional (3D) digital 

images under both internal and external forces and user defined constraints. Internal forces 
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rely on the model features itself to preserve the smoothness and the continuity of the model. 

While external forces, related to the image regions surrounding the active contour, will 

eventually drive it towards the boundary of the object of interest. By means of energy 

minimization, the forces will balance out and lead the model to converge to a certain shape. 

   DMs have been extensively studied and widely used in medical image segmentation with 

interesting results [10], [11]. Depending on how the model is described. They can be explicit 

known as PDMs (see [35], [36], [13], [14], [37] and [38] or implicit called GDMs which in 

turn can be either edge-based (EGDMs) or region-based (RGDMs) (see [65], [15], [30] and 

[66]–[73]).  

 

   In the remainder of this chapter, we will focus on the GDMs and review some of their 

region-based models. The goal of this chapter is to provide first a theoretical background of 

the DMs, and then the different formulations proposed based on them illustrated by the 

following figure (Fig. 3. 1): 
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Fig. 3. 1. Review of some variants of deformable models. 

 

3.2 Registration based segmentation approaches 

   Most of the works based on image registration cited below were applied on cardiac MRI 

datasets for segmentation purposes as in our case.  

 

3.2.1 Atlas-based segmentation 

   The term atlas refers to the pair of an anatomical image and a manual labeling [5]. An atlas 

describes the different structures present in a given type of image Grosgeorge et al. [9]. 

   Atlas-based segmentation uses registration to achieve segmentation. It starts by registering 

an anatomical image from an atlas with a target image to be segmented. To obtain a 

segmentation of the target image, the manual labeling of the atlas is transformed using the 
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mapping determined during the registration; this process is called label propagation [5]. 

Indeed, atlas-based segmentation approaches make use of intensity and a labeled image that 

describes the different structures present in a given type of image. Some researchers chose to 

register a single atlas onto the image to be segmented such as of [6] for the segmentation of 

heart ventricle. Hence, Several studies have shown that multi-atlas segmentation methods 

outperform schemes that use only a single atlas, therefore, some authors preferred to use 

multiple atlases instead like [3], [4]. Ou et al. [3] presented a multi-atlas-registration 

framework for the segmentation of the Cardiac MR Right. Their central idea is to transfer 

those expert-segmentations in training images (atlases) onto target images through image 

registration, and then fuse the transferred segmentations to derive an ultimate segmentation 

[3]. 

  

3.2.2 U-Net based segmentation  

   The U-Net approach was introduced first by Ronneberger et al. [3] then by He et al. [4] as a 

convolutional network for biomedical image segmentation. It consists of a contraction path as 

a left side and expansion path in the right side which is symmetric each one to other in a u-

shaped architecture. Therefore it is called U-Net. The central idea of this approach is to train a 

convolutional network in a sliding-window setup using input images along with their 

corresponding segmentation maps to predict the class label of each pixel by providing a local 

region (patch) around that pixel as input. The U-Net output should assign a class label to each 

pixel including its localization [3]. 

   In the work of Grosgeorge et al. [9] authors introduced a shape template as a prior term 

constructed from a training set of representative shapes of the target RV obtained by manual 

segmentation. which is then integrated into the cost function of the well-known graph cut 

method [74] to guide the segmentation process. 
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   The main drawback of atlas-based methods includes a high computational cost, which is 

associated with the registration between the target image and multiple atlases, and the 

dependence of the results on the quality of the atlas set. Both registration and label fusion (for 

multiple atlases) become quite difficult because of the different structures around the target 

[3]. The u-net based approach also has some limitations due to its dependence of 

segmentation results on the quantity and the quality of the training set. Besides, the expense of 

building a training data set with a manual labeling of medical data while establishing 

correspondences can also be very challenging. 

 

 

3.3 Parametric deformable models (PDMs) 

   Considering a family of closed contours (i.e., curves or surfaces) 𝐶(𝑃, 𝑡) generated by 

evolving an initial contour 𝐶0(𝑃) = 𝐶(𝑃, 0) onto an image, as a result from the front 

evolution theory [16]. t parameterizes the family and p parameterizes the given contour. The 

geometric shape of the contour is determined by the normal component of the velocity 

evolution, while the tangential component determines the parameterization.  

   The contour 𝐶 evolves under the velocity field given by a scalar function that often depends 

on the curvature 𝑘 of the contour (𝐶(𝑃, 𝑡)). The contour evolution can be described by the 

following form: 

 

{

𝜕𝐶(𝑃, 𝑡)

𝜕𝑡
= 𝐹(𝐶(𝑃, 𝑡))�⃗� (𝐶(𝑃, 𝑡))

𝐶(𝑃, 0) = 𝐶0(𝑃)
 

(3.1) 

 

where 

𝐶: The active contour, 

 �⃗� (𝐶): The inward normal unit vector along the contour 𝐶(𝑃, 𝑡), 

𝐹(𝐶): A scalar function depends on the curvature 𝑘 of (𝐶(𝑃, 𝑡)), 
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   The contour can be transformed into a parameterized curve after discretizing 𝐶(𝑃, 𝑡) into a 

set of elements or nodes using a numerical approximation to (3.1) in a Lagrangian framework 

which is called PDM. During deformation, the node positions have to be updated, and element 

spacing needs to be adjusted in the purpose of avoiding self-intersection, preserving data 

fidelity and reducing numerical approximation errors. This type of deformable model allows 

direct interaction with the model and leads to a compact representation for fast real-time 

implementation. PDMs can represent boundaries at a sub-grid resolution as it is essential in 

the segmentation of thin structures. 

 

3.4 Geometric deformable models (GDMs) 

   The contour 𝐶(𝑃, 𝑡) can be described implicitly in a different mathematical form, known as: 

GDMs. They were introduced by Caselles et al. [65] and by Malladi et al. [15] based on the 

front propagation curve evolution theory [16], [75]. They are represented as level sets of 

higher-dimensional scalar level set functions evolving in an Eulerian fashion [16] developed 

by Osher and Sethian in  [16], [76] where only geometric measures are used to represent 

curve or surface deformations. 𝐶(𝑃, 𝑡), given by eq. (3.1), is implicitly represented as the zero 

level set (the front) of a smooth Lipschitz-continuous scalar function (𝑥, 𝑡) which is known as 

the level set function, as follows: 

 

{

𝜑(𝑡, 𝑥) > 0   𝑓𝑜𝑟 𝑥 𝑖𝑛𝑠𝑖𝑑𝑒 𝛤,

𝜑(𝑡, 𝑥) < 0   𝑓𝑜𝑟 𝑥 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝛤,

𝜑(𝑡, 𝑥) = 0   𝑓𝑜𝑟 𝑥 𝑜𝑛 𝛤(𝑡).

 

(3.2)  

 

where 

𝜑: The level set function, 

𝑡: Artificial time (iterations), 

 𝑥 ∈ 𝑅2 in 2D and 𝑥 ∈ 𝑅3 in 3D, 
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𝛤: A bounded open subset of 𝑅2 around the zero level set of 𝜑. 

   The implicit contour 𝐶 can be described, instantly, by the following form: 

 𝐶(. , 𝑡) = {𝑥|𝜑(𝑥, 𝑡) = 0}  (3.3) 

 

   To define the level set function, the signed distance function is commonly preferred for its 

stability in numerical computations. It represents the signed distance d of a point 𝑥 to the 

closed surface defined by the active contour (generally d > 0 if 𝑥 is outside and d < 0 if it is 

inside the surface). Authors in [77], [75] proposed a fast marching method to provide an 

efficient algorithm for constructing the signed distance function from a given initial contour. 

However, 𝜑 will not remain a signed distance function all the time, so the process will need to 

be reinitialized [78]. 

   The equation of motion for the level set function 𝜑(𝑥, 𝑡) can be derived by differentiating 

𝜑(𝑥, 𝑡) = 0 with respect to t and substituting (3.1), which yields to: 

 

{

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= 𝐹(𝑥, 𝑡)|𝛻𝜑(𝑥, 𝑡)|,

𝜑(𝐶0(𝑃), 0) = 0                 
 

(3.4)  

 

where  

𝜑: The level set function, 

 𝛻 : The gradient operator,  

|𝛻𝜑|: Denotes the norm of 𝜑 gradient.  

𝐹(𝑥, 𝑡): A scalar function that is only defined originally at the contour location and, hence, 

needs to be extended to the whole computational domain [16], [79], in order that eq. (3.4) will 

be applied to the whole space. 

   GDMs, implemented using level set methods, offer several advantages over PDMs due to 

their intrinsic behavior, parameterization independence, and ease of implementation. Self-

intersections of the evolving contour are naturally avoided. However, they are costly 
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prevented by PDMs [75]. Also, different geometric properties of the evolving contour, like 

the normal or the curvature, are easily computed from the level set function [75]. Propagating 

contour can automatically change topology in GDMs (merge or split) without requiring an 

elaborate mechanism to handle such changes as in PDMs [75], [80].  

 

3. 4. 1 Edge-based geometric deformable models (EGDMs): GAC 

   To overcome the need for reparameterization, techniques based on curve evolution theory 

[76], [66] allow for motion based on geometric measures such as unit normal and curvature. 

To obtain a new length constraint independent of parameterization, Caselles et al. [66] and 

Kichenassamy et al. [29] simultaneously proposed the implicit Geodesic Active Contour 

(GAC); one of the most popular edge-based active contour models [66], It utilizes only local 

information, such as image gradient, to construct an edge stopping function (ESF) that stops 

the contour evolution on the object boundaries. The model is based on the idea of considering 

the boundary detection problem of an object of interest as geodesic computation in a 

Riemannian space, according to a metric 𝑔(𝑥) induced by a given image I, the energy 

functional of which is given by: 

 
𝐸(𝐶) = ∫ 𝑔(|∇𝐼(𝐶(𝑞))|)|𝐶′(𝑞)|𝑑𝑞

1

0

 
(3.5) 

 

where 

𝐶(𝑞): A differentiable parameterized curve and 𝐶(𝑞) = (𝑥(𝑞), 𝑦(𝑞)), 𝑞 ∈ [0,1], 

𝑔: The edge stopping function usually expressed as a positive, decreasing and regular ESF 

𝑔(|∇𝐼|) such that 𝑙𝑖𝑚𝑖𝑡𝑡→∞𝑔(𝑡) = 0, given by: 

 
{
𝑔(|𝛻𝐼|) = 1 ⁄ ((1 +〖𝛽|(|𝛻(𝐺_𝜎 ∗ 𝐼)|)|〗^𝑝 )       

𝑝 = 1 𝑜𝑟 2
 

(3.6) 
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   The role of 𝑔 is to attract the curve to regions with sharp gradient where pixels for which 

𝑔(|∇𝐼(𝐶(𝑞))|) (and hence the associated energy potential) is close to zero. 

where 

𝛽 > 0: A weight parameter to control the sharpness of detected edges, 

(Gσ ∗ I): Denotes convolving image I with G𝜎 a Gaussian of standard deviation σ. 

   The evolution of an initial contour 𝐶0 can be described using a steepest descent algorithm to 

minimize the associated functional energy 𝐸𝐺𝐴𝐶  yields to the following Euler–Lagrange 

equation:   

 

{

𝜕𝐶(𝑃, 𝑡)

𝜕𝑡
= (𝑔(𝐶(𝑃, 𝑡))𝑘(𝐶(𝑃, 𝑡)) − 𝛻𝑔(𝐶(𝑃, 𝑡)). �⃗� (𝐶(𝑃, 𝑡))) �⃗� (𝐶(𝑃, 𝑡))           

𝐶(𝑃, 0) = 𝐶0(𝑃)
     

(3.7)  

 

where 

𝐶: A differentiable parameterized curve, 

𝑔: The edge stopping function, 

𝑘: The curvature of the contour, 

𝛻: The gradient operator,  

�⃗� (𝐶): The inward normal to the curve,  

𝐶0: Initial contour. 

   In order to reduce the computational time, a constant velocity term 𝛼 can be added to 

efficiently improve the propagation speed. 𝛼 is known as the balloon force (it controls the 

contour shrinking or expanding). Thus the previous equation becomes as follow: 

 

{

𝜕𝐶(𝑃, 𝑡)

𝜕𝑡
= (𝑔(𝐶(𝑃, 𝑡))(𝑘(𝐶(𝑃, 𝑡)) + 𝛼) − 𝛻𝑔(𝐶(𝑃, 𝑡)). �⃗� (𝐶(𝑃, 𝑡))) �⃗� (𝐶(𝑃, 𝑡))

𝐶(𝑃, 0) = 𝐶0(𝑃)
      

(3.8)  
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   This GAC model can be readily cast within the level set framework. This yields to an 

equivalent contour evolution process implemented using the following level set function 

evolution equation: 

 𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= 𝑔(𝑥)|∇𝜑(𝑥, 𝑡)| (𝑑𝑖𝑣 (

∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
) + 𝛼) + ∇𝑔(𝑥). ∇𝜑(𝑥, 𝑡)

= 𝑔(𝑥)|∇𝜑(𝑥, 𝑡)|(𝑘(𝑥, 𝑡) + 𝛼) + ∇𝑔(𝑥). ∇𝜑(𝑥, 𝑡) 

           

(3.9) 

 

   Despite the importance of edge-based models (GAC) in the segmentation domain, we can 

cite some of its weaknesses [58], [59] such as poor boundary information due to occlusion, 

low signal to noise ratio and weak edges. 

   It is based on edge detection, to segment the image, which relies on gradient information to 

locate jumps. However, in several cases especially when it comes to real images, such as 

medical ones, that local information can be unreliable due to the presence of noise and 

boundaries represented by low gradient [81], [82]. The model has local segmentation 

property, it can only segment an object if it's surrounded by the initial contour, so it's relevant 

to set the initial contour properly (GAC can only segment the desired object with a proper 

initial contour). Also in digital images the discrete gradients are bounded and then the edge 

stopping function (ESF in Eq. (3.7)) will never achieve zero on edges.  

   Some EGDMs introduce a balloon force term to overcome some GAC inconvenients, 

however, it's not easy to be designed. It will force the contour to pass through the weak edge 

of the object if it's too large. In the opposite case, the contour may not pass through the 

narrow part of the object. 
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3. 4. 2 Region-based geometric deformable models (RGDMs) 

   RGDMs were introduced as a solution to overcome the weaknesses of the GDMs based only 

on edge information (GAC). It was designed to detect objects whose boundaries are not 

necessarily defined by sharp gradients; in fact, it ignores edges completely, and the initial 

contour positioning can be chosen freely in the image, as for the interior contours which can 

be automatically detected. The principal idea is to subdivide the image into two or more 

regions of homogeneous intensity values. The process minimizes an energy functional Eq. 

(3.10) which is used to describe the active contour C during the process. The global form of 

the energy functional used in RGDMs is given by [31]. 

 
𝐸(𝐶) = 𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝑣. 𝐴𝑟𝑒𝑎(𝐶) + 𝜆1∫ |𝐼(𝑥, 𝑦) − 𝐼�̅�|

2𝑑𝑥 𝑑𝑦
𝐶

+ 𝜆2∫ |𝐼(𝑥, 𝑦) − 𝐼𝛺/𝐶̅̅ ̅̅ ̅|2𝑑𝑥 𝑑𝑦
𝛺/𝐶

         (10) 

(3.10)  

 

where 

𝐸: Energy describing the active contour 𝐶, 

𝜇, 𝑣, 𝜆1, 𝜆2: Positive parameters, 

𝐼: The intensity value of the image to be segmented,  

𝐼:̅ The average value of 𝐼. 

𝛺: Image domain, 

   The third and the fourth term are, respectively, the variance of the intensity level (The 

homogeneity) inside and outside the contour 𝐶.  

   Each one of the four terms is weighted in order to adjust the influence of each one of them 

on the total energy, so that, the smaller is the weight, the more the term can increase without 

penalizing the minimization. Among existing GDMs based on region information we cite the 

following: 
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3. 4. 2. 1 The Mumford Shah model (MSM) 

   David Mumford and Jayant Shah proposed, in [84] a model for image segmentation. They 

have introduced an energy minimization problem formulated so it allows computing optimal 

approximations u (piecewise-smooth or piecewise-constant) of an image I to be segmented. 

   According to Mumford and Shah [83] the image segmentation problem consists in 

computing a decomposition of image domain 𝛺 ⊂ 𝑅2 to 𝛺𝑖 sub-regions such as: 

 𝛺 = 𝛺1 ∪ 𝛺2 ∪ …∪ 𝛺𝑛 ∪ 𝐾       (3.11) 

 

𝛺: Image domain, 

𝛺𝑖: Sub-regions of the image, 

K: the boundary between different 𝛺𝑖. 

   For which u is smooth (slow intensity variation) within each sub-region 𝛺𝑖 of 𝛺, but 

discontinuous (sharp intensity variation) acrossing most of the boundary K between different 

𝛺𝑖. 

    In their work [83] the model of segmentation was presented by the energy functional given 

by:  

 
𝐸𝑀𝑆𝑀(𝑢, 𝐶) = ∫ (𝑢 − 𝐼)2𝑑𝑥 + 𝜇

𝛺

∫ |𝛻𝑢|2𝑑𝑥 + 𝑣|𝐶|,      𝑥 ∈ 𝛺
𝛺/𝐶

      
(3.1 2) 

 

where 

𝐸𝑀𝑆𝑀: The energy functional of MSM, 

𝐶: The active contour, 

𝑢: Optimal approximation u of an image I to be segmented, 

𝛺: Image domain, 

|𝐶|: The length of 𝐶,  
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𝜇, 𝑣 ≥ 0: Positive Constant parameters.  

𝛻: The gradient operator,  

 

   The unknown set 𝐶 and the non-convexity of the above energy functional make it difficult 

to be minimized. Some alternative methods have been proposed to simplify, modify and 

minimize the above functional, we can cite as an example the paper [84] where authors 

presented a multiresolution stochastic Level set method for Mumford-Shah image 

segmentation. 

 

3. 4. 2. 2 The Chan Vese model (CVM) 

   The CVM [31] is one of the most popular region-based models for image segmentation. 

Technically, it combines the reduced MSM [84] and level set method. This segmentation 

problem is solved interchangeably by computing a gradient descent flow and expensively and 

tediously re-initializing a level set function. 

   CVM has been successfully used in binary phase segmentation with the assumption that 

each image region is statistically homogeneous. It was followed by several works [32], based 

on it, on 2D segmentation such as [85], as well on 3D segmentation like the work of [86]. 

   Let 𝐼: 𝛺 → 𝑅 be an input image and C be closed curve. The energy functional according to 

Chan and Vese is defined by: 

 𝐸𝐶𝑉(𝐶, 𝑐1, 𝑐2) = 𝜇. 𝐿𝑒𝑛𝑔𝑡ℎ(𝐶) + 𝑣. 𝐴𝑟𝑒𝑎(𝑖𝑛𝑠𝑖𝑑𝑒(𝐶))

+ 𝜆1∫ |𝐼 − 𝑐1|
2𝑑𝑥

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

+ 𝜆2∫ |𝐼 − 𝑐2|
2𝑑𝑥

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

,

𝑥 ∈ 𝛺  

(3.13) 
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where 

𝐸𝐶𝑉: The energy functional of MSM, 

𝐶: The active contour, 

𝑐1, 𝑐2: Two constants that approximate the image intensities inside and outside the contour 𝐶, 

respectively, 

𝜇, 𝑣, 𝜆1, 𝜆2: Positive Constant parameters, 

𝛺: Image domain, 

𝐼: 𝛺 → 𝑅: The original image. 

   The first term is The Euclidean length, it's used to regularize the contour, the second is the 

area term, the third and fourth term representing the variance of the intensity level (i.e., the 

homogeneity) inside and outside 𝐶. Each term is weighted by a fixed parameter ( 𝜇, 𝑣 ≥ 0,

𝜆1, 𝜆2 > 0) in order to determine its influence on the total energy. µ controls the smoothness of 

zero level set, 𝑣 increases the propagation speed, 𝜆1and 𝜆2 control the image data driven force 

inside and outside the contour, respectively. 

   After minimizing the above energy functional using the steepest descent method [87], and 

representing the contour 𝐶 as the zero level set, we obtain the corresponding variational level 

set formulation as follows: 

 

 

{
 
 

 
 
𝜕𝜑

𝜕𝑡
= 𝛿(𝜑) [𝜇 𝑑𝑖𝑣 (

∇𝜑

|∇𝜑|
) − 𝑣 − 𝜆1(𝐼 − 𝑐1)

2 + 𝜆2(𝐼 − 𝑐2)
2]

𝑐1(𝜑) =
∫ 𝐼𝐻(𝜑)𝑑𝛺𝛺

∫ 𝐻(𝜑)𝑑𝛺𝛺

, 𝑐2(𝜑) =
∫ 𝐼(1−𝐻(𝜑))𝑑𝛺𝛺

∫ (1−𝐻(𝜑))𝑑𝛺𝛺

𝐻(𝑧) = {
1, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 < 0

 

(3.14) 

 

where 

𝜑: The level set function, 

𝐼: The intensity value of the image to be segmented,  

𝛺: Image domain, 
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𝐻: The Heaviside function, 

𝑧: A given function,  

𝜇, 𝑣, 𝜆1, 𝜆2: Positive Constant parameters, 

 

   The data fitting term (−𝜆1(𝐼 − 𝑐1)
2 + 𝜆2(𝐼 − 𝑐2)

2) controls the curve evolution, 𝜆1and 𝜆2 

govern the tradeoff between the two terms. Obviously, in Eq. (3.14), 𝑐1 and 𝑐2 are related to 

the global properties of the image contents inside and outside the contour, respectively. 

However, such global image information is not accurate if the image intensity inside or 

outside the contour is inhomogeneous. 

   Usually, 𝜆1 = 𝜆2, 𝑣 = 0 and 𝜇 is a scaling parameter. It is set to be small enough, so small 

objects can be extracted. However, for big objects, it needs to be large enough [31]. 

   As pointed in [31], the CVM can automatically detect all of the contours, no matter where 

the initial contour starts in the image. So we can say that the CVM has the global 

segmentation property to segment all objects in an image. But, the model does not work well 

for the images with intensity inhomogeneity. Vese and Chan extended their work in [88] to 

utilize multiphase level set functions to represent multiple regions. They called it the 

piecewise constant model (PCM). 

 

3. 4. 2. 3 The piecewise smooth model (PSM) 

   In the case of images with intensity inhomogeneities, the CVM [31] for segmentation may 

fail to achieve its purpose. In order to overcome this inconvenience, Vese and Chan proposed 

in [88] another method that aims at expressing the intensities inside and outside the contour as 

piecewise smooth functions instead of constants. 

   The following energy functional becomes: 
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𝐸𝑃𝑆(𝑢+, 𝑢−, 𝜑) = ∫ |𝑢+ − 𝐼|2𝐻(𝜑)𝑑𝑥 +

Ω

∫ |𝑢− − 𝐼|2(1 − 𝐻(𝜑))𝑑𝑥
𝛺

+ 𝜇∫ |𝛻𝑢+|2𝐻(𝜑)𝑑𝑥 +
𝛺

𝜇∫ |𝛻𝑢−|2(1 − 𝐻(𝜑))𝑑𝑥
𝛺

+𝜈∫ |∇𝐻(𝜑)|,   𝑥𝜖Ω 
Ω

 

(3.15) 

 

where 

 𝜇, 𝑣: Positive constant parameters, 

𝛺: Image domain, 

𝐼: 𝛺 → 𝑅: The original image,  

𝑢+(𝑥) and 𝑢−(𝑥) are smooth functions in the sub-regions defined as Ω+ = {𝑥𝜖Ω: 𝜑(𝑥) > 0} 

and Ω− = {𝑥𝜖Ω: 𝜑(𝑥) < 0}, respectively. Minimizing the above energy functional yields to 

the following Euler–Lagrange equations: 

 

{
 
 
 
 

 
 
 
 
𝜕𝜑

𝜕𝑡
= 𝛿(𝜑) [𝑣 𝑑𝑖𝑣 (

∇𝜑

|∇𝜑|
) − |𝑢+ − 𝐼|2 − 𝜇|∇𝑢+|2 + |𝑢− − 𝐼|2 + 𝜇|∇𝑢−|2]

𝑢+ − 𝐼 = 𝜇Δ𝑢+ 𝑖𝑛 {𝑥𝜖Ω| 𝜑(𝑥; 𝑡) > 0}

𝜕𝑢+

𝜕�⃗� 
= 0  𝑜𝑛 {𝑥𝜖Ω| 𝜑(𝑥; 𝑡) > 0} ∪ ∂Ω

𝑢− − 𝐼 = 𝜇Δ𝑢− 𝑖𝑛 {𝑥𝜖Ω| 𝜑(𝑥; 𝑡) < 0}

𝜕𝑢−

𝜕�⃗� 
= 0  𝑜𝑛 {𝑥𝜖Ω| 𝜑(𝑥; 𝑡) = 0} ∪ ∂Ω

 

(3.16) 

 

   Obviously, 𝑢+and 𝑢−must be obtained by solving the two partial differential equations 

(PDEs) before each iteration, which cause a very expensive computational cost. Moreover, 

𝑢+and 𝑢− must be extended to the whole image domain, which is difficult to implement and 

consequently increases even more the computational cost. In summary, the high complexity 

reduces the application of the PS model in practice. 
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3. 4. 2. 4. The local binary fitting model (LBFM)  

   LBFM is able to segment images with intensity inhomogeneities and is much more efficient 

and accurate than the PSM. Li et al. [90], [91], proposed the LBFM by embedding the local 

image information. The basic idea is to introduce a kernel function to define the energy 

functional of LBFM as follows: 

 𝐸𝐿𝐵𝐹𝑀(𝐶, 𝑓1, 𝑓2)

= 𝜆1∫ ∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓1(𝑥)|
2

𝑖𝑛𝑠𝑖𝑑𝑒(𝐶)

𝑑𝑦𝑑𝑥
Ω

+ 𝜆2∫ ∫ 𝐾𝜎(𝑥 − 𝑦)|𝐼(𝑦) − 𝑓2(𝑥)|
2

𝑜𝑢𝑡𝑠𝑖𝑑𝑒(𝐶)

𝑑𝑦𝑑𝑥,
Ω

  𝑥, 𝑦

∈ 𝛺 

(3.17) 

 

where 

𝜆1, 𝜆2 > 0: Constant parameters,  

𝛺: Image domain, 

𝐼: 𝛺 → 𝑅2: An input image,  

𝐾𝜎: Gaussian kernel with standard deviation 𝜎, 

𝑓1, 𝑓2: Two smooth functions that approximate the local image intensities inside and outside 

the contour 𝐶, respectively.  

   In the level set method, 𝐶 ⊂ 𝛺 can be represented by the zero level set of a Lipschitz 

function: 𝛺 ⊂ 𝑅 . Minimizing the energy functional 𝐸𝐿𝐵𝐹 with respect to, yields to the 

gradient descent flow given by the following equation:  

 𝜕𝜑

𝜕𝑡
= −𝛿𝜀(𝜑)(𝜆1𝑒1− 𝜆2𝑒2)  

(3.18) 
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   In order to obtain stable evolution of the level set function, a distance regularized term in 

[91] is incorporated into eq. (3.18). Moreover, the Euclidean length term is used to regularize 

the zero contour of 𝜑. 

   Finally, the total variational formulation becomes: 

 𝜕𝜑

𝜕𝑡
= 𝜇 (∇2𝜑 − 𝑑𝑖𝑣 (

∇𝜑

|∇𝜑|
)) + 𝑣 𝛿𝜀(𝜑)𝑑𝑖𝑣 (

∇𝜑

|∇𝜑|
)

− 𝛿𝜀  (𝜑)(𝜆1 𝑒1 − 𝜆2 𝑒2 )    

(3.19) 

 

where 𝜆1 and 𝜆2weight the two integrals over regions inside and outside the contour. 𝑒1 and 𝑒2 

are defined as follows:  

 

 {
𝑒1(𝑥) = ∫ 𝐾𝜎(𝑦 − 𝑥)|𝐼(𝑥) − 𝑓1(𝑦)|

2
Ω

𝑑𝑦

𝑒2(𝑥) = ∫ 𝐾𝜎(𝑦 − 𝑥)|𝐼(𝑥) − 𝑓2(𝑦)|
2

Ω
𝑑𝑦
   

(3.20) 

 

 

with 

 

{
 
 

 
 𝑓1(𝑥) =

𝐾𝜎 ∗ [𝐻𝜀(𝜑)𝐼(𝑥)]

𝐾𝜎 ∗ 𝐻𝜀(𝜑)
             

𝑓2(𝑥) =
𝐾𝜎 ∗ [(1 − 𝐻𝜀(𝜑))𝐼(𝑥)]

𝐾𝜎 ∗ (1 − 𝐻𝜀(𝜑))

  

(3.21) 

 

   The standard deviation 𝜎 of the kernel plays an important role in practical applications. 𝜎 

can be seen as a scale parameter that controls the region-scalability from small neighborhoods 

to the whole image domain [90]. The scale parameter should be properly chosen according to 

the images. A too small 𝜎 may cause undesirable result, while a too large 𝜎 will cause high 

computational cost.  
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   In the following equations, the regularized versions of Heaviside function 𝐻 and Dirac 

function 𝛿 are utilized as follows:  

 

{
𝐻𝜀(𝑧) =

1

2
[1 +

2

𝜋
arctan (

𝑧

𝜀
)] 

𝛿𝜀(𝑧) =
1

𝜋
⋅

𝜀

𝜀2 + 𝑍2
,    𝑍𝜖𝑅  

 

(3.22) 

   The parameter 𝜀 affects the profile of 𝛿𝜖  (𝜑) . A larger 𝜀 will lead to a broader profile, which 

will enlarge the capture range but decrease the accuracy in the final contour location.  

   Obviously, 𝑓1 and 𝑓2 of Eq. (3.21) can be viewed as the weighted averages of the image 

intensities in a Gaussian window inside and outside the contour, respectively. This is why the 

LBFM can well handle images with intensity inhomogeneity. 

 

3. 4. 2. 5 Local image fitting model (LIFM)  

   K. Zhang, et al in [85] introduced an active contour model with local image fitting. First 

they defined a local fitted image (LFI) by the following function: 

 𝐼𝐿𝐹𝐼 = 𝑚1𝐻𝜀(𝜑) + 𝑚2(1 −𝐻𝜀(𝜑)) (3.23) 

 

where 𝑚1 and 𝑚2 are defined as follows:  

 
{
𝑚1 = 𝑚𝑒𝑎𝑛(𝐼𝜖({𝑥𝜖Ω|𝜑(𝑥) < 0} ∩  𝑊𝑘(𝑥)))

𝑚2 = 𝑚𝑒𝑎𝑛(𝐼𝜖({𝑥𝜖Ω|𝜑(𝑥) > 0} ∩  𝑊𝑘(𝑥)))
  

(3.24) 

 

   𝑊𝑘(𝑥) is a rectangular window function, (a truncated Gaussian window or a constant 

window). The proposed local image fitting energy functional results of minimizing the 

difference between the fitted image and the original image as follows:  

 
𝐸𝐿𝐼𝐹(𝜑) =

1

2
∫ |𝐼(𝑥) − 𝐼𝐿𝐹𝐼(𝑥)|2

Ω

 𝑑𝑥, 𝑥 ∈ 𝛺 
(3.25) 
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   Using the calculus of variation and the steepest descent method [87], 𝐸𝐿𝐼𝐹(𝜑) can be 

minimized with respect to 𝜑 to get the corresponding gradient descent. The derivation of the 

associated level set function is given by:  

 𝜕𝜑

𝜕𝑡
= (𝐼 − 𝐼𝐿𝐹𝐼)(𝑚1 −𝑚2)𝛿𝜀(𝜑) 

(3.26) 

 

where 𝛿𝜀(𝜑) is the regularized Dirac function defined in Eq. (3.22). 

 

3. 4. 2. 6 Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) 

model 

   SBGFRLS was originally implemented using a regularized level set function [44]. It 

combines the merits of the traditional  GAC [28] and CV models [31]–[33], described below 

by Eq. (3.27). The SBGFRLS model takes the form of the level set function of the GAC 

model [28] in which the classical ESF is replaced by the SPF [44]. As a property of the 

SBGFRLS model is its selectivity, it can be exploited either locally (LBGFRLS) to segment 

one specific contour, or globally (GBGFRLS) to provide all the existing contours 

simultaneously. 

 

{
 
 

 
 
∂φ

∂t
= α. SPF((I(x)) ⋅ |∇φ(x, t)| + ∇SPF((I(x)) . ∇φ, x ∈ Ω 

SPF(I(x)) =
I(x) −

c1 + c2
2

max (|I(x) −
c1 + c2
2

|)
  

 

(3.27) 

where 

 φ: The level set function, 

 𝑡: Artificial time (iterations), 

α: Constant velocity term, 

𝛺: Image domain, 
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   SPF is the signed pressure force function [44] that reflects the statistical information of the 

two regions of the image inside and outside the active contour. 𝐼 is a given 2D image, Ω a 

bounded open subset of 𝑅2 around the zero level set of φ, and c1 and c2 are the same average 

intensities, used to minimize the energy function of the CV model [31]–[33], inside and 

outside the contour, respectively. 

   The proposed algorithm in [44] can be summarized as follows: 

1. Set a contour Ω0 to initialize the level set function φ(x, t = 0) as: 

 

φ(x, t = 0) = {

−1  for x inside  Ω0,
1  for x outside  Ω0,
0  for x on  ∂Ω0.

 

(3.28) 

 

2. Compute the SPF according to Eq. (3.27). 

3. Compute the level set function φ(x, t) using Eq. (3.27) without the second term [44] 

as follows: 

 ∂φ

∂t
= α. SPF((I(x)) ⋅ |∇φ(x, t)|, x ∈ Ω 

(3.29) 

 

4. Let φ = 1 for φ > 0 ; otherwise, φ = −1. (This step is selective to ensure the local 

segmentation property and is necessary to segment specific objects.) 

5. Regularize φ using a Gaussian kernel 𝐺 with a standard deviation 𝜎 (φ(x, t) =

φ(x, t) ∗ 𝐺𝜎), 

6. Stop if φ(x, t) has converged, otherwise return to step 2. 
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3.5 Topology preserving geometric deformable models (TPGDMs) 

   The ability to automatically change topology is often presented as an advantage of the level 

set method over explicit deformable models. However, this behavior turns out to be a liability 

in some applications, where a prior knowledge of the target topology is known. This is 

typically the case in medical image segmentation, since the topology of the target to be 

segmented in medical images is known in advance. Therefore many studies using GDMs 

based on the level set function were designed using a novel topology-preserving level set 

method, which aims to constrain the flexibility of the GDM in order to control merging or 

shrinking and ensure topology preservation while maintaining the other advantages of 

standard GDMs.  

   This is achieved by combining the GDM with a topology-preserving concept such as simple 

point [27], [39] or self-repelling force [41]. In the present work, the SBGFRLS [44] as a 

GDM of segmentation and the topology preserving concept based on self-repelling force [41] 

were focused on and are introduced in this section.  

 

3.5.1 Topology definition 

   Topology is a branch of mathematics that studies the properties of geometric figures that are 

preserved through deformations, twisting and stretching, hence without regard to size, 

absolute position. 

   In our case, the topology of an object in a 2D image defines the number of its connected 

components, i.e. cavities and handles. Preserving an object’s topology during the image 

transformation means that its final form remains homeomorphic to its initial one [40]. By 

definition, two objects are homeomorphic if there exists a bijective transformation that maps 

one onto the other and both the transformation and its inverse are continuous (the 
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transformation is called a homeomorphism) [40]. The question of preserving topology is thus 

equivalent to finding a transformation that is a homeomorphism [92].  

   Usually, GDMs inherently allow changes in the topology of the active contour by freely 

splitting or merging the connected components. However, in our case of medical image 

segmentation, where the target to be segmented has a predefined shape, it is beneficial (lower 

computing complexity and cost) for the segmentation process to set an initial contour that is 

homeomorphic to the target as long as the topology of the evolving contour is constrained by 

keeping constant the number of connected components defined during the initialization of the 

GDM. In what follows, we describe two of the existing concepts exploited to preserve the 

topology of GDMs in the literature: The simple-points based concept introduced by Han et al. 

[27] and the Self-Repelling Force concept [30], [41]. 

 

3.5.2 Topology preserving geometric deformable models using simple point concept for 

topology constraining 

   The Simple-points shem was introduced by Han et al. [27]. It was used later in [39] where 

authors proposed a simple point topology preserving level set by means of a balanced 

quadtree grids, as a new way of implementation, to maintain computational efficiency and a 

manageable size contour. More recently, the same previous concept [63] was brought by [93]. 

   The works [27] and [94] of Han et al. proposed to preserve the topology of the implicit 

contour while the embedding level-set function is evolving. Their method has been applied to 

the GAC model [66].  

   The key idea of their method to preserve topology lies in the concept of simple point, based 

on the theory of digital topology. The authors assume that the topology of the zero level set is 

equivalent to the topology of the digital object boundary. The topology-preservation problem 

is, therefore, simplified in the following way; the topology of the implicit contour can change 
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only if the level-set function changes sign at a grid point. This is only a necessary condition: 

not every change of sign of the level-set function implies a topology change of the zero level 

set and consequently of the digital object boundary. A grid point of a binary object is simple if 

it can be added or removed without changing the topology of both the object X and its 

background X̅, i.e. without changing the number of connected components, cavities and 

handles of both X and X̅. A simple point is easily characterized by two topological numbers 

with respect to the digital object 𝑋 and a consistent connectivity pair (𝑛, �̅�). These numbers, 

denoted 𝑇𝑛(𝑥, 𝑋) and 𝑇�̅�(𝑥, �̅�) (or 𝑇𝑛 and 𝑇�̅�), have been introduced by G. Bertrand in [95] as 

an elegant way to classify the topology type of a given voxel. The values of 𝑇𝑛(𝑥, 𝑋) and 

𝑇�̅�(𝑥, �̅�) characterize isolated, interior and border points as well as different kinds of 

junctions. In particular, a point is simple if and only if𝑇𝑛(𝑥, 𝑋) = 𝑇�̅�(𝑥, �̅�) = 1. Their 

efficient computation, which only involves the 26-neighborhood, is described in [93]. 

   Thus, Han et al. introduce an algorithm that monitors at each iteration, the changes of sign 

of the level-set function and prevents the level-set function from changing sign on grid points 

which are not simple. Therefore, the procedure is pixel based. Which means, for more 

accuracy, the resolution of the underlying computational grid needs to be improved. 

Consequently, both the computational cost and the size of the resulting contour increase 

dramatically. In order to maintain computational efficiency and to keep the contour size 

manageable, Han and Prince [39] have improved their previous topology preserving approach 

[27] to a topology preserving geometric deformable model on adaptive quadtree grid 

(QTGDMs). In order to do this, definitions and concepts from digital topology on regular 

grids were extended to balanced quadtree grids (BQGs) so that characterization of simple 

point could be made. 
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   DMs on balanced quadtree grids have been introduced, later, in [96] where they represented 

another implementation of the classical simple point topology preserving GDMs using a 

balanced octree grid (BOGs) instead of BQGs. 

   The simple point condition is a very efficient way to detect topological changes during a 

level set evolution. However, in many applications, the topology-preserving level set method 

of Han et al. is too restrictive. The primary concern is topological defects such as handles, 

which are difficult to retrospectively correct [94], [97]–[100]. On the other hand, changes in 

the number of connected components (including cavities) during the evolution are less 

problematic.  

   Ségonne in his works [101]–[103] presented a novel genus preserving level set based on an 

extended concept of simple point, called multisimple point (genus is a topological invariant 

representing the number of handles). The proposed framework criterion ensures that no 

handles are generated or suppressed while splitting or merging the components of the object. 

(For example, if the initial contour has a spherical topology, it may split into several pieces, 

generate cavities, go through one or several mergings, and finally produce a specific number 

of surfaces, all of which are topologically equivalent to a sphere.) .The topological numbers of 

a point x are locally computed and do not carry any information on the global connectivity of 

the neighboring connected components of x (they measure the number of connected 

components in the sets 𝑁𝑛(𝑥, 𝑋) and 𝑁�̅�(𝑥, �̅�). In order to integrate information on the global 

connectivity, we consider the set 𝐶𝑛(𝑥, 𝑋) of n-connected components of 𝑋\{𝑥} that are n-

adjacent to x. We say that a point is multisimple relative to an object X if and only if it can be 

added or removed without changing the number of handles and cavities of the object. 

Contrary to the case of simple point, the addition of a multisimple point may merge several 

connected components, and its removal may split a component into several parts. 
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   Authors in [104] incorporates a Chan-Vese active contour with topology control (using 

Euler numbers such as EN and NC: numbers of connected regions of image object) allowing 

the control of preserving or splitting active contours, these numbers are global attributes of 

topology and are easier than the simple point concept to control global topology. 

   However, authors stress the arbitrariness of the result produced by the algorithm based on 

simple point concept, depending on the order in which points are treated in the narrow band. 

 

3.5.3 Topology preserving geometric deformable models using self-repelling force (SRF) 

concept for topology constraining 

   Unlike Simple-Points scheme for topology preservation where topology is tested after each 

step of the segmentation process, self-repelling force based concept is included into the 

variational framework. This allows for a more granular and far more "natural" approach to 

topology preservation. It was introduced first by Le guyader et Vese [41] in their model of 

segmentation based on an implicit level-set formulation and on the geodesic active contours 

under topological constraint. Self-Repelling Snakes bases its "repelling" factor on a simple 

geometric observation. 

Fig. 3. 2. Geometric observation of a normalized moving front. 

 

    Fig. 3. 2 shows how the Self-Repelling Force can be an indicator of topology changes. 

Considering two neighboring points x and y belonging to the zero level set, C of the signed 

distance function φ. ∇φ(x) and ∇φ(y) are the unit outward vectors normal to the contour at 
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these points. According to [30], [41], when the contour is about to merge, split or have a 

contact point (i.e., when the topology of the evolving contour is about to change), the 

Euclidean scalar product 〈∇φ(x),∇φ(y)〉 reaches its maximum, thus increasing the topological 

energy (Etop).  

   In other words, if the outward normal vectors (fig 1.1) to the level lines passing through 

points x and y have opposite directions, the inner product term (-〈∇φ(x),∇φ(y)〉) causes the 

energy functional to increase sharply (eq. (3.30)), thereby, avoiding breaking or merging of 

the curve.  

 

{
 

 
−< �⃗� (𝑥), �⃗� (𝑦) >≅ 1      (𝑎)

−< �⃗� (𝑥), �⃗� (𝑦) >≅ 1      (𝑏)

−< �⃗� (𝑥), �⃗� (𝑦) >≅ −1   (𝑐)

−< �⃗� (𝑥), �⃗� (𝑦) >≅ 0      (𝑑)

  

(3.30) 

 

   Recall that the normal of a level set front is defined by 
∇𝜑

|∇𝜑|
 . Approximating 𝜑 to a signed 

distance function yields |∇𝜑| = 1, which reduces the scalar product from above (eq. (3.30)), 

to−〈∇𝜑(𝑥), ∇𝜑(𝑦)〉. 

   Le Guyader et al. [41] introduced their geometric information as a variational problem (Eq. 

(3.30)) to preserve the topology in methods based on level set. The Euclidean scalar product is 

weighted with an exponential force based on distance in order to decrease the weight of points 

further away from each other [41].  

 
Etop(φ) = −∫ ∫ exp(−

‖x − y‖2
2

d2
) < 𝛻𝜑(x), ∇φ(y) >

ΩΩ

 

∙ 𝐻(φ(x) + l)H(l − φ(x))H(φ(y) + l)H(l − φ(y))dx dy  

H(𝑧) = {
1, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 < 0

 

(3.31) 
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where 

Etop: Functional energy [30] for the topology preserving, 

φ: The level set function, 

𝛺: Image domain, 

H: The Heaviside function,  

z: A given function,    

x, y: Two neighboring points determined by the windowing function (exp (−
‖x−y‖2

2

d2
)), 

 𝑑: The width of the windowing function, 

 𝑙: The width of the narrow band, {xϵΩ| − l ≤ φ(x) ≥ l}, around the zero level curve of φ 

which denotes the evolving contour. 

 

3.6 Conclusion 

   DMs are considered one of the popular approaches particularly in medical image 

segmentation. DMs can evolve according to internal forces and external forces derived from 

the image characteristics. In this chapter, a detailed overview was provided of different kinds 

of DMs with particular focus on GDMs. These various techniques are categorized in two 

groups based on the external force extracted from the image (Edge and region based). The 

latter group has received a tremendous amount of attention in medical image processing. We 

also mentioned that different enhancements have been proposed all over the years, including 

adding terms based on the target’s prior knowledge such as shape, size, topology which has 

got our attention. In the following chapter, we present first, our proposed GDM: Selective 

binary level set (SBLS) [45] based on the SBGFRLS model [44] then, our Topology 

preserving selective binary level set (TPSBLS) [45].  
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Chapter IV 

Proposed geometric deformable models for medical image 

segmentation  

 

4. 1    Introduction 

   This chapter encompasses the different contributions achieved during the thesis for medical 

image segmentation of heart ventricle endocardium and brain tumor in real MRI slices. First, 

we describe our proposed GDM for segmentation known as Selective Binary Level Set 

(SBLS) [45]. Then, we introduce the proposed Topology Preserving Selective Binary Level 

Set (TPSBLS) model [45] which is the result of coupling the SBLS model [45] with a 

topology preserving term based on the self-repelling force concept of Le Guyader and Vese 

[41]. Examples of segmentation have been presented along this chapter to describe and 

compare the performances of each approach.  
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4.2 Selective binary level set (SBLS) 

4.2.1 SBLS description 

   SBLS is based on the SBGFRLS model [44] with no Gaussian smoothing step originally set 

to regularize the level set function at each phase of the process. This preserves the details of 

information imported by the model that are necessary for the next steps of the process and 

reduces the computational cost especially in the segmentation of high resolution images.  

   The SBLS model can be exploited as a local or global approach for segmentation. The 

global variant considers all existing objects surrounding the initial contour equally as targets 

and the process involves the entire image. Unlike the SBGFRLS model [44], the local variant 

of SBLS [45] processes locally by considering only one or n specific targets simultaneously, 

using one or n initial contours, respectively.  

 

4.2.2 SBLS implementation and results 

   The resulting SBLS segmentation algorithm in its all possible variants is described below in   

Fig. 4. 1 and summarized in the following steps:  

1. Set n initial contours Ωi defined by an initial level set function φ(x, t = 0) as: 

 

φ(x, t = 0) =

{
 
 

 
 
−1  for x inside  Ωi,
1  for x outside  Ωi,
0  for x on  ∂Ωi,
Ω =∪  Ωi,
𝑖 = 1, . . 𝑛

 

(4.1) 

 

2. Compute the SPF using Eq. (3.27). 

3. Update φ(x, t) using SBLS [45] formulation (Eq. (3.29)), 

4. If (Local segmentation), set φ(x, t) = 1 for φ(x, t) > 0 ; and φ(x, t) = −1 otherwise. 
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Else if (Global segmentation), jump to step 5, 

5. Stop if φ(x, t) has converged, otherwise return to step 2. 

 

  

 

 

 

 

 

  

 

 

 

 

 

  

 

 

Fig. 4. 1. The algorithm of the proposed Selective Binary Level Set (SBLS) model [45] for 

segmentation. 

Yes 

No 

No 

Yes 

Global Local Set Ω0 any where 

 near 

Set Ω0 = Ωn near to 

their n targets 

Compute SPF using Eq. 

(3.27) 

Compute φ(x, t) using Eq. 

(3.29) 

Let φ = 1 for  φ > 0 ; 

otherwise,  φ = −1.  

near 

Set an initial contour Ω0 

 

Initialize the level set function φ 

φ(x, t = 0) = {

−1  for x inside  Ω0,
1  for x outside  Ω0,
0  for x on  ∂Ω0.

 

Local 

segmentation 

φ is 

stationary 

Segmentation 

End 
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   Note that in the algorithm, step 4 is a selective step. It is the key step to ensure a local 

segmentation (LBLS or TPLBLS) [45]. More precisely, it makes the deviation | ∇φ | that is far 

from the interface of φ close to zero. Thus, only φ(x) near to the interface will evolve and this 

is how the evolution will take local property. Removing step 4 leads to a global segmentation.  

   The SBLS model [45] presented in Eq. (3.29) is a level set function governed by the 

parameter α. Its value is relative to the image quality (noisy, smooth, …) and size. More 

specifically, if the image is relatively noisy and of high resolution, α needs to be high. 

However, in the case of an image with good quality and small dimensions, choosing high 

values of α leads to the quick convergence of the SBLS model [45] and possible missing of 

weak contours. Note that if α is too small, the execution time can be very high and the 

evolution of the active contour will become stationary or blocked by high gradients in the 

image.  

   Hereafter, some results of local segmentation are presented using LBGFRLS [44] and LBLS 

[45] applied on both synthetic and real images.  
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Fig. 4. 2. Segmentation results of LBGFRLS and LBLS [45]. Images with initial contour (a) - hand 

phantom, (d) - galaxy image, (g) - heart image from MICCAI 2012, and (j) - brain image from 

figshare dataset. LBGFRLS segmentation results (b), (e), (h) and (k). LBLS [45] segmentation 

results (c), (f), (i) and (l). α = 20 for (a) and (d), α = 10 for (g), α = 20 for (j). Initial contours are in 

red. Obtained contours in black and green. 

 

 

(a)                                      (b)                                        (c) 

      (d)                                  (e)                                        (f) 

(g)                                      (h)                                           (i) 

ImOr, PHI, CI, 1st step:IVC alone

ImOr, PHI, CI, 1st step:IVC alone
ImOr, PHI, CI, 1st step:IVC alone

(j)                                 (k)                               (l) 
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   The local segmentation outcomes of a hand phantom image (362x380) presented in the first 

line of Fig. 4. 2 demonstrate that unlike LBGFRLS [44] (Fig. 4. 2 (b)), using LBLS [45] 

successfully keeps the boundary of each finger separated, and the final contour correctly 

reflects the shape of the hand (Fig. 4. 2 (c)). As for the galaxy image, it was supposed to 

determine one boundary of the galaxy as a single object. Neither LBGFRLS [44] (Fig. 4. 2 

(e)) nor LBLS [45] (Fig. 4. 2 (f)) was able to provide the expected segmentation and clearly 

did not preserve the topology of the initial contour. The same holds for heart ventricle 

segmentation in a heart image from MICCAI 2012 dataset [47] (see (Fig. 4. 2 (h) and (i)) and 

for tumor extraction in a brain MRI slice of figshare dataset [50] (see (Fig. 4. 2 (k) and (l)) 

where both the LBGFRLS [44] and the LBLS models [45] failed to preserve their topologies.     

   Using the proposed LBLS [45] in its current form may fail to provide a correct 

segmentation. This is due to the flexibility of the explicit DMs. Consequently, the model 

allows the initial contour to undergo considerable automatic changes in its topology 

(shrinking or merging). This affects negatively affects the evolution of the active contour and 

gives, eventually, a contour with a different topology compared to the initial one and/or 

undesirable contours as shown in (Fig. 4. 2 (f), (i) and (l).  

 

4. 3 Topology preserving selective binary level set (TPSBLS) 

4. 3. 1 TPSBLS description 

   Even though the automatic changing of topology is a point of strength of GDMs, in the 

present case of heart ventricle or brain tumor segmentation, it is considered as a limit because 

the topology of the target can be predefined. It is therefore possible to initialize the active 

contour to be homeomorphic to the target.This then leads to the challenge of orienting and 

constraining the automatic changing of the level set in order to maintain the initial topology of 

the SBLS model [45] during the segmentation process [41]. To this end, we propose to 
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minimize the functional energy of the SBLS model [45] (EGDM) constrained by Etop [41] 

which is based on the Self-Repelling Force concept [30], [41] in order to preserve the level set 

(φ) topology as follows (Eq. (4.2)).   

 minφ (EGDM(φ) + µEtop(φ))  
(4.2) 

where φ is the level set function, EGDM is the functional energy of the SBLS model [45], Etop 

the functional energy [41] for topology preserving, and µ is a positive tuning parameter. 

 

4. 3. 2 TPSBLS implementation and results 

   The resulting level set (TPSBLS) [45] formulation that minimizes the functional energy of 

the proposed model defined by Eq. (4.2) is described below: 

 𝜕𝜑

𝜕𝑡
= 𝛼. 𝑆𝑃𝐹((𝐼(𝑥)) ⋅ |𝛻𝜑(𝑥, 𝑡)| +

4

𝑑2
𝜇 𝐻(𝜑(𝑥) + 𝑙)𝐻(𝑙 − 𝜑(𝑥)) 

∫ [(𝑥1 − 𝑦1)
𝜕𝜑

𝜕𝑦1
(𝑦) + (𝑥2 − 𝑦2)

𝜕𝜑

𝜕𝑦2
(𝑦)]

𝛺

𝑒𝑥𝑝 (−
‖𝑥 − 𝑦‖2

2

𝑑2
) 

𝐻(𝜑(𝑦) + 𝑙)𝐻(𝑙 − 𝜑(𝑦)) 𝑑𝑦 

(4.3) 

 

where φ is the level set function, 𝑡 the artificial time (iterations), 𝛼 a constant velocity term of 

φ, SPF the signed pressure force function [44] that reflects the statistical information of the 

two regions of the image inside and outside the active contour. 𝐼 is a given 2D image, 𝑥 

(𝑥1, 𝑥2) and 𝑦(𝑦1, 𝑦2) are two neighbouring points on the active contour (the zero level set) as 

determined by the windowing function (exp (−
‖x−y‖2

2

d2
)), d is the width of the windowing 

function, 𝜇 a positive tuning parameter, 𝐻 the regularized Heaviside function, and l the width 

of the narrow band around the zero level curve of φ (the active contour). 
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   The resulting TPSBLS [45] segmentation algorithm in its all possible variants is similar to 

the one described above in  

Fig. 4. 1. While 𝜑 will be updated using the resulting level set formulation (Eq. (4.3)) that 

minimizes the functional energy of the proposed model (Eq. (4.2)), TPSBLS model, is 

presented below It can be summarized in the following steps:  

1. Set n initial contours Ωi defined by an initial level set function φ(x, t = 0) according 

to Eq. (4.1)), 

2. Compute the SPF using Eq. (3.27). 

3. Update φ(x, t) using TPSBLS [45] formulation (Eq. (4.3)), 

4. If (Local segmentation), set φ(x, t) = 1 for φ(x, t) > 0 ; and φ(x, t) = −1 otherwise. 

Else if (Global segmentation), jump to step 5, 

5. Stop if φ(x, t) has converged, otherwise return to step 2. 

   Hereafter, some results are presented using TPSBLS [45] for local segmentation; TPLBLS 

(Topology preserving local binary level set) [45] compared to those obtained with LBGFRLS 

and LBLS [45] with different levels of topology constraint, propagation speed 𝛼 and the 

tuning parameter 𝜇, applied on the same images used to test LBLS [45] performance (Fig. 4. 

2).  
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Fig. 4. 3. Segmentation results of TPLBLS [45]. Images with initial contour (a) - hand phantom, (d) - 

galaxy image, (g) - heart image from MICCAI 2012, and (j) - brain image from figshare dataset. 

(b), (e), (h) and (k) Segmentation results for α=20, 𝜇 = 0.5 for (a) and (d), α=10, 𝜇 = 2.7 for (g), 

α=20, 𝜇 = 0.5 for (j). (c), (f), (i) and (l) Segmentation results for α=7, 𝜇 = 7 for (a), α=20, 𝜇 = 5 for 

(d), α=10, 𝜇 = 5 for (g), α=20, 𝜇 = 35 for (j). Initial contours are in red. Obtained contours in black 

and green. 

 

ImOr, PHI, CI, 1st step:IVC alone

(a)                            (b)                            (c) 

(g)                             (h)                            (i) 

(d)                            (e)                            (f) 

(j)                             (k)                            (l) 
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   For TPSBLS [45], α is set the same way as for the SBLS model [45], μ depends on α. We 

intentionally used the same images used before to test the SBLS model [45] (see Fig. 4. 2) and 

to demonstrate the enhancements brought by the proposed TPLBLS model [45]. In Fig. 4. 3, 

we kept the same value of α as in Fig. 4. 2 with smaller values of μ. More precisely, if μ is too 

small regarding α (e.g. Fig. 4. 2 (a) where α = 20 and μ = 0.5), TPLBLS model [45] 

successfully segmented the hand shape (Fig. 4. 3 (b) like the SBLS model (Fig. 4. 2 (c)). 

While for the two other images (Fig. 4. 3 (d) α = 20 and μ = 0.5 and Fig. 4. 3 (g): α=10 and μ 

= 2.7), the model shows significant deformations and important changes during the process of 

segmentation as can be clearly seen in Fig. 4. 3 (e) and (h). Results show more than one final 

contour, which is justified by the failure of the model to preserve the topology of its active 

contour. However, if the value of μ is relatively high (Fig. 4. 3 (a): α=7, μ=7, (d): α=20, μ=5, 

(g): α=10, μ=5 and α=20, μ=35 (j)), the influence of the topology constraints becomes 

dominant, which forces the model to preserve its topology and to remain close if not identical 

to the initial contour (Fig. 4. 3 (c), (f), (i) and (l)). In this case, segmentation results are not 

appropriate either. Finally, in Fig. 4. 4 setting μ to be smaller than α produces good 

segmentation results. One final contour that is homeomorphic to the initial one (Fig. 4. 4 (d), 

(e) and (f)). So, practically keeping μ relatively smaller than α encourages more flexibility in 

the TPLBLS model [45] and produces good segmentation results. 
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Fig. 4. 4. Segmentation results of TPLBLS [45]. Images with initial contour (a) - galaxy image, and 

(b) - heart image from MICCAI 2012. α=20, 𝜇 = 1 for (a), α=10, 𝜇 = 3 for (b). α=20, 𝜇 = 7 for (c). 

Initial contour is in red. Obtained contour is in green. 

 

4. 4   Conclusion 

   To summarize, this chapter provided two distinct approaches proposed during this thesis. 

The first segmentation approach is SBLS which enables to segment globally all existing 

objects in the image or locally one specific target but with a high possibility of failure caused 

by the automatic changes of the model’s topology. 

   For that, we designed the second approach TPSBLS to involve a topology preserving term 

to constrain the automatic changing of its topology in a balanced way. Indeed coupling the 

model with a term based on the self-repelling force concept [41] to control the model’s 

topology assures better results than those provided using SBLS or SBGFRLS [44].   

   Practically for both models LBLS and TPLBLS [45], both parameters α and μ should be set 

properly and relatively to the image itself for good results.

 

ImOr, PHI, CI, 1st step:IVC alone

(d)                                 (e)                               (f) 

(a)                                 (b)                               (c) 
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Chapter V  

Results and discussion 

 

5.1 Introduction 

   To validate the efficiency of the resulting algorithm using SBLS instead of SBGFRLS [44] 

and the efficiency of the proposed TPSBLS model [45], we used several real MRI slices of 

the heart from the RVSC dataset of MICCAI 2012 [47] and the Cardiac MRI of the York 

dataset 2006 [48] to segment the endocardium of one ventricle of the heart, MICCAI 2017 

[49] database for bi-ventricular segmentation next to the figshare dataset [50] for brain tumor 

extraction. In all of the experiments presented in this section, the proposed models were 

applied on the original MRI slices with no training phase or preprocessing step. 

 

5.2 Datasets 

   We used in our work four different datasets of real MRI. As described in chapter II, real 

MRI slices can contain different kinds of noises. Undoubtedly, the presence of noises can 

strongly and negatively affect the results of any processing. Therefore a pretreatment phase is 

indispensable for image denoising before any processing or analysis. Contrary to most of the 
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existing works, our approach doesn’t require a pretreatment step. The different datasets used 

in this work are described below: 

 

5.2.1 Cardiac MRI datasets 

   Several short axis cardiac MRI images of size 216×256 pixels from the RVSC dataset of 

MICCAI 2012 [47] were used to segment the right ventricle endocardium of a subject’s heart. 

The data were acquired from June 2008 to August 2008 at Rouen University Hospital 

(France).  Only the slices in the training set file of this dataset were accompanied by their 

corresponding ground truth (GT) of the right ventricle segmented manually (see Fig. 5.1(a)). 

We also used the Cardiac MRI dataset of the York dataset 2006 [48] which contains short axis 

cardiac MRI sequences of size 256x256 pixels with a pixel-spacing of 0.93–1.64 mm. This 

database was provided by the Department of Diagnostic Imaging of the Children's Hospital in 

Toronto for the purpose of testing the model's reliability to segment the endocardium of the 

heart left ventricle. The contours of the left ventricle were manually segmented by a trained 

operator to provide the corresponding GT as illustrated in the figure below (Fig. 5.1(b)). The 

third cardiac dataset is MICCAI 2017 [49] was launched during the Automatic Cardiac 

Diagnosis Challenge (ACDC) workshop held in conjunction with the 20th International 

Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), on 

September 10th, 2017 in Quebec City, Canada. It was created from real clinical exams 

acquired at the university hospital of Dijon over a 6 years period. It is composed of 150 

patients (4 pathological plus 1 healthy subject groups). The spatial resolution goes from 1.37 

to 1.68 mm2/pixel and 28 to 40 images cover completely or partially the cardiac cycle. It 

includes manual expert segmentation of the right and left ventricles. The figure Fig. 5.1(c) 

shows an example of the dataset along with its corresponding manual segmentation. 
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Fig. 5. 1. Slices from cardiac MRI datasets. (a) from MICCAI 2012 [47] dataset . (b) SUBJECT 25, 

slice 6-16 from York dataset 2006 [48]. (c) from MICCAI 2017 [49]. Ground truth (Manual 

segmentation of ventricle endocardium) is in red. 

 

5. 2. 2 Brain MRI dataset 

   As for meningioma brain tumor segmentation experiments we used T1-weighted contrast-

enhanced images from brain MRI figshare dataset [50] of 233 different patients. The brain 

T1-weighted dataset was acquired from Nanfang Hospital, Guangzhou, China, and General 

Hospital, Tianjing Medical University, China, from 2005 to 2010. The images have an inplane 

resolution of 512×512 with pixel size 0.49×0.49 mm2. The slice thickness is 6 mm and the 

slice gap is 1 mm. The tumor border was manually delineated by three experienced 

radiologists (Fig. 5. 2). This dataset was used for validation of segmentation and classification 

approaches by several authors such as Rehman et al. [105] and Gupta et al.[106]. 

(a)                                             (b)                                          (c)                     

LV 
RV 

RV 

LV 
LV RV 
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Fig. 5. 2. Patient 184 from brain MRI figshare dataset [50]. Ground truth (Manual segmentation of 

meningioma tumor) is in red. 

 

5.3. Quantitative metrics for evaluation 

   The segmentation results of SBLS and TPSBLS were compared to their GT considering the 

original image for the four datasets described above; the RVSC dataset of MICCAI 2012 [47], 

the Cardiac MRI dataset of the York dataset 2006 [48], MICCAI 2017 [49] database of the 

Automatic Cardiac Diagnosis Challenge (ACDC) workshop and the brain MRI figshare 

dataset [50] using different metrics: Dice Coefficient (DC) [24], [41], Root Mean Square 

Error (RMSE) [22] and the Modified Hausdorff Distance (MHD) [107]–[109]. We also 

considered part of the same slices (66x71) round the Region Of Interest (ROI) of MICCAI 

2012 datasets [47]. In what follows, we describe each one of the cited evaluation metrics:   

   DC is a common similarity metric defined by the following equation: 

 
DC(Va, Vm) =

2Vam
Va + Vm

     
(5.1) 

where Va, Vm and Vam are the manual segmentation of the ROI, segmentation using either 

SBLS or TPSBLS, and the intersection between them, respectively. DC is always within [0 1] 
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or [0%  100%]; 0 means no intersection between GT and the obtained results, while 1 (100%) 

means a perfect match. 

   RMSE evaluates the distance between segmented surfaces, defined as the surrounded area 

by the final contour resultant from the segmentation procedure, and the corresponding GT. 

The lower the RMSE, the better the conformity of the results to GT. 

 The RMSE over N points is given by:  

 

RMSE = √
1

N
 ∑ (xi − x̀i)2 + (yi − ỳi)2

N

i=1
    

(5.2) 

where N is the total number of points of the segmented surface, (x̀i, ỳi) a point on the 

segmented surface, and (xi, yi) the corresponding point on the manually traced surface. 

   The Hausdorff Distance (HD) [108] measures the closeness between two sets (S and T) 

rather than exact superposition; it is more tolerant towards disturbance in the locations of 

points. The HD is defined as: 

 
{
HD(S, T) = max(h(S, T), h(T, S))

h(S, T) = maxnϵS minmϵT‖n − m‖
     

(5.3) 

where S and T are two different sets of points, and ‖𝑛 −𝑚‖ is the Euclidean distance 

between the elements of the two sets S and T. The contour pixels n and m run over S and T of 

indexes i and j. Since the HD is rather sensitive to noise, we opted to use a more robust 

version of this metric, namely MHD [107]–[109], defined as follows: 

 

{
 

 MHD(S, T) =  
1

n
∑ minmϵT‖n − m‖

𝑛ϵS

MHD(T, S) =  
1

m
∑ minnϵs‖n − m‖

mϵT

  

(5.4) 
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   By taking the average of the single point distances, it decreases the impact of outliers which 

makes it more suitable for the evaluation of pattern recognition performances [107]–[109]. 

 

5.4. Experimental results 

   In this section we present two main applications of our proposed models; first, single object 

segmentation then two objects simultaneous segmentation. We show the strengths and the 

limits of the SBLS model next to the efficiency of the TPSBLS model as a solution to 

enhance the SBLS results when it fails. Both models are tested and evaluated for 

segmentation purposes vs. the manual segmentation outcomes and compared to the original 

SBGFRL and to other existing models in what follows:   

 

5.4.1 Single object segmentation: Application to heart ventricle and brain tumor 

segmentation   

   In this section, we’re interested more in local segmentation. Therefore we focused on some 

applications to experiment the ability of our proposed methods to segment a single target; 

one heart ventricle or a brain tumor. But we also presented briefly the behavior of their 

global variants during the segmentation process.   

   Considering the SBLS model [45] for segmentation, we present below examples of single 

ventricle segmentation in real heart images (from both MICCAI 2012 [47], and york dataset 

2006 [48]) presented in Fig. 5. 3 and tumor extraction in real brain slices (from the brain MRI 

figshare dataset [50]) shown in Fig. 5. 4. Those figures show the SBLS [45] behavior of both 

kinds of its implementation; global implementation (GBLS [45]) which extracts all the 
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contours in the image and local implementation (LBLS [45]) capable of segmenting only the 

nearest objects to the initial contours. 

   Indeed for both GBGFRLS [44] and GBLS [45], the segmentation results of the left 

ventricle includes other surrounding contours in addition to that of the target in Fig. 5. 3(b), 

(c), (g), (h), (l) and (m) respectively, the right ventricle in Fig. 5. 3(q), (r), (v) and (w) and the 

brain tumor in Fig. 5. 4(b) and (c). 

   In Fig. 5. 3, the LBGFRLS approach failed to segment correctly the target alone, i.e. the left 

ventricle endocardium (Fig. 5. 3(d), (i) and (n)), the right ventricle endocardium (Fig. 5. 3(s) 

and (x)) and the tumor contour in Fig. 5. 4(d) instead, other undesired contours were 

segmented. This is due to the Gaussian filtering step originally set in the SBGFRLS model to 

regularize the level set function at each phase of the process. Applying the Gaussian 

smoothing repeatedly causes losing details of information imported by the model that are 

necessary for the next steps of the process. Indeed, skipping the Gaussian filtering step in the 

SBLS [45] brought to the model strength compared to the original SBGFRLS such as: 

- Improving some of SBGFRLS segmentation results; SBLS model [45] correctly segmented 

the heart ventricle (see Fig. 5. 3(e), (j), (o) and (t)), as well the brain tumor (see Fig. 5. 4(e)). 

- Eliminating one step of the algorithm reduces the computational cost which becomes 

important in case of processing high resolution images such as in our case. 

   For local segmentation of a single target (Heart ventricle in Fig. 5. 3 and brain tumor in Fig. 

5. 4), LBLS [45] segments the closest object to the initial contour; the segmentation proceeds 

locally and only objects near to the initial contour will be considered for segmentation.  

   For example, in Fig. 5. 3 when the initial contour is intersecting (Fig. 5. 3(a)), inside (Fig. 5. 

3(f)) or surrounding (Fig. 5. 3(k)) the target, i. e. the left ventricle, the LBLS model [45] 
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succeeded in extracting the target alone (Fig. 5. 3(e), (j) and (o), respectively). The same thing 

goes for brain tumor segmentation in Fig. 5. 4(e). However in Fig. 5. 3(u), the process 

extracted a different object instead of the target, i.e. the right ventricle (see Fig. 5. 3(y)). 
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Fig. 5. 3. Segmentation results of GBGFRLS, GBLS [45], LBGFRLS and LBLS [45]. Images with 

initial contour (a), (f) and (k) heart image from York dataset 2006, (p) and (u) -heart image from 

MICCAI 2012. GBGFRLS segmentation results (b), (g), (l), (q) and (v). GBLS [45] segmentation 

results (c), (h), (m), (r) and (w). LBGFRLS segmentation results (d), (i), (n), (s) and (x). LBLS 

segmentation results (e), (j), (o), (t) and (y). Initial contours are in red. Obtained contours are in green. 

 

ImOr, PHI, CI, 1st step:IVC alone ImOr, PHI, CI, 1st step:IVC aloneImOr, PHI, CI, 1st step:IVC alone ImOr, PHI, CI, 1st step:IVC alone

(a)                      (b)                        (c)                       (d)                     (e)              

(f)                      (g)                        (h)                       (i)                       (j)              

(p)                     (q)                        (r)                        (s)                      (t)              

(k)                       (l)                         (m)                        (n)                     (o)              

(u)                    (v)                      (w)                        (x)                      (y)              



CHAPTER V: Results and discussion 

  

68 
 

 

 

 

 

 

 

 

Fig. 5. 4. Segmentation results of GBGFRLS, GBLS [45], LBGFRLS and LBLS [45]. Images with 

initial contour (a) –Brain image from brain MRI figshare dataset. GBGFRLS segmentation results (b). 

GBLS segmentation results (c). LBGFRLS segmentation results (d). LBLS [45] segmentation results 

(e). Initial contours are in red. Obtained contours are in green. 

 

   For several cardiac MRI slices, even LBLS [45] failed to segment its target. This was the 

case of the left ventricle of the heart (Fig. 5. 7 (c) and (g)), the right ventricle (Fig. 5. 7 (k) and 

(o)) and the brain tumor (Fig. 5. 10(d), (i) and (n)), for example, where the topology of the 

active contour changed automatically. Indeed, the segmentation process ended up with a 

contour of a different topology compared to the initial one, in addition to undesirable 

contours. In this case our proposed TPLBLS [45] is highly recommended for both heart 

ventricles (Fig. 5. 7(d), (h), (l) and (p)) and brain tumor segmentations (Fig. 5. 7(e), (j) and 

(o)).  

   Globally and for the evaluation of the local variants of both the LBLS and TPLBLS models 

[45], we considered only the slices provided with their corresponding manual segmentations: 

GT.         

   We randomly used 73 slices from RVSC MICCAI 2012 [47] for the segmentation of the 

right ventricle endocardium, 176 images from the York dataset 2006 [48] for the 

segmentation of the left ventricle endocardium and 158 slices from the brain MRI figshare 

dataset [50] in order to evaluate and compare the efficiency of the local segmentation 

(a)                             (b)                                (c)                                (d)                               (e)              
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achieved by our proposed LBLS and TPLBLS approaches [45]. The proposed methods were 

also compared to existing models such as GAC [28], CV [31], TGDM [27] and SBGFRLS 

[44] for heart ventricle and brain tumor segmentations in the same slices using the same 

conditions of initialization. For all experiments the parameters l and d in Eq. (7) were set to 1.  

   The following figures (Fig.5. 5 and Fig.5. 6) show the performance of each one of the 

techniques mentioned earlier. It’s described using Dice values corresponding to the 

segmentation outcome of each one of the slices taken from the York dataset 2006 [48] and 

RVSC MICCAI 2012 [47] respectively.  
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Fig. 5. 5. Dice variation of left ventricle segmentation results using GAC, CV, TGDM, LBGFRLS, 

LBLS and TPLBLS models [45]. (a). Original slices (256x256 pixels) from York dataset 2006, (b). 

Parts of slices (66x71 pixels) from York dataset 2006. 

 

(a) 

(b) 
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Fig. 5. 6. Dice variation of left ventricle segmentation results in original slices (256x216 pixels) from 

MICCAI 2012 using GAC, CV, TGDM, LBGFRLS, LBLS and TPLBLS models [45]. 

 

   Furthermore, Table 1 reports the overall mean and standard deviation of the quantitative 

evaluation of the proposed methods LBLS and TPLBLS [45] as well as the existing models 

cited above using DC, RMSE and MHD. The first table includes both segmentation results of 

single target; left ventricle endocardium for the York dataset 2006 [48] and right ventricle 

endocardium for RVSC MICCAI 2012 [47]. As the slices from the York dataset 2006 [48] 

include considerable unnecessary background, we also considered parts of each image 

(66x71) that contain the segmented target and less of the background.  
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Table 1: Mean and Standard Deviation of quantitative evaluation of LBLS and TPLBLS methods [45] 

using DC, RMSE and MHD metrics of single ventricle segmentation of cardiac MRI. 

 Left ventricle segmentation  Right ventricle 

segmentation 

Metric Approach Image(256x256) Image (66x71) Image (216×256) 

 

 

DC 

GAC 4.802±16.298 4.897±16.331 68.24±29.539 

CV 4.143±5.253 18.149±18.229 27.268±18.621 

TGDM 5.024±14.420 5.026±14.421 70.237±28.617 

SBGFRLS 77.978.131±24.481 80.236±19.539 34.604±25.572 

LBLS 82.300±22.290 83.873±18.193 79.496±18.220 

TPLBLS  94.925±3.023 94.925±3.023 86.773 ±7.687 

 

  

RMSE 

GAC 0.160±0.059 0.300±0.100 0.176±0.128 

CV 0.318±0.115 0.428±0.177 0.448±0.0850 

TGDM 0.073±0.027 0.301±0.100 0.168±0.124 

SBGFRLS 0.073±0.099 0.212±0.071 0.332±0.072 

LBLS  0.061±0.081 0.187±0.17 0.214±0.236 

TPLBLS 0.023±0.009 0.084±0.032 0.0927±0.0236 

 

 

MHD 

GAC 1.235±0. 708 1.550±0. 739 1.267±1.305 

CV 3.578±1.976 2.275±1.567 5.984±0.922 

TGDM 0.392±0.190 1.516±0. 730 1.169±1.232 

SBGFRLS 0.534±1.183 1.044±1.577 3. 752±1.149 

LBLS 0.405±0.929 0.920±1.448 0.469±0.319 

TPLBLS 0.0725±0.053 0.281±0.206 0.472±0.195 
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Fig. 5. 7. Segmentation results of LBGFRLS, LBLS and TPLBLS [45]. Images with initial contour (a) 

and (e) -heart image from the York dataset. (i) and (m) - heart image from MICCAI 2012. LBGFRLS 

segmentation results (b), (f), (j) and (n). LBLS segmentation results (c), (g), (k) and (o). TPLBLS 

segmentation results (d), (h), (l) and (p). (b) DC=33.218, (c) DC=39.9, (d) µ=7, DC=95.7, (f) 

DC=84.21, (g) DC=87.8, (h) µ=4, DC=93.8, (j) DC=89.49, (k) DC=88.89, (l) µ=4, DC=42.55, (n) 

DC=48.5, (o) DC=89.5, (p) µ=7, DC=88.9, The GT is represented in orange. Initial contours are in 

red. Obtained contours are in green. 

 

(a)                               (b)                               (c)                           (d) 

(i)                              (j)                                (k)                              (l) 

          (m)                                (n)                                  (o)                             (p) 

ImOr, PHI, CI, 1st step:IVC alone

(e)                               (f)                             (g)                           (h) 
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   In the figure below we present an example of a ventricular volume based on some final 2D 

segmentations of left ventricle in successive slices using LBGFRLS [44], LBLS and TPLBLS 

[45]. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 5. 8. Volume representation of Left ventricle Segmentation results of LBGFRLS, LBLS and 

TPLBLS [45]- heart images of patient P02 from MICCAI 2012 dataset. (i) and (m). Manual 

segmentations (a) and (e). LBGFRLS segmentation results (b) and (f). LBLS segmentation results (c) 

and (g). TPLBLS segmentation results (d) and (h). 

 

   The total processing time (t) may vary from a slice to another even from the same dataset. 

This is due to many factors such as size of the image, size of the initial contour, size of the 

target, parameters α, μ, etc. However, the total processing time per slice is reasonably small, 

around a second if not less. The processing time in seconds of SBGFRLS [44], SBLS and 

TPSBLS is reported in Table 2. 

 

 

 

 

(a)                              (b)                                 (c)                           (d) 

(e)                              (f)                                 (g)                           (h) 
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Table 2: Total processing time in seconds for slices of Fig. 5. 7. 

SBGFRLS [44] SBLS [45]  TPSBLS [45]  

(b) 0.764 (c) 0.692 (d) 0.263 

(f) 0.369 (g) 0.350 (h) 0.348 

(j) 0.719 (k) 0.524 (l) 0.555 

(n) 1.208 (o) 0.353 (p) 0.279 

 

 

   The following figure (Fig. 5. 9) show the performance of our proposed LBLS and TPLBLS 

approaches [45] and some existing models: GAC [28], CV [31], TGDM [27] and SBGFRLS 

[44]. It’s described using Dice values corresponding to the brain tumor segmentation results.  

Fig. 5. 9. Dice variation of brain tumor segmentation results in original slices (256x216 pixels) from 

brain MRI figshare dataset using CV, LBGFRLS, LBLS and TPLBLS models. 

 

   The table below illustrates the evaluation metrics of the meningioma tumor segmentation 

results in slices from the brain MRI figshare dataset [50]. 
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Table 3: Mean and Standard Deviation of quantitative evaluation of LBLS and TPLBLS methods [45] 

using DC, RMSE and MHD metrics of meningioma brain tumor segmentation. 

MHD RMSE DC Metric 

 Approach 

8.3144±1.8008 0.4863±0.1002 13.4250±8.8636 CV 

2.4492±2.5341 0.1922±0.1584 57.4164±33.6748 SBGFRLS 

1.2270±1.5351 0.1179±0.1061 71.6977±28.1775  LBLS 

0.3103±0.4776 0.0493±0.0315 90.9822±9.9616 TPLBLS 
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Fig. 5. 10. Segmentation results of LBGFRLS, LBLS and TPLBLS. Images with initial contour (a), (f) 

and (k) -brain MRI image from the figshare dataset. GT (b), (g) and (l). LBGFRLS segmentation 

results (c), (h) and (m). LBLS segmentation results (d), (i) and (n). TPLBLS segmentation results (e), 

(j) and (o). (c) DC=47.9847, (d) DC=81.4617, (e) µ=8, DC=94.0771, (h) DC=46.6703, (i) 

DC=77.9165, (j) µ=12, DC=93.6359, (m) DC=29.903, (n) DC=44.902, (o) µ=12, DC=85.078. The GT 

is represented in orange. Initial contours are in red. Obtained contours are in green. 

 

   As can be seen on table 1 and 3, the TPLBLS model [45] gives better results than LBLS 

[45]. Note also that, in general, the LBLS model without a topology controlling term seems to 

be capable of providing good numbers as well. However, in addition to undesired contours, 

the results for the segmented objects are not satisfactory. They are not so close to the 

boundaries of the target segmented manually (For example Fig. 5. 7(g) and (o) and Fig. 5. 

10(s)), even though the corresponding DC seems to be acceptable: 87.8, 89.5 and 59.88 

respectively. Not to mention the presence of unexpected contours. This is due to the fact that 

 (f)                         (g)                           (h)                          (i)                       (j) 

              (k)                             (l)                             (m)                             (n)                             (o) 

(a)                           (b)                         (c)                          (d)                        (e) 
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the initial contour was splitting during its evolution. Unlike LBLS [45], the improved 

TPLBLS model [45] preserves the topology of the evolving contour along with the 

segmentation process. Indeed, the final contour is homeomorphic to its corresponding one set 

initially (Fig. 5. 7(d), (h) and (p)), for example, with the corresponding DC: 95.7, 93.8 and 

88.9, respectively, as well as in Fig. 5. 10(e), (j) and (o) with the corresponding DC: 94.0771, 

93.6359 and 85.078, respectively). The worst segmentation results were provided by 

SBGFRLS (Fig. 5. 7(b), (j) and (n)) for heart ventricle segmentation while all of the MRI 

slices in Fig. 5. 10 SBGFRLS completely failed to segment the brain tumor. 

   Globally and according to table 1 and 3 above, our proposed methods (LBLS and TPLBLS) 

achieve better values of DC and lower values of RMSE and MHD than the GAC [28], CV 

[31], TGDM [27] and SBGFRLS [44] models. Table 1 shows also that both GAC [28] and 

TGDM [27] are more suitable for the MICCAI 2012 dataset than the York dataset 2006 [48], 

contrary to SBGFRLS [44]. This can be explained by the fact that the York dataset 2006 

slices have thinner contours compared to the MICCAI 2012 slices and GAC [28] and TGDM 

[27] originally require a good quality of image contours while SBGFRLS is a region-based 

model. However, CV approach provides weak results for both datasets. 

 

5.4.2 Two objects simultaneous segmentation: Application to bi-ventricular 

segmentation of cardiac MRI 

  Our proposed LBLS [45] is able to segment, simultaneously, a specific number of different 

targets by initiating the same number of contours; LBLS [45] successfully segmented, in a 

real heart slice from the York dataset 2006 [48], two segmented objects using two initial 

contours (Fig. 5. 11(c)) and three targets (Fig. 5. 11(f)) after initiating the process with three 

contours. In comparison, LBGFRLS gives four final contours (Fig. 5. 11(b) and (e)) instead of 

two and three contours, respectively. 
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Fig. 5. 11. Segmentation results of LBGFRLS and LBLS. Images with initial contour (a) and (d) -heart 

image from the York dataset. LBGFRLS segmentation results (b) and (e). LBLS segmentation results 

(c) and (f). Initial contours are in red. Obtained contours are in green. 

 

   Our TPLBLS model [45] is also able to segment N specific objects simultaneously. To 

illustrate, it was applied to segment the two ventricles simultaneously (Fig. 5. 12 (d) and (h)) 

as in [24], where the authors presented an approach for simultaneous left and right ventricle 

segmentation using topology preserving level sets. We first used some slices from RVSC 

MICCAI 2012 [47] to test the performance of our TPLBLS [45] to segment left and right 

ventricles simultaneously starting with two separate initial contours. As can be seen in the 

following figure, the best segmentation results were provided by TPLBLS (Fig. 5. 12(d) and 

(h)) rather than by LBLS (Fig. 5. 12(c) and (g)) which in turn gave better results than 

SBGFRLS [44] (Fig. 5. 12(b) and (f)). The segmentation with TPLBLS seems to be the 

closest to the boundaries of the target and preserved the topology of the evolving contour. 

ImOr, PHI, CI, 1st step:IVC alone
ImOr, PHI, CI, 1st step:IVC alone

ImOr, PHI, CI, 1st step:IVC alone

ImOr, PHI, CI, 1st step:IVC alone

(d)                             (e)                           (f) 

(a)                           (b)                         (c) 
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Fig. 5. 12. Simultaneous left and right ventricle segmentation results of LBGFRLS, LBLS, TPLBLS. 

Images with initial contour (a) and (e) - heart image from MICCAI 2012. LBGFRLS segmentation 

results (b, f), LBLS segmentation results (c, g). TPLBLS segmentation results (d, h). Initial contours 

are in red. Obtained contours are in green. 

 

 

   However, for quantitative validation we needed a cardiac dataset MRI that provides manual 

annotations of both ventricles. Therefore, we used the cardiac database MICCAI 2017 [49] for 

biventricular segmentation to prove in numbers the reliability and applicability of the 

proposed models. Since the database provides manual segmentation of both ventricles 

endocardium we could estimate the mean and the standard deviation of DC, RMSE and MHD 

metrics of the results and compare them to the existing techniques; CV[31] and SBGFRLS 

[44] (see table 4). 

   

 

 

 

 

 

(a)                                      (b)                                      (c)                                      (d) 

(e)                                    (f)                                       (g)                                     (h) 



CHAPTER V: Results and discussion 

  

81 
 

 

Fig. 5. 13. Dice variation of bi-ventricular segmentation results in slices from MICCAI 2017 dataset 

using CV, LBGFRLS, LBLS and TPLBLS models. 

 

Table 4: Mean and Standard Deviation of quantitative evaluation of LBLS and TPLBLS methods 

[45] using DC, RMSE and MHD metrics of bi-ventricular segmentation for 66 slices from 

MICCAI 2017 [49] cardiac MRI. 

MHD RMSE DC Metric 

Approach 

13.0061± 0.6513 0.9144± 0.0252 3.6797 ± 1.6696 CV 

0.3030± 0.0635 2.1156± 0.8245 54.6860± 31.8672 SBGFRLS 

0.2491±0.0716 1.4691±0.6499 84.2088±12.4021 LBLS 

0.2433±0.0730 1.4521±0.6595 87.6712±7.8512 TPLBLS 

 

   Similarly to the segmentation results in section 5.4.1, TPLBLS and LBLS approaches were 

more useful for bi-ventricular segmentation based on their results which are clearly better than 

those achieved by LBGFRLS [44] and CV [31] methods (see Fig. 5. 10). As it’s illustrated in 

table 4 the evaluation metrics values of LBLS results (DC: 84.21, RMSE: 1.47 and MHD: 
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0.25) seem to be close to those of TPLBLS results (DC: 87.67, RMSE: 1.45 and MHD: 0.24). 

Whereas, the performance provided by the latter approach is the closet to the manual 

segmentation giving at the end of the process final contours that are homeomorphic to the 

initiation thanks to its topology constraining term. For instance, in Fig. 5. 10 (q) LBLS result 

is of a good DC value (81.54) however it gives numerous contours while it’s supposed to give 

only the biventricular contour that surrounds both ventricles. TPLBLS, for the same example, 

(Fig. 5. 10 (q)) successfully achieved biventricular segmentation with no extra contours with a 

DC of 88.03. Globally, when considering only the evaluation metrics, the worst results were 

obtained by means of CV [31] model (DC: 3.68, RMSE: 0.91 and MHD: 13), but when 

considering the number of resultant contours the best results are definitely those of TPLBLS 

thanks to its capability of preserving the topology of the deformable model.    
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 Fig. 5. 14. Simultaneous left and right ventricle segmentation results of CV, LBGFRLS, LBLS and TPLBLS. 

Images with initial contour (a), (g), (m) and (s) - heart image from MICCAI 2017. GT (b), (h), (n) and (t). CV 

segmentation results (c), (i), (o) and (u). LBGFRLS segmentation results (d), (j), (p) and (v). LBLS segmentation 

results (e), (k), (q) and (w). TPLBLS segmentation results (f), (l), (r) and (x). (c) DC= 3.1760 , (d) DC= 82.5265 

, (e) DC= 94.6113, (f) µ=12, DC= 96.3986 , (i) DC= 6.9859, (j) ) DC= 42.3077, (k) DC= 62.9482, (l) µ= 12, 

DC= 84.8168, (o) DC= 5.8365, (p) ) DC= 80.0149, (q) DC= 81.5413, (r) µ= 8, DC= 88.0250, (u) DC= 1.5775 , 

(v) ) DC= 54.4517, (w) DC= 94.9314 , (x) µ=5, DC= 97.1878. Initial contours are in red. Obtained contours are 

in green.                         
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5.5. Conclusion 

   In this chapter, we have presented the experimental results of our approaches for heart 

ventricle and brain tumor segmentation. We have applied the two proposed SBLS and 

TPSBLS models for local segmentation of a single target: cardiac structures (one ventricle; 

right or left), brain structure anomaly (meningioma tumor) and two targets simultaneously 

(right and left ventricles of cardiac MRI). Real MRI slices of different databases, providing 

their manual segmentations, were used to evaluate our approaches. The obtained evaluation 

metrics values of the experimental results on both cardiac and brain MRI datasets prove the 

efficiency of our proposed SBLS model and even more when using the proposed TPSBLS in 

the same conditions as with LBLS. Indeed, it’s demonstrated that the TPSBLS, in its local 

mode, overcomes LBLS weakness (automatic topology changing of the active contour) 

which, consequently, leads to more accurate target extractions. In order to better assess our 

approach and to highlight its strengths and weaknesses we also have presented a comparative 

study with some existing models reported in the literature. Indeed both SBLS and TPSBLS 

approaches succeeded all of the other ones implemented in this chapter. 
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Conclusion and perspectives 

 

   Image segmentation has been considered as a vital step in medical image analysis to detect 

and identify several pathologies and/or organ abnormalities. This dissertation concerns 

segmentation of real medical images segmentation by means of two important geometric 

deformable models, suitable for real cardiac and cerebral MRI slices precisely.   

   In a theoretical part, we presented the MRI technique starting by its evolution in history, its 

acquisition techniques along with its advantages and limitations. Then, we introduced a 

literature review of some existing techniques for medical image segmentation in order to 

evaluate our approaches compared to existing methods. Therefore, we first provided a 

theoretical background of both types of the DMs: PDMs and GDMs which demonstrates that 

the GDMs have been extensively studied and widely used in medical image segmentation 

with interesting results [10], [11] due to several advantages over PDMs such as their intrinsic 

behavior, ease of implementation and ability to handle automatic topology changes. Thus, we 

focused on GDMs as a more suitable model for our work. Second, we were interested in some 

topology preserving concepts that can be exploited to constrain the GDM’s flexibility, which, 

in our case of medical image segmentation, becomes a liability. Indeed, the integration of a 

topology control concept helps to guide the evolving model in a way that preserves its 

topology during the segmentation process. 
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   In the rest of this thesis, we described, in detail, our two proposed deformable models for 

heart ventricles and meningioma brain tumor segmentation in MRI slices. We first presented 

the proposed SBLS model that is based on SBGFRLS [44]. It successfully provides either 

global or local segmentations with no requirement of a preprocessing phase. Unlike 

SBGFRLS [44], SBLS does not involve regularization of the level set function by means of a 

Gaussian filter. This speeds up the segmentation process as can be seen in table 2. Moreover, 

when applying SBGFRLS for local segmentation, the Gaussian filtering step may give 

additional contours beside the desired ones. Contrary to SBGFRLS [44], in its local variant, 

LBLS is able to segment not just a single contour but it can also control the number of objects 

to be segmented simultaneously among all the existing ones by using as many initial contours 

as needed. 

   Second, we presented the other model: TPSBLS. It was proposed to enhance the 

segmentation results achieved using the SBLS approach. TPSBLS is the result of a successful 

combination of the previous SBLS model with the self-repelling force concept which serves 

to constrain the topology of the active contour in a way that is neither dominant nor 

inefficient. TPSBLS model doesn’t involve any preprocessing step. It is also a selective model 

such as SBLS; it is able to ensure a global (TPGBLS) or a local segmentation (TPLBLS). 

   In order to evaluate and compare the efficiency of the local segmentation achieved by 

means of both proposed models LBLS and TPLBLS, we tested each one of them on real MRI 

slices provided with theirs corresponding manual segmentations: GT from four different 

datasets; We randomly used 73 slices from RVSC MICCAI 2012 [47] for the segmentation of 

the right ventricle endocardium, 176 images from the York dataset 2006 [48] for the 

segmentation of the left ventricle endocardium, 158 slices from the brain MRI figshare dataset 

[50] for the brain tumor extraction and finally 66 cardiac MRI from MICCAI 2017 [49]. 
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   The segmentation results of LBLS were compared to the GT. Table 1 shows the mean 

values of different metrics used for evaluation and quantitative validation. For left ventricle 

segmentation, the DC similarity between LBLS segmentation and the GT is about 88%, the 

RMSE value is 0.036 while MHD is about 0.117. Using the same LBLS for right ventricle 

endocardium segmentation, the evaluation metrics are: DC around 80%, RMSE of 0.105 and 

MHD of 0.56. The results of meningioma segmentation are reported by Table 3 as follows: 

DC is about 71.7%, RMSE value is 0.1179 and MHD is 1.227. Table 4 presents the outcome 

of simultaneous segmentation of both cardiac ventricles; DC: 84.21%, RMSE 1.47 and MHD 

0.25. These results are quite satisfying. However, on analyzing different slices, local 

segmentations of ROIs using LBLS show that, in many slices, the initial contour underwent 

considerable automatic topology changes. This negatively affects the evolution of the active 

contour and consequently leads to undesired final contours. Thus we’ve opted for a better 

orientation of the active contour in the purpose of preventing undesired behavior of our model 

and obtaining more correct and accurate segmentation results at the end of the process. 

TPLBLS is the resultant approach.  

   TPLBLS remarkably enhanced the segmentation results of both cases: First, single target 

segmentation (one heart ventricle and meningioma brain tumor) according to Table 1 and 

Table 3 respectively. Second, two targets simultaneous segmentation represented in table 4. 

For left ventricle endocardium segmentation, the DC increases to 95.74%, the RMSE is 

reduced to 0.023 and the MHD is 0.059. According to the RMSE and MHD metrics, these 

results are still satisfactory, and even better evaluated when considering only part of the image 

(66x71) including the ROI. For right ventricle endocardium segmentation, the DC is 86%, the 

RMSE is about 0.093 and the MHD 0.48. For meningioma brain tumor extraction results, the 

DC becomes 90.98%, the RMSE is reduced to half (0.049) and the MHD takes even less 

(about 0.31). TPLBLS also enhanced the biventricular segmentation; DC 87.67%, MHD 1.45 
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and RMSE 0.24. These improvements are caused by the fact that the topology of the evolving 

contour is better controlled and preserved by TPLBLS model rather than LBLS. It has been 

shown that the TPLBLS can also be a promising approach for the simultaneous segmentation 

of different objects such as both ventricles of the heart as in [24] as long as the process is 

initiated with the proper number of initial contours. This strongly qualifies our TPSBLS to be 

suitable for an even larger field of exploitation that concerns simultaneous multi-targets 

segmentations.  

   Since both of our approaches, SBLS and TPSBLS, can be applied directly and do not 

require any training phase it was possible to obtain segmentation results even for a small 

number of slices, unlike ATLAS based [3], [4] and U-NET [7], [8] techniques where the user 

must select a large number of representative slices for the training phase, otherwise the model 

will not be suitable for each element (slice) of the validation or the test data. In this case, it 

may fail to correctly segment the target. A further advantage of our approach is that the user 

can easily choose to simultaneously segment more than just one object simply by setting as 

many initial contours as desired targets. For both LBLS and TPLBLS and for the best possible 

segmentation results, the initial contour needs to be near to the target. On the other hand, it is 

true that our method requires setting two parameters manually: 𝛼 the constant velocity term of 

φ and μ the positive tuning parameter, which seems to be a limitation of our system. The 

model can provide results using fixed values of α and μ but the quality will be poor.  

   As future work, TPSBLS model can be improved to be less operator-dependent, providing a 

model which doesn’t require setting parameters, less sensitive to the initial contour location 

and more suitable for the segmentation of other substances such as brain tumors and for other 

kinds of medical imaging such as X-rays and Computed Tomography. Due to its properties 

TPSBLS helps to open new research directions; it can be used to segment multi-targets 

simultaneously such as both lung boundaries identification on CT images and any other multi-
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targets simultaneous segmentation like blood cells. We should also consider, as a future step 

of our work, improving our proposed deformable model to achieve 3D volume segmentation.  
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Fig. 5. 14. Simultaneous left and right ventricle segmentation results of CV, LBGFRLS, LBLS and TPLBLS. Images with initial contour (a), (g), (m) and (s) - heart image from MICCAI 2017. GT (b), (h), (n) and (t). CV 

segmentation results (c), (i), (o) and (u). LBGFRLS segmentation results (d), (j), (p) and (v). LBLS segmentation results (e), (k), (q) and (w). TPLBLS segmentation results (f), (l), (r) and (x). (c) DC= 3.1760 , (d)  DC= 82.5265 

, (e) DC= 94.6113,  (f) µ=12, DC= 96.3986 , (i) DC= 6.9859, (j) ) DC= 42.3077, (k) DC= 62.9482,  (l) µ= 12, DC= 84.8168,  (o) DC= 5.8365, (p) ) DC= 80.0149, (q) DC= 81.5413,  (r) µ= 8, DC= 88.0250, (u) DC= 1.5775 , (v) 

) DC= 54.4517, (w) DC= 94.9314 ,  (x) µ=5, DC= 97.1878. Initial contours are in red. Ground truths are in orange. Obtained contours are in green.                          

 

(a)                                    (b)                                      (c)                                          (d)                                       (e)                                    (f)                              

(g)                                          (h)                                           (i)                                           (j)                                         (k)                                    (l)                              

(m)                                          (n)                                           (o)                                           (p)                                         (q)                                    (r)                              

(s)                                          (t)                                           (u)                                           (v)                                         (w)                                    (x)                              


