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PREFACE 

 

 

The prognostic is considered as one of the main PHM - Prognostics and Health 

Monitoring - layers. It aims to provide prior knowledge about the equipment with a risk 

of failure and to alert -offering a lead-time- the operator about the needed maintenance 

task, which leads to a lower maintenance cost with near to zero downtime and better spare 

parts organization. Therefore, prognostic is considered one of the most important research 

fields in the industry nowadays. 

 

 Since bearing exists in almost all rotating machines, improving the existing techniques 

for predicting failure at an earlier stage is necessary. The prognostic task remains 

challenging because the model applied in forecasting is different for each type of 

component, and it is also different according to the faulty part. Moreover, there is no 

universal predictive model for several kinds of bearing or a model that covers most types 

of failure. Thus, this research attempts to solve the bearing’s generic prognostic model 

problem by building a forecasting algorithm based on fault feature detection. 
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 ملخص 

 

 أجل  من  الإنتاج  عملية  تحسين  المصنعة  الشركة  على  الحاضر  الوقت  في  الصناعي  القطاع   في  الشديد  التحدي  يفرض

  ممكنة  فترة  لأطول  الظروف  أفضل  في   المعدات  تعمل  أن  نيالتحس  هذا  يتطلب.  خلال وقت تسليم تنافسي  الجودة  توفير

 المقبولة  حياتها  دورة  إلى   الوصول   قبل  الجيدة  المعدات  استبدال  وكذلك  له   المخطط  غير  التوقف  فإن  لذلك،  توقف.  دون

 الهائل  التقني  التطور  ومع  الحالة  هذه  مثل  في    .النهائي  المنتج  تكلفة  على  مباشر  بشكل  يؤثر  مما  يمثلان خسارة كبيرة،

  الصيانة   من  بالانتقال  تسمح  جديدة  صيانة  استراتيجيات  تطوير  تم  الماضي،  العقد  في   والمعدات  الاستشعار  لأجهزة

 .التنبؤية  الصيانة  إلى التصحيحية

 الأعطاب  اكتشاف  من  تتكون  والتي  الحالة،  هذه  في  صيانة   خطة  أنسب(  PHM)  الصحي  والرصد   التوقعات  خطة  تعد

توفر    ذلك،  إلى  وبالإضافة.  تعطلها  وتوقع  للمعدات  الصحية   الحالات  مراقبة  خلال  من  ضرر،  أي  حدوث  قبل  ،

  غير  التعطل  وتجنب  الصيانة،  مهام  تخطيط  عن  فضلا  ،في الوقت المناسب  الغيار  قطع  شراء  إمكانية المعرفة المسبقة

 . له المخطط

  استخراج   على   المقترح  النهج  يعتمد.  حملمال  عنصر  على  وخاصة   الدوارة   الآلات  تشخيص  على   نركز  البحث،  هذا   في

  المتقاطع   الارتباط  مرشح  باستخدام   الخصائص  تقليل  يتم  ذلك،   بعد.  الاهتزازات  من  متعددة  مجالات  في  الخصائص

  الخصائص   تخفيض  تقنية  لاختيار(.  SOM)  التنظيم  ذاتية   خريطة  باستخدام  الأبعاد  ثنائية  مساحة   في   إسقاطها  قبل

 المؤشر  النتيجة  تعتبر(.  PCA)  الرئيسي  المكون  تحليل   من  المستخرجة  المتعددة  بالقيم  SOM  مقارنة  تتم  المناسبة،

الذي    ،(RUL)  المتبقي  النافع  العمر  عن  الكشف  ويمكن .  العطب  لاكتشاف  استخدامه  سيتم  والذي  ،(HI)  الصحي

  المكون  عطب  بوقت  التنبؤ   أجل  ومن  وبالتالي،.  بعطل الآلة  وينتهي  العطب  بداية  من  يتمثل في الوقت المستغرق

  إشارة   على  الحصول  أجل  من(  EMD)  التجريبي  النموذج   ليتحل  بقايا   من(  TI)  الاتجاه  مؤشر  إنشاء  يتم  الجديد،

 للغاية  دقيقًا  تنبؤًا  توفر  حيث  لمؤشر الاتجاه  تراجعك  الدراسة  هذه  في  Gauss  عملية  تراجع  استخدام  يتم  أخيرًا،.  رتيبة

  بشكل  يركز  العمل  هذا   فإن   المختارة،  الخصائص  على  مباشر  بشكل  تعتمد  RUL  تقدير  جودة  لأن  نظرًا .  RUL  لـ

  صحة   من  التحقق  أجل  من .  التي لها تأثير كبير في تحديد الحالة الصحية للآلة  الخصائص  استخراج  على   أساسي

 .المرجعية لحممال بيانات من مجموعات عدة على المقترحة الطريقة اختبار يتم عملنا،

 

الصحة; مؤشر    : الدلاليةالكلمات   مؤشر  الصحي;  والرصد  التشخيص  الفشل;   تشخيص  الخطأ.  ميزة  استخراج 

 الاتجاه; تحمل. التكهنات العامة; مؤشر الصحة. 
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ABSTRACT 

 

The intense challenge in the industrial sector nowadays imposes manufacturers to optimize the 

production process to offer competitive quality in short delivery time. These improvements 

request that the equipment should work in the best conditions as long as possible with near to zero 

downtime. For that, unplanned breakdown and replacement of good equipment before reaching 

their tolerable life cycle is a loss, directly influencing the cost of the final product. In such 

conditions and with the substantial technical evolution of sensors and computing resources in the 

last decade, new maintenance strategies were developed, allowing the move from corrective to 

predictive maintenance. 

 

The prognostics & health monitoring (PHM) is in this case the most appropriate maintenance 

plan. It consists of detecting failures before any damage by monitoring the equipment's health and 

anticipating failure. In addition, prior knowledge offers the possibility of purchasing spare parts, 

planning maintenance tasks, avoiding unplanned breakdowns, and optimizing equipment 

durability and maintenance activities.  

 

This research focuses on the rotating machines' prognostic, especially the bearing component. 

The proposed approach is based on extracting appropriate multiple domain features from the raw 

signals (mainly those related to vibration). Then, these features are reduced using a cross-

correlation filter before being projected onto two dimensions space using a Self-Organizing Map 

(SOM). The SOM is compared with multiple values extracted from the Principal Component 

Analysis (PCA) to select the optimal ones by using some reduction techniques. Hereafter, the 

result is considered the Health Indicator (HI), used for fault detection. The fault detection allows 

for the Remaining Useful Lifetime (RUL) estimation where the fault represents the beginning of 

the RUL, and the Failure means its end. Thus, to predict the failure time for a new component, a 

Trend Indicator (TI) is built from the residual of the Empirical Model Decomposition (EMD) to 

get a monotonic signal. Finally, the Gaussian Process Regression (GPR) is used in this case study 

as a regression of the TI, where it provides a high-accuracy prediction of the RUL. Since the 

quality of the RUL estimation relies directly on the selected features, this work focuses mainly 

on relevant feature extraction and selection. The proposed method is tested on various real 

benchmarked bearing datasets to validate our work. 

  

Keywords: Fault feature extraction; Failure diagnostic; PHM; Prognostics and health 

monitoring; Feature fusion; Health indicator; Trend indicator; Bearing; Generic prognostics; 

Bearing health assessment. 
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I. Introduction to Prognostics & Health Monitoring 

     Companies nowadays are under pressure from their customers in the new industrial 

context. The challenge is to provide good quality products and services at lower cost, 

delivered quickly and at the right time. The manufacturing company must have reliable 

and well-maintained production tools to meet the demand for quality and quantity while 

respecting delivery times and costs. Thus, maintenance is applied to minimize downtime 

and fault occurrence (Boldt et al., 2013).  

     Maintenance can be divided into reactive and proactive. The first represents the 

response to work requests, usually identified by operators because a piece of equipment 

is broken or not functioning correctly, where it focuses on restoring the equipment to its 

normal operating condition. The second approach responds primarily to equipment 

assessment, root cause analysis, and preventive procedures.  

     For that, many standards have been set; the NF X 60-010, X 60-011 standards and the 

French national organization for standardization AFNOR -EVS-EN 13306:2010 define 

maintenance “as the set of actions for maintaining or restoring the property in a specified 

state or in a position to provide a specific service.” At the same time, the NF X 60-300 

and X 60-301 standards specify five types of maintainability criteria (Preventive 

maintenance, Corrective Maintenance, Organization of maintenance, technical 

documentation, and Manufacturer conditions). This chapter discusses this thesis's PHM 

background and objectives followed by our contributions. 

I.1  Introduction 

     The value of the PHM is well illustrated when compared with classical maintenance 

strategies like corrective maintenance and preventive maintenance. The corrective 

maintenance is based on no fixes until the failure occurs, leading to unplanned 

breakdown, environmental risks, and subsequent damage to other parts. On the other 

hand, preventive maintenance is based on a preset schedule regardless of the machine's 

state between intervals. Replacing a component before its end of life leads to unnecessary 

downtime and parts costs. Therefore, the most appropriate maintenance plan, in this case, 

is the PHM –also known as case-based maintenance, CBM-which consists of scheduling 

maintenance activities only when a functional failure is detected. An effective predictive 

system is expected to provide early detection of the incipient fault, have the means to 
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monitor the progression of the fault, and aid in making or autonomously triggering 

maintenance schedules. 

 By employing such a system, the health of a machine or a system can be known at any 

point in time, and the eventual occurrence of a failure can be predicted, enabling the 

achievement of near-zero downtime performance. Unnecessary and costly preventive 

maintenance can be eliminated, maintenance schedules can be optimized, and lead time 

for spare parts and resources can be reduced. Therefore, the PHM is considered one of 

the most important research fields in industry 4.0. 

 

I.1.1 Predictive maintenance 

Predictive maintenance is a proactive approach to maintenance that has become 

increasingly popular in recent years, particularly in industrial settings. It involves using 

advanced analytics, machine learning, and other technologies to predict when equipment 

is likely to fail, allowing maintenance to be scheduled before a breakdown occurs.  

 

However, the implementation of predictive maintenance is not without its challenges. The 

success of predictive maintenance requires the availability of large amounts of high-

quality data, which can be a significant obstacle for many organizations. Additionally, 

the deployment of predictive maintenance requires significant investment in terms of 

hardware and software, as well as the development of appropriate organizational and 

human resources capabilities. 

I.1.2 Predictive maintenance in Industry 4.0 

     A key component of Industry 4.0, which has been called the fourth industrial 

revolution and is defined by the increasing integration of automation and data interchange 

in the manufacturing process, is predictive maintenance. Due to this paradigm change, 

numerous intelligent systems and cutting-edge technologies have been implemented to 

optimize industrial processes, boost production, and cut costs. 

 

     Predictive maintenance has had a big impact on Industry 4.0 since it has the ability to 

decrease downtime, boost productivity, and cut expenses associated with running the 

business. Manufacturers may ensure that their equipment runs more effectively, resulting 

in more output and lower operating costs, by optimizing maintenance activities.  
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I.1.3 Advantages and limitations of predictive maintenance 

     One of the main advantages of predictive maintenance (PdM) is that it increases 

equipment reliability and availability, which translates into higher productivity and lower 

downtime. By detecting potential issues in advance, maintenance teams can plan and 

schedule maintenance activities, avoiding unplanned downtime and production losses. 

predictive maintenance can also reduce maintenance costs, as it allows for more targeted 

and efficient maintenance activities. By focusing on the most critical equipment 

components, predictive maintenance can reduce unnecessary maintenance activities and 

spare parts inventory, resulting in cost savings. 

 

     It can also improve safety and reduce the risk of accidents. By detecting potential 

equipment failures in advance, PdM can prevent accidents and injuries caused by 

equipment failures. PdM can also improve environmental sustainability by reducing the 

amount of waste generated by unnecessary maintenance activities and by optimizing 

equipment performance. 

 

     However, PdM also has some limitations that should be considered. One of the main 

limitations is the need for high-quality data. PdM relies on historical equipment data, 

which must be accurate and representative of the equipment's operating conditions. If the 

data is incomplete or inaccurate, the PdM system may generate false alarms or miss 

critical failures, reducing its effectiveness. Another limitation of PdM is the need for 

specialized skills and expertise. PdM requires skilled data analysts and machine learning 

experts who can analyze the data, develop predictive models, and interpret the results.  

I.2 Prognostics and Health Monitoring 

Prognostics and health monitoring (PHM) is a rapidly evolving field that combines 

engineering, data analytics, and machine learning to monitor the health of equipment and 

predict when maintenance will be required. PHM can also incorporate historical data and 

contextual information to provide more accurate predictions of remaining useful life and 

maintenance needs. 
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I.2.1 PHM Architecture 

In PHM, the layer responsible for evaluating the machine's health state is called 

diagnostic, while the prognostic stands for the future evaluation of the detected fault. The 

architecture can be described according to the seven functional layers  (Provan, 2003) as 

depicted in Figure 1 (Medjaher, Camci, et al., 2012). 

 

Figure 1: Open system architecture for prognostics and health monitoring layers 

Continuous monitoring systems generally monitor potential failures by upgrading a 

machine with a fault prediction system. The machine can continue performing within 

tolerable parameters and be repaired at the most economically convenient time. The 

prediction capability of the monitoring system is the difference between simply saving 

the machine and saving the production schedule.  

Figure 2: The seven modules in the OSA-CBM architecture  
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The structure connected to fault detection, fault diagnosis, fault prognosis, and control 

system is known as a Prognostics health management system. It employs several data 

analyses and decision-making techniques, including statistical analysis and data 

visualizations to perform feature extraction, fault detection, and prognostics. 

Figure 2 represents the PHM architecture and the workflow between its seven layers 

(Lebold et al., 2003).  

I.2.2 Prognostics models 

There are various types of RUL estimator models, each with its own strengths and 

limitations. The choice of RUL estimator model depends on various factors, including the 

type of equipment, the available data, and the desired level of accuracy. Each model has 

its own strengths and limitations, and some models may be more suitable for certain types 

of equipment or operating conditions. However, all RUL estimator models share the goal 

of improving equipment reliability, reducing downtime, and optimizing maintenance 

activities. 

I.2.2.1 Similarity model 

One type of RUL estimator model is the similarity model, which is based on the 

assumption that the current condition of equipment is similar to its past conditions. The 

similarity model compares the current state of equipment to historical data to estimate its 

remaining useful life. 

I.2.2.2 Survival model 

Another type of RUL estimator model is the survival model, takes into account the 

probability of equipment failure over time and estimates the remaining useful life based 

on the probability of failure. This model requires a better knowledge about the failure 

signatures. 

I.2.2.3 Degradation model 

The degradation model calculates a component's RUL based on the historical 

deterioration of that component over time. It models the degradation process and forecasts 

when the component will approach a failure threshold using sensor data and other 

pertinent information. For parts like bearings or gears that deteriorate gradually over time, 

the degradation model might be especially helpful. 
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I.2.3 Critical components choice. 

Deciding the monitoring level in an industrial system to acquire the data constitutes an 

essential step toward building a reliable PHM platform. The monitoring of industrial 

systems can be done on system or component levels (Gouriveau et al., 2016). 

1. System-level: large-scale systems consisting of multiple 

components/subsystems. 

2. Component level: components that show a high failure rate are considered 

critical. 

 

However, performing PHM for a whole machine or system is challenging and still quite 

difficult in practice compared to the component-oriented PHM.  A critical component is 

usually defined as a component whose failure leads to the unavailability of the whole 

system or has a high failure rate. In this scope, the current study focuses on bearing 

machines as a dominant type of asynchronous machine since they are one of the most 

used machines according to their multiple applications. Furthermore, most rotating 

machines consist of simple components assembled; any failure of these components may 

be detected from the sensor signals that monitor the parameters related to these 

components. The bearing faults are one of the foremost causes of breakdown in rotary 

machines, with over 40% of the motor faults. See Table 1 (Mosallam et al., 2015; Soualhi 

et al., 2015). 

 

 

Table 1: Failure distribution of asynchronous motors (Gouriveau et al., 2016) 

Failure percentage in %  

Component O’Donnell 

1985 

Albrecht 

1986 

Bloch&Geitner 

1999 

IEEE-ERPI 

2012 

IEEE 

2015 

Bearings 41 50 41 55 51 

Stator 37 40 36 36 16 

Axle 10 10 09 / 28 

Others 12 / 14 09 05 
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Different causes can induce bearings failures: most of these failures are related to poor 

lubrication, the presence of foreign objects, fatigue, and passages of residual electric 

currents. Therefore, it is not easy to accurately define the signatures of bearing 

degradation. 

I.2.4 Bearing anatomy 

There has been a clear motivation to develop reliable monitoring systems and prediction 

techniques due to the manufacturing industry's high cost associated with equipment 

downtime. Since rotating machinery exists in almost every industrial system, it is crucial 

to develop reliable techniques for predicting rotating element failure early enough to 

facilitate maintenance tasks. The failure of a rolling element bearing is one of the primary 

causes of breakdown in rotating machinery. Bearing failure can be catastrophic in certain 

situations, such as helicopter rotors, high-speed trains, and automatic processing 

machines. The bearings are mechanical organs. They represent a relatively simple, 

economical, and efficient junction type as it adapts pretty well at very low speeds (e.g., 

actuator bearings) and very high speeds (e.g., turbine).  

To prevent disastrous consequences from bearing failures, the bearing life prediction is 

discussed in this thesis, starting by describing the bearing anatomy. 

 

Figure 3: Bearing parameters 
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For a particular bearing geometry, inner raceway, outer raceway, and rolling element 

faults generate vibration spectra with unique frequency components. These individual 

frequency components and their magnitudes make it possible to determine the condition 

of the bearing (Fault Isolation). The bearing defect frequencies are linear functions of the 

running speed of the motor. Also, outer and inner race frequencies are linear functions of 

the number of balls in the bearing. Given the geometry of the bearing, the calculation of 

these frequencies is explained in (Dybała & Zimroz, 2014; Miao et al., 2011). For deep 

groove ball bearings with a stationary outer ring, the frequencies are given by the 

following equations: 

 

𝐹𝑇𝐹 =
𝐹

2
[1 −

𝐵𝑑

𝑃𝑑
 . cos ∅] eq. (1) 

𝐵𝑆 =
𝑃𝑑

2𝐵𝑑
. 𝐹 [1 −

𝐵𝑑

𝑃𝑑
 . cos ∅] eq. (2) 

𝑂𝑅 =
𝐹

2
. 𝑁 [1 −

𝐵𝑑

𝑃𝑑
 . cos ∅] eq. (3) 

𝐼𝑅 =
𝐹

2
. 𝑁 [1 +

𝐵𝑑

𝑃𝑑
 . cos ∅] eq. (4) 

 

Where:  

FTF [Hz]: Fundamental Train Frequency / Cage Frequency. 

BS [Hz]: Ball Spin / Ball Pass Frequency (BPF).  

OR [Hz]: Outer Race frequency / Ball Pass Frequency Outer race (BPFO).  

IR [Hz]: Inner Race frequency / Ball Pass Frequency Inner race (BPFI). 

N: Number of balls. 

F [Hz]: Shaft frequency (rotational frequency). 

Bd [Inch]: Ball diameter. 

Pd [Inch]: Pitch diameter. 

∅ [Radians]: Contact angle. 

I.2.5 Bearing failures. 

The failure of a machine is not as sudden as it seems. Science and new technologies 

proved that failure happened after certain degradation related to causes often unseen by 

humans. 
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The probabilistic failure mode of a given piece of engine hardware reflects its relative 

probability of failure versus its age.  There are three categories of failure mode: wear-out, 

infant mortality, and random.   

1. Wear-out: is the most common of the three since parts are increasingly likely to 

fail as they age.   

2. Infant mortality: Conversely, it describes those situations where parts are more 

likely to fail early in life.  Parts are usually considered safe from this mode once 

they pass a certain age. 

3. Random failure: in this mode, parts or machines are equally likely to fail 

whatever their age. An unexpected failure situation allows for a simplified risk 

assessment using the mean time between failures (MTBF) analysis. 

Metal deformities and cracks can cause faults in bearings, fragments on the surface 

raceway, improper installation, and incorrect handling of the bearing. Bearing failure can 

cause personal injury and unscheduled replacements or repairs, leading to high 

maintenance costs. To list and treat all the known types and causes of bearings damage is 

beyond the scope of this thesis. Therefore, only the most common bearing failure causes 

are mentioned. A specific defect frequency characterizes each defect or characteristic 

frequency, depending on which bearing component the fault occurs and the speeds at 

which the inner and outer races rotate. Different frequencies are generally obtained for 

defects on an outer race, inner race, and roller elements. 

 

I.2.6 Fault diagnosis based on vibration analysis 

Detection of progressive bearing deterioration during operation by vibration 

measurements has been in use for a long time, and this technique has become more 

economical and reliable in recent years. The overall vibration level indicates the bearing 

machine's global condition, including unbalance, misalignment, and bearing defects. 

Vibration diagnostic is usually concerned with the extraction of features from the sensor's 

signal and associating these features with healthy or faulty components of the bearing. 

Acquiring accurate vibration data is the key to effective machine monitoring, fault 

diagnosis, and prognostics. Quality data acquisition requires planning involving the 

machine, the nature of expected vibration data, available instrumentation, and the purpose 

of the testing  (Niu, 2017). 
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Accelerometers are rugged, compact, lightweight transducers with a wide frequency 

response range. They have been used extensively in many machinery-monitoring 

applications. Generally, the machines have parts that generate high-frequency signals, 

such as gear sets or rolling element bearings like in our case study. Vibration sensors are 

used to measure vibration levels on the casing and bearing housings. They are inertial 

measurement devices that convert the mechanical motion to an electrical signal, and this 

signal is proportional to the vibration’s acceleration based on the piezoelectric principle. 

 

I.3 Problematic of this research. 

The two traditional categories of maintenance (the corrective and the preventive) are 

considered wasteful against the PHM. In our case study, the problems in applying the 

PHM can be resumed in three main points: 

1- The Complexity of fault detection: 

The PHM application complexity remains in the diversity of symptoms that can be 

developed from the same fault, which makes the diagnostic hard and the prognostic 

even harder, mainly with the insufficiency of the amount of vibration data 

available. 

2- The Complexity of systems where the mathematical model cannot be 

extracted: 

Another problem of this research is the case of complex machines or systems where 

the model-based approach is not a possible solution. Thus, how to use only the 

available knowledge to predict future failures? For that, assuming that the available 

knowledge holds information about the future. Thus, the fact that the future is 

relatively predictable leads us to apply the data-driven approach, where the RUL is 

obtained when a health indicator (HI) exceeds a predefined threshold (Fault 

Threshold). However, the fault threshold is usually determined experimentally since 

the HI values of different bearings are generally different (Nabhan et al., 2015). In 

that context, and to build a generic bearing prognostic algorithm, different fault types, 

as well as other bearings types, are taken into consideration. 

3- Critical component choice: 

The factors of non-linearity (loads, clearance, friction, stiffness, and others) have a 

different influence on vibratory signals due to the complexity of construction and 
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working conditions of rotating machines, which leads us to apply the prognostic on 

the critical component of the rotating machine rather than the entire system at once.  

 

In this thesis, the data-driven approach is applied to study the bearings as the most critical 

component in rotating machinery. 

I.4 Motivation and objectives 

Maintenance is one of the main factors that lead the industry to the top or the bottom. It 

is crucial to improve product quality and on-time delivery as well as overall productivity. 

In 2003, the US Department of Commerce Statistics estimated that the industry wastes 

more than 180 billion dollars in excess maintenance annually (Niu, 2017). In this last 

decade, more research has focused on online fault diagnosis and prognosis by integrating 

complex machine learning algorithms. Still, for the bearing case, there is no study 

justifying the selected features' choice or their number; this is still an ongoing field of 

research (Sugumaran & Ramachandran, 2011). Therefore, researchers often overlook the 

study beyond selecting an adequate number of features, which includes the choice of 

inappropriate features. This is unsafe because the fault detection accuracy depends 

directly on the number and type of features used. In addition, false fault detection leads 

consecutively to a wrong prognostic.  

Thus, our motivation and objective are to extract in an automatic way the relevant features 

to be used in prognostics. The optimization of the RUL estimation process is also 

considered an objective of this thesis, as long as our main objective is building a generic 

bearing trend indicator.   

A reliable prognosis relies on condition monitoring since the prediction of the future state 

of an asset implies that its current state is known. Therefore, condition monitoring is the 

key to implementing efficient maintenance management strategies. Hereafter, through the 

use of PHM, we aim to achieve the following objectives: 

• Estimating the future machine’s health state (The machine in this case of study 

is represented by its critical component, which is the bearing).  

• Improving maintenance techniques and equipment reliability through the 

effective prediction (and then avoidance) of equipment failures. 

• Extend the literature review of the bearing prognostics by exploring new 

methods. 
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I.5 Research contributions 

This research attempts to solve the bearings’ generic predictive maintenance problem 

using a data-driven approach. Therefore, we propose a generic method for bearing 

prognosis.  Our contributions are illustrated in: 

1- Relevant fault feature identification: 

A health indicator is built using the relevant fault features extracted from multiple 

domains of the raw vibration signal. The health indicator aims to be used in the 

condition assessment and RUL identification. 

2- Generic bearing RUL estimation: 

A trend indicator (TI) is built based on the health indicator for RUL estimation, 

where generic means that the condition assessment and the prognostic methods 

should provide acceptable results for multiple types of bearings under various 

working conditions. 

The methodology of our contribution is inspired by the work of (Mosallam et al., 2014b), 

where the proposed method is based on extracting time and frequency features for 

bearings, followed by calculating the pairwise symmetrical uncertainty for the feature 

selection. Then, the features are compressed to a lower dimension using PCA before 

applying the empirical mode decomposition (EMD), where the residual is considered the 

trend indicator. The results of our proposed method are compared with the work of (Guo 

et al., 2017), where a recurrent neural network-based health indicator (RNN-HI) for RUL 

prediction of bearings is presented. In addition, the PHM 2012 database (Nectoux et al., 

2012) is used in both references to validate the results. 

 

Figure 4: Our Proposed PHM Architecture 
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I.6 Assumptions 

In terms of the proposed algorithm’s application, some assumptions are applied, such as: 

• The fault of the bearing machine is due only to the fault of the critical 

component, which is the bearing in this case study. 

• The bearing starts from a healthy state and degrades gradually until the end of 

life (EOL). 

• The proposed method is dedicated to one critical component at time. 

• The sensors used for data acquisition are not faulty. 

• No maintenance intervention during the process. 

• The degradation of the components develops due to incipient faults. 

I.7 Scope and Limitations 

This study covers the application of machine learning algorithms performed on multiple 

types of bearings to estimate the RUL based on health and trend indicators. The thesis 

limitations relate to applying the machine learning algorithms in the prognostic module. 

The development of other PHM layers, such as the diagnostics and the aid decision, are 

beyond this study's scope. The Figure 5. Illustrates the layers to be handled in this research 

in red color. 

  

Figure 5: Prognostics and health monitoring layers in the scope of our research 
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I.8 Thesis outlines 

The current thesis is subdivided into five chapters organized as follows: 

Chapter 1 presents an introduction to industrial maintenance generally and the PHM, 

especially a brief description of the motivation, objectives, and contribution 

of this case study. 

Chapter 2 gives an overview of state-of-the-art research in this field: the details of the 

features extraction techniques and the applied algorithms for constructing 

health and trend indicators. 

Chapter 3 is dedicated to the data acquisition and the feature engineering used for the 

health indicator construction going through the details of different feature 

domains and algorithms. 

Chapter 4 focuses on RUL estimation based on the condition indicator. It also covers 

fault and failure detection and the multiple methods used to build the trend 

indicator. 

Chapter 5 discusses the results of applying the previous methods on multiple benchmark-

bearing databases. 

Lastly, a general conclusion is provided with the main results and perspectives on future 

works 
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“Whoever takes a path upon which to obtain knowledge, Allah 
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II. Literature Review of PHM 

Over the past decade, numerous efforts have been placed into the development of 

prognostic algorithms as well as the design of PHM systems. However, it has been 

observed that many industries have researched and developed related technologies in 

different applications. Considering the increasing research on the PHM systems, many 

standards are proposed, such as the ISO 17359:2018 (International Organization of 

Standardization), MIMOSA (Machinery Information Management Open Standards 

Alliance), and SAE (Society of Automotive Engineers) standards… (Zhou et al., 2013). 

II.1 Introduction 

Prognostics and Health Management (PHM) is an emerging field that aims to predict the 

Remaining Useful Life (RUL) of a system or component based on its health condition. 

This technology plays a crucial role in many industries, such as aerospace, automotive, 

and manufacturing, where system failures can lead to catastrophic consequences. Over 

the years, researchers and engineers have developed various techniques and algorithms 

to estimate RUL accurately. These techniques include model-based approaches, data-

driven approaches, and hybrid approaches that combine both. With the advances in 

sensing, data storage, and processing capabilities, PHM systems have become more 

sophisticated and accurate, leading to improved system reliability, reduced maintenance 

costs, and increased safety. In this state of the art, we will discuss the latest developments 

in PHM and RUL estimation, including current challenges and future directions. 

II.2 PHM approaches. 

Many PHM algorithms have been developed to satisfy different application requirements. 

Efforts to review these algorithms and summarize their pros and cons can be found in 

(Lee et al., 2014; Niu, 2017). There are three different approaches: the physical approach, 

the knowledge-based (experience-based) approach, and the data-driven approach, as 

proposed by (Vachtsevanos et al., 2007). Figure 6 illustrates the PHM approaches and 

their selection condition. 
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Figure 6: PHM Approaches 

Data-driven methods aim at transforming the raw monitoring data into relevant 

information of the system, including the degradation, which offers good diagnostic 

accuracy, especially when the operating context is variable or in the case of new systems 

because of a lack of experts. However, the results are less precise than those provided by 

model-based methods (Tobon-Mejia et al., 2010). But it is important to note that getting 

the mathematical representation of a component and its faults is so challenging and nearly 

impossible taking in count the real-life environment variables. 

II.3 PHM Signal preprocessing 

Since the condition monitoring process is based mainly on the extracted features from the 

preprocessing layer. This session explores the different feature extraction and reduction 

techniques.  

II.3.1 Feature extraction techniques 

Different features can be extracted from raw signals to transform the raw input data into 

a reduced informative representation. These features can be derived from the time 

domain, frequency domain, or joint time-frequency domain (Mosallam et al., 2013). 
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II.3.1.1 Time-domain Analysis  

Analyzing the vibration signals directly in the time domain is one of the simplest and 

fastest detections and diagnosis approaches. Various time-domain statistical 

parameters have been used as trend parameters to detect the presence of incipient 

bearing damage. The most commonly used ones are the peak, RMS, crest factor, 

and kurtosis (Galar et al., 2012; Y. Wang et al., 2016).  

These parameters h av e  m or e  s ig n i f i c a n t  v a l u es  for a damaged bearing than 

a normal one. Many researchers focused mainly on the application of the time-

domain features in fault detection and diagnostics tasks, combined with machine 

learning algorithms such as the Support Vector Machine (SVM) (Fuqing, 2011; Galar 

et al., 2012; He & Yang, 2012), Neural Network (NN) (Boukhobza et al., 2013; Guo et 

al., 2017), and Genetic Algorithm (GA) (Ettefagh et al., 2014). The results confirmed 

that the statistical method could identify different defects in the bearing but with less 

overall accuracy. The results revealed that the kurtosis and the crest factor are the more 

adequate features for fault detection (Ocak, 2004). 

II.3.1.2 Frequency Domain Analysis  

The key in determining the bearing condition is the spectral content rather than the 

vibration amplitude. Therefore, this approach explores the Fast Fourier transform (FFT) 

of the vibration signal instead of analyzing vibration directly in the time domain. This 

approach requires that bearing defect frequencies should be known. As faults start to 

develop in one of the bearing components, the vibration spectrum peaks at the bearing 

defect frequency and its harmonies are associated with the faulty bearing element. 

Around each peak, there are also sidebands.  

The spacing of the sidebands depends on the periodic properties of the loading and the 

transmission path; as the severity of the damage increases, the corresponding amplitudes 

of the peaks in the power spectrum increase. When the Signal-to-Noise Ratio (SNR) is 

low, and the vibration spectrum has a large number of frequency components due to 

the system's complexity, it becomes almost impossible to distinguish the fault-imposed 

peaks from the unwanted components. This is the most challenging problem associated 

with the FFT-based fault detection approach.  

The frequency features with their importance were not used alone in the PHM task and 

were always joined with other domain features. Citing some primary research in this field 
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using the frequency features, such as the use of Artificial Neural Networks (ANN) by 

(Boukhobza et al., 2013) and other machine learning methods (Priya et al., 2014; Shakya 

et al., 2013). 

II.3.1.3 Time-Frequency Domain Analysis  

The FFT of a signal provides information about the frequency characteristics of the 

signal. Thus, frequency analysis-based techniques discard time-domain information 

and only use frequency-domain information. The main advantage of time-frequency 

domain techniques is the use of both time and frequency domain information allowing 

for the investigation of the transient features. Several time-frequency domain 

techniques have been proposed, including Short Time-Frequency Transform (Antoni, 

2006; Obuchowski et al., 2014), the Hilbert–Huang transform (Soualhi et al., 2015; Y. S. 

Wang et al., 2014), the Wavelet Transform (N. Li et al., 2012; Yan et al., 2014), and the 

empirical mode decomposition (Ben Ali et al., 2015; Lv et al., 2016; Mosallam et al., 

2014b). Such methods require relatively more time and computational power than the 

previous methods. 

II.3.2 Dimensionality reduction 

Multivariate statistical techniques are powerful tools for compressing information and 

revealing essential phenomena in feature space. One typical method is principal 

component analysis (PCA) which is extensively reported in the literature (Harmouche et 

al., 2015; Z. Wang et al., 2012). Besides the PCA, the correlation analysis is also used to 

reduce the extracted features citing the work of (Guo et al., 2017; Lv et al., 2016; Qian et 

al., 2017). Recently, manifold learning (Gan et al., 2015; J. Wang et al., 2013) and 

isometric feature mapping (Benkedjouh et al., 2013) are also employed in bearing fault 

diagnosis. Consider the survey of (Liu et al., 2014) for more dimensionality reduction 

techniques. 

II.4 Condition assessments  

In condition assessment and fault diagnosis, the health indicator (HI) is the parameter 

to be monitored. It provides information about the health state of the system. In the 

literature review, there is no standard health indicator for bearings. Every researcher 

develops a valuable health indicator according to the available components and 

working conditions.  
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Where (Sassi et al., 2006) introduced two new parameters, TALAF, which describes the 

damage’s evolution over time, and THIKAT represents the degree of confidence relative 

to the use of defective bearing and confirms the TALAF early diagnosis. The health 

indicator created by (Guo et al., 2017) is based on the related-similarity features combined 

with the Recurrent Neural Network. 

In contrast,(P. Wang et al., 2012) proposed two health indicators, PHI and VHI, for 

physical and virtual health indicators, respectively. The PHI uses a dominant physical 

signal as a direct health metric, and the VHI uses a normalized health index as a 

combination of multiple physical signals. The Rayleigh distribution is used in HI 

construction in the work of (Bechhoefer & Schlanbusch, 2015); then, the RUL is 

calculated by applying Paris’s law and estimated using the Kalman filter. The Self-

Organizing Map (MAP) is also used as a health indicator in the work of (R. Li et al., 2012; 

Qiu et al., 2003). 

It is essential to mention that the prognosis analysis based on intelligent health indicators 

performs better than directly exploiting raw signals (Atamuradov et al., 2017). 

II.5 Prognostic (RUL estimation) 

Prognostic capabilities are designed to provide maintenance personnel with insight into 

the future health of a monitored system. Since prognostic is associated with predicting 

the future, it inherently involves a degree of uncertainty. Indeed, the prognostic task is 

considered significantly more complex than the diagnostic since the evolution of 

equipment fault conditions is subject to stochastic processes.  

The bearings failure is the highest cause of failures in rotary machines. A bearing can 

cause damage, often more than a thousand times its price, and the bearing cost is 

negligible for some cases like wind turbine generators and trains. To prevent such 

damage, many researchers focus on bearing prognostics and health assessment. Citing in 

this research field, the work of (Medjaher, Tobon-Mejia, et al., 2012), where the Mixture 

of Gaussians -Hidden Markov Model (MoG- HMM) is used for data-driven prognostic.  

Hereafter, the principal component analysis is used by (Djeziri et al., 2018; Mosallam et 

al., 2015)  as a data-driven method for residual space projection. Then, the remaining 

useful lifetime is calculated using a kinematic approach based on calculating the 

Euclidean distance from the normal operation to the faulty operation’s clusters.  
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In addition, the work done by (Gonzalez et al., 2017) considers the uncertainties of the 

prognostic process based on the local analysis of the failure modes prognostics. Then, the 

Basic Belief Assignments (BBAS) method is used on several failures. Moreover, the 

author calculates the uncertainties from Mean Time to Failures (MTTF) and Mean Time 

Between Failures (MTBF). More details in surveys about methods used in prognostics 

are cited here (Atamuradov et al., 2017; Jing & Li, 2016). It is important to clarify that 

these researches are applied to the critical components and not the overall system. 

Nevertheless, there are other studies about the prognostic of complete system, where the 

model is known with accuracy  (Atamuradov et al., 2017; Gonzalez et al., 2017). 

 

One of the data-driven approaches in prognostic relies upon projection methods, which 

project the current level of degradation into the future. This task is essentially a time-

series prediction problem, and it has been addressed by a variety of approaches, including 

autoregressive models (Qian et al., 2017) and exponential smoothing techniques (Liu et 

al., 2014; Niu, 2017). Many regression methods were applied in this context. Consider 

reviewing these researches for further details (Datong Liu et al., 2012; Soualhi et al., 

2015). 

The bearing prognostic problem is viewed as a pattern identification problem. Feature 

extraction techniques are used to extract features from vibration signals. These features 

are used for training neural networks, which are then used to match the future condition 

of the bearing. One of the most common data-driven techniques applied to prognostic 

problems is artificial neural networks (ANNs) (Boukhobza et al., 2013; Bouzidi et al., 

2011; McCormick & Nandi, 1997; Patel et al., 2013; C. Xu et al., 2010; Yoon et al., 

2011). They have been applied in several different ways for prognostics. Besides the 

ANNs, deep learning has been used (Guo et al., 2017; Gurvich et al., 2016; Lu et al., 

2015; Sohaib et al., 2017), the Gaussian Process Regression (GPR)(Maran Beena & Pani, 

2021; Wågberg et al., 2016), and the Hidden Markovian model (HMM) was discussed by 

(Tobon-Mejia et al., 2012). In order to explore the application of other machine learning 

in the bearings PHM field, we can refer to (B. Huang et al., 2017; Lee et al., 2014; Yoon 

et al., 2011)  
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More recent works are conducted in these couple of years, the work of (H. Xu & Ma, 

2021) describes the use of the wavelet for feature extraction along with Attention-based 

LSTM (Long Short-Term Memory) and Random Forest (RF) to predict time series trends.  

And (Daniyan et al., 2020) dealt with the use of the envelope spectrum and kurtosis 

analysis for the detection of the bearing’s inner and outer race fault for fault detection and 

the Least Square Method for a prognostic model. The used method for prognostics in our 

case of study was also the object of (Maran Beena & Pani, 2021) works along with other 

methods such as the ensemble of deep- autoencoder (DAE) and locally linear embedding 

(LLE), jointly referred to as the ‘‘DAE-LLE ensemble’’ detailed in (Bilendo et al., 2021). 

Another area of research is the development of more advanced machine learning 

algorithms that can analyze large and complex data sets. For example, the work of  (C. 

Yang et al., 2021) where they used the generalized regression neural network (GRNN) to 

predict the health indictor by combining improved independent component analysis and 

the gray regression model. Another usage of the GRNN can be discussed in the work of 

(Tan, 2019), who studied the effect of the monotonicity, the trendability, the 

identifiability and the robustness of the statistical indicators on the ability of a fault feature 

to track and monitor the fault evolution process. 

To fasten the RUL estimation, (Barbieri et al., 2021) adjust the parameters of the learning 

phase before using it in the prediction phase to reconstruct the Probability Density 

Function (PDF) of the current state. 

The results of the previous researched demonstrate the quality of prognostics depends 

mainly on the feature extracted(Zhao et al., 2021). 

 

II.6 Challenges 

In the field of PHM, several challenges arise when trying to accurately predict the 

remaining useful life (RUL) of a system. One of the primary challenges is the lack of 

sufficient data, particularly run-to-failure data sets, which are necessary for training 

accurate models. Additionally, data from different sources and modalities must be 

integrated, which can lead to data quality issues and increased complexity. Choosing 

appropriate features that can capture the degradation process is another difficult task, and 

selecting the appropriate model and its parameters is equally important for achieving 

accurate RUL predictions.  
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This challenge is especially critical for systems where failures can have severe 

consequences, such as in aerospace and defense applications. Due to the scarcity of failure 

data and the difficulty of reproducing the scenarios that lead to failure, accurately 

predicting RUL remains a challenging and ongoing research topic in the field of PHM. 

 

II.7 Conclusion 

The following Table 2 englobes the relevant research from the literature review 

categorized according to the PHM layers: 

Table 2: Prognostics literature review 

PHM layer Methods References Observation 

Data Acquisition 

(Data domain) 

Data-Driven 

(Sassi et al., 2006 ; 

Sugumaran & 

Ramachandran, 2011). 

• Most used approach. 

• Request historical data 

only. 

Model-Based 
(SIMATRANG, 2015; 

Sohaib et al., 2017) 

• Request a complete 

understanding of the 

asset. 

• Request a Mathematical 

model of components 

and failures. 

Experience 

Based 

(Butler, 2012; Kamsu-

Foguem & Mathieu, 

2014) 

• Based on expert 

feedback. 

• Not used in prognostics. 

Signal 

Processing 

(Data 

Manipulation) 

Time Domain 

Extraction 

(Galar et al., 2012; He 

& Yang, 2012; Y. 

Wang et al., 2016) 

• Adequate for fault 

detection. 

• Can be optimized. 

• Not accurate in 

diagnostics. 

Frequency 

Domain 

Extraction 

(Patel et al., 2013; 

Priya et al., 2014) 

• Adequate and accurate 

diagnostics and fault 

isolation. 

• Not accurate in fault 

detection and 

prognostics. 

Time-Frequency 

Domain 

Extraction 

(Ben Ali et al., 2015 ; 

Lv et al., 2016 ; 

Mosallam et al., 

2014b) 

• Adequate for 

prognostics. 

• Request more time and 

computational power. 
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• Complicated compared 

to the time and 

frequency domains. 

Condition 

Monitoring 

(Fault detection) 

 

Self-Organizing 

Map 

(R. Li et al., 2012; 

Ren et al., 2011) 

• Projecting high-

dimensional data into a 

low-dimensional space  

• Preserve the 

neighborhood structure 

Statistical 

Feature Fusion 

(McBain & Timusk, 

2014; Qian et al., 

2017) 

• Combine extracted 

features based on a 

numerical experiment. 

• Adequate for a targeted 

situation. 

Principal 

Component 

Analysis 

(Harmouche et al., 

2015; Z. Wang et al., 

2012) 

• The most used method 

in data compression 

• Maximize the projected 

variance 

Prognostics 

(RUL 

estimation) 

Gaussian 

Process 

Regression 

(Mosallam et al., 

2014a) 

• One of the most critical 

regression approaches 

• A nonparametric model 

with uncertainty 

predictions 

Hidden 

Markovian 

Model 

(Medjaher, Tobon-

Mejia, et al., 2012 ; 

Tobon-Mejia et al., 

2012) 

• Generally combined 

with a mixture of 

Gaussians. 

• Used to represent 

several failure modes. 

Deep learning-

based Neural 

Networks 

(Guo et al., 2017; 

Gurvich et al., 2016) 

• Allow for more 

informative feature 

extraction. 

• Request considerable 

data to be trained.  
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Quote: 

Verily, the angels lower their wings for the seeker of knowledge. 

The inhabitants of the heavens and earth, even the fish in the depths of 

the water, seek forgiveness for the scholar. 

Mohammed Messenger of Allah (صلى الله عليه وسلم) - Sunan Abī Dāwūd 3641 

 

 



Chapter III: Health Indicator Based Condition Assessment  

 

 

 
Development of an Intelligent Health Assessment Application for Bearing Machines. Page: 33 

III. Health Indicator (Based Condition Assessment) 

The condition assessment method aims to develop a health indicator from the extracted 

data of the monitored asset (e.g., bearings in our case study). The health indicator is built 

using extracted features from multiple domains, which makes the feature extraction and 

feature reduction crucial phases in the condition assessment process. Thus, this chapter 

details feature extraction, dimensionality reduction, and health indicator construction. 

III.1 Introduction 

A health indicator should be able to detect any malfunction and reveal its sensitivity. The 

first term reflects the ability of an indicator to detect the onset of a malfunction before or 

at the beginning of physical alterations. On the other hand, the second term describes the 

importance of the indicator evolution in the presence of a defect revealed concerning its 

previous value. In contrast, fault identification and isolation are subject to the diagnostic 

layer, which is beyond the scope of this thesis. 

Feature extraction seeks a transformation of the original variables to a smaller set. The 

original variables in our case study are obtained from the vibration monitoring of 

bearings, and vibration monitoring is carried out using time-domain, frequency-domain, 

or time-frequency analysis.  

III.2 Data acquisition 

Data acquisition is collecting and storing data from targeted engineering assets for 

condition monitoring, diagnostics, and prognostics. This process is an essential step in 

the PHM implementation and can affect the quality of the final decisions (Niu, 2017). 

Therefore, the decision of the data acquisition technique influences the workflow steps. 

During data acquisition, the choice of sampling frequency is crucial. Theoretically, to 

avoid any loss of information between the sensor's output and the acquisition card's input, 

the sampling frequency must be greater or equal to twice the maximum frequency of the 

signal to be sampled (Shannon’s condition). With the rapid development of computers 

and advanced sensor technologies, data acquisition facilities and technologies have 

become more powerful and less expensive, making data acquisition for PHM 

implementation more affordable and feasible. 
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III.3 Data Manipulation  

Data manipulation lays a solid cornerstone for building reliable data-driven models. It 

aims at converting raw sensor data into usable information. In practice, raw sensor signals 

are usually very complex, and information about the degradation process of the monitored 

component is not always available. Generally, data manipulation methods can be divided 

into three main tasks: pre-processing, feature extraction, and feature reduction. 

The extracted features should be sensitive to machine faults and, at the same time, robust 

to background noise. Another important consideration in data manipulation is that the 

computation complexity for extracting features should be low to be suitable for real-time 

implementation.  

III.3.1 Data preprocessing 

The acquired data are checked in order to detect possible errors or missing data. Indeed, 

sometimes certain parts of data matrices are replaced by a zero value or are entirely 

avoided. In such cases, the preprocessing substitutes missing symbols or data with other 

numerical values (averages in a window of previous data). Note that gathered data can 

undergo additional preprocessing, such as filtering to remove noise or resampling to 

reduce their size. Signal preprocessing is necessary to remove or reduce noise from a raw 

signal and extract compact information as features representing the signal's dynamics.  

This process is applied in high voltages, noisy environments, and high signals to 

transform the sensor data into suitable forms for later processing. This way, signal 

preprocessing can maximize a system's accuracy and guarantee the constitutive device's 

safety. Signal preprocessing can include the following processes, amplification, 

attenuation, filtering, handling missing data, and validation. Data can then be displayed, 

analyzed, or processed with algorithms developed explicitly for PHM applications. 

 

III.3.2 Feature Extraction  

The feature extraction stage within a PHM system is designed to generate a vector of data 

features, which can infer the current fault status of a monitored asset and its future 

projection. The goal of feature extraction is to transform raw signals into other coherent 

and relevant signals. Besides, these extracted features depend on their further use; for 

example, failure detection features can differ from those used in prognosis analysis.  
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Other benefits of the feature extraction process are discussed by Zhu & Trevor (Zhu, 

2001). This process is carried out using at least one of the three methods: time-domain 

analysis, Frequency domain analysis, and time-frequency analysis.  

 

 

Figure 7 : Features Extraction 

 

III.3.2.1 Time-domain descriptors 

The time-domain features are recommended because standard and defective signals differ 

in their statistical characteristics in the time domain, where the calculation is simple and 

low complexity (Galar et al., 2012). In addition, they are calculated from vibration signals 

directly without any frequency calculations, reducing computation time and making them 

easily adaptable in the industry because of the simplicity of their application (Boukhobza 

et al., 2013). 

 

The extracted features focus on calculations of the statistical parameters of the signal. 

They are used to perform fault detection analysis. However, their direct use in prognostic 

can lead to unsatisfactory results. Time-domain methods are directly based on the time 

waveform such as mean, peak, standard deviation, root amplitude, root mean square 

(RMS), skewness, kurtosis, Hyper-kurtosis, Shape factor, Crest factor, Impulse factor, 

and Clearance factor, where the description and the formulation are listed in Table 3 

(Chalouli et al., 2017). 
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Table 3: Time-domain features 

N° Feature Symbol Equation  

1 Mean 𝑥̅ 
1

𝑛
∑|𝑥𝑖|

𝑛

𝑖=1

 eq. (5) 

2 Root mean square xrms √
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

 eq. (6) 

3 Peak xpeak 𝑚𝑎𝑥(|𝑥𝑖|) eq. (7) 

4 Root amplitude xram (
1

𝑛
∑ √|𝑥𝑖|

𝑛

𝑖=1

)

2

 eq. (8) 

5 Standard deviation xstd √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 eq. (9) 

6 Skewness xskew 
∑ (𝑥𝑖 − 𝑥̅)3𝑛

𝑖=1

(𝑛 − 1). 𝑥𝑠𝑡𝑑
3
 eq. (10) 

7 Kurtosis xkur 
∑ (𝑥𝑖 − 𝑥̅)4𝑛

𝑖=1

(𝑛 − 1). 𝑥𝑠𝑡𝑑
4
 eq. (11) 

8 Hyper Kurtosis Xhku 
∑ (𝑥𝑖 − 𝑥̅)6𝑛

𝑖=1

(𝑛 − 1). 𝑥𝑠𝑡𝑑
6
 eq. (12) 

9 Shape factor xshf 
𝑥𝑟𝑚𝑠

𝑥̅
 eq. (13) 

10 Crest factor xcrf 
𝑥𝑝𝑒𝑎𝑘

𝑥𝑟𝑚𝑠
 eq. (14) 

11 Impulse factor ximf 
𝑥𝑝𝑒𝑎𝑘

𝑥̅
 eq. (15) 

12 Clearance factor xclf 
𝑥𝑝𝑒𝑎𝑘

𝑥𝑟𝑎𝑚
 eq. (16) 

 

 

The use of time-domain features directly has many shortcomings. Noting initially, when 

a defect appears, the tiny shocks increase the peak level considerably but have less 

influence on the RMS. The RMS level may become significantly high in bearings with 

multiple or spreading defects, reducing the Crest factor. (Sassi et al., 2006). 
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III.3.2.2 Frequency domain descriptors 

However, even if they are well suited for online monitoring, time-domain indicators do 

not identify the defect responsible for the degradation (Sassi et al., 2006). The Fast Fourier 

transformation (FFT) is the common method to migrate from the time domain to the 

frequency domain. The frequency domain is more suitable for diagnostics because it 

provides specific information about faults and failures. Now that the data are represented 

in frequency space, we extract the following features: the Max Amplitude, Frequency 

Center, RMS Frequency, and Root Variance Frequency; more details about the 

formulation are given in  (Boldt et al., 2013). 

III.3.2.3 Bearing Specific descriptors 

The particularity of these features is to be used only for the bearings. In this case, four 

critical frequencies are recommended for monitoring: the ball pass outer race (BPFO), 

ball pass inner race (BPFI), ball spin frequency (BSF), and fundamental train frequency 

(FTF). These frequencies are extracted continuously during the run–to–failure process, 

where the formulation and description can be consulted at (Miao et al., 2011). Signals 

with time-varying frequency content cannot be treated with the traditional Fourier 

Transform because this method averages the time-varying signal and loses the non-

stationary characteristics, which may be necessary.  

III.3.2.4 Effect of Features 

Among the three techniques, time-domain indicators are the simplest and easy to 

implement (P et al., 2014). They are independent of the rotational speed even when there 

is no load (Batista et al., 2013). While the frequency-domain indicators give specific 

information about the bearing failure but not the time of occurrence, which is useless from 

the prognostic point of view. Time-frequency techniques map the one-dimensional signal 

to a two-dimensional in the function of time and frequency. Thus, these techniques 

present a valid tool for analyzing a non-stationary signal. However, each of these 

techniques has some drawbacks. It also seems that eliminating one of these shortcomings 

leads to the loss of advantage in another aspect of the analysis. All three techniques have 

been described in detail in (Patidar & Soni, 2013) and compared in (Boudiaf et al., 2016). 
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III.3.3 Dimensionality reduction 

Given the unawareness of degradation phenomena, extracting more characteristics than 

necessary is not so rare, making their representation and visualization difficult. Bearing 

that some features are similar to others and knowing that calculation time and cost are 

directly proportional to the number of treated features make feature reduction an 

important step. To circumvent this situation, we can consider two strategies, as illustrated 

in Figure 8: 

  

 

Figure 8: Dimensionality reduction techniques 

In our case study, the feature selection based on the cross-correlation filter is used as a 

dimensionality reduction method. In contrast, the feature reduction based on the SOM or 

the PCA is used for the health indicator construction. 

III.3.3.1 Cross-Correlation Filter 

A cross-correlation filter is applied to reduce the non-informative features, selecting only 

the informative for the fault detection task at the end of the process. Where the coefficient 

of correlation between two features is calculated by equation (17): 

𝐶𝐶(𝐴, 𝐵) =
𝐶𝑉(𝐴,𝐵)

√𝐶𝑉(𝐴,𝐴)∗𝐶𝑉(𝐵,𝐵)
 eq. (17) 

𝐶𝑉(𝐴, 𝐵) =
1

N−1
∑ (𝐴𝑖 − µ𝐴) ∗ (𝐵𝑖 − µ𝐵)𝑁

𝑖=1  eq. (18) 

µ =
1

N
∑ 𝐴𝑖

𝑁
𝑖=1  eq. (19) 

The advantages of this method against others, such as Principal Component Analysis 

(PCA), can be resumed in two main points.  
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The non-alteration of the feature's nature, where the results are a reduced number of 

features saving the characteristic of each feature, while the results of PCA, for example, 

give a new representation of input data in other spaces. The direct selection of non-

redundant features represents the second point after the features are reduced, which does 

not require other calculations compared to the PCA method, where the analysis must be 

done every time, the features have to be reduced. This advantage is well illustrated when 

the relevant features process is invoked more than once.  

 

 

Figure 9: Cross-correlation filter algorithm 

 

A Correlation-based feature selection is applied for the redundant features isolation phase 

to determine the similar features before eliminating one of each two highly correlated 

features according to the algorithm described in Figure 9. Once the two features with the 

highest correlation value are selected, the correlation coefficient is calculated using one 

of these two with the rest of the features. The feature giving the highest correlation 

coefficient should be removed, and the whole process is repeated until the overall 

coefficient reaches a predefined threshold (Th). The remaining features are inputs for the 

next relevant feature selection phase. More details about the cross-correlation filer are 

available in (McBain & Timusk, 2014) 

START
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END

NO
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III.3.3.2 K-Means clustering 

K-means is one of the industry's most popular clustering algorithms (Medjaher, Tobon-

Mejia, et al., 2012). It is calculated using Lloyd’s algorithm, which begins with k arbitrary 

centers chosen randomly among the data points. Once done, each point is assigned to the 

nearest center. Then, it calculates each center as the center of all its assigned data points. 

Finally, the whole process except the random choice is repeated until the process 

stabilizes.  

The speed and simplicity of the k-means method make it appealing(Benkedjouh et al., 

2013). The initial point for the k-means clustering should be appropriately chosen to 

overcome the problems associated with local optima (Hong & Zhou, 2012). It is used in 

our case to evaluate the optimality criterion –the best distinction between the bearing’s 

different health states – for all possible combinations of “d” variables selected from “F” 

features and select the combination for which this criterion is a maximum. The difficulty 

arises because the number of possible subsets is: 

 

𝑁𝑓𝑒𝑎𝑡 =
𝐹!

(𝐹−𝑑)! 𝑑!
 eq. (20) 

 

Which can be very large even for moderate values. In our case, selecting the best ten 

features out of 20 means that 184 756 feature sets must be evaluated.  

Therefore, according to the literature review, we applied the optimization only to the time-

domain features (12 features), which only two features can be represented (Ocak, 2004).   
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Figure 10 : K-Means ++ flowchart 

 

III.4 Health Indicator Construction 

Health indicators are signals constructed either from raw data or from extracted features. 

In both cases, their construction usually requires several processing steps (data fusion, 

filtering, and extraction of residuals), intending to obtain an indicator with enough 

information to reveal the component’s health status. Previous research has shown that no 

feature is suitable for all defect types at all degradation stages. Thus, the reliable 

performance of the fault detection method should take advantage of mutual information 

from multiple features (Hai Qui & Lee, 2004). In this case, future fusion is key to getting 

a robust health indicator detecting several defect types at different stages. The health 

indicator goodness is represented by the earlier detection of the component degradation 

going from a healthy state to a faulty condition. We studied several methods to extract 

adequate health indicators for that purpose. 
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III.4.1 HI-Based Self-Organizing Map 

The self-organizing map (SOM) is a type of artificial neural network that is often used 

for data visualization and pattern recognition. Recently, researchers have explored the use 

of SOMs as a health indicator in the field of prognostics and health monitoring (PHM). 

SOMs can be used to visualize and analyze sensor data from equipment, enabling 

maintenance teams to identify patterns and anomalies in equipment behavior. 

SOMs can be particularly useful for identifying complex patterns in large and complex 

data sets. For example, SOMs can be used to identify clusters of data points that represent 

different operating conditions or failure modes. Previous research has shown that no 

feature is suitable for all defect types at all degradation stages. For example, Kurtosis is 

ideal for detecting incipient defects, whereas the RMS value indicates severe defects. 

III.4.1.1 SOM Principals  

The SOM is an appropriate tool for this task with its unique capability of projecting high-

dimensional data into a low-dimensional space while preserving their inherent 

topographic relationships (Hai Qui & Lee, 2004). The SOM is a neural network concept  

developed by Kohonen in 1990 (Kohonen, 1990). It provides a non-linear, ordered, 

smooth mapping of high-dimensional input data manifolds onto the elements of regular, 

low-dimensional.  

During the training process, the neurons compete with each other to become the best 

matching unit (BMU) for a given input vector. The BMU is the neuron in the SOM that 

is most similar to the input vector, based on a similarity measure such as the Euclidean 

distance. 

When a new input vector is presented to the SOM, the BMU is identified by computing 

the distances between the input vector and each neuron in the SOM. The neuron with the 

smallest distance to the input vector is selected as the BMU as described by equation 21. 

𝐵𝑀𝑈𝑖 = 𝑎𝑟𝑔𝑖 𝑚𝑖𝑛 {‖𝑋𝑖 − 𝑊𝑖‖2}  eq. (21) 

Where: 

Xi are the input vector’s values 

Wi are the Neuron wights 

argi min operator is used to find the index of the neuron with the smallest Euclidean 

distance. This means that the BMU is the neuron whose weight vector is closest to the 

input vector x. 
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Thus, the BMU is the neuron whose weight vector is closest to the input vector, and it is 

found by calculating the Euclidean distance between each neuron's weight vector and the 

input vector, and then selecting the neuron with the smallest distance. Once the BMU is 

identified, the SOM algorithm updates the weights of the BMU and its neighboring 

neurons in the SOM grid, according to a learning rate and a neighborhood function. This 

process is known as the SOM learning rule. 

 

Figure 11 : SOM MAP 

Generally, the SOM algorithm uses the following equation for weight adaptation. 

𝑊(𝑡 + 1) = 𝑊(𝑡) + 𝜃(𝑡) ∗ 𝐿(𝑡) ∗ (𝑋𝑖(𝑡) − 𝑊(𝑡)) eq. (22) 

Where:  

t: is the time-step.  

W(t) is the weight vector of the neuron at time t. 

W(t+1) is the updated weight vector of the neuron at time t+1. 

θ(t) is the learning rate at time t, which controls the magnitude of the weight update. 

L(t) is the neighborhood function at time t, which determines the extent of influence that 

neighboring neurons have on the weight update. 

Xi(t) is the input vector at time t. 

 

The learning rate, the neighborhood function, and the difference between the input vector 

Xi(t) and the current weight vector W(t) are three terms that must be multiplied together 

to create the updated weight vector at time t+1. 
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The learning rate, which normally ranges from 0 to 1, controls the size of the weight 

update. Larger weight updates and quicker convergence are produced by higher learning 

rates, although instability and oscillation are also possible side effects. A smaller weight 

update and slower convergence are produced by a lower learning rate, but the system is 

more stable. 

The degree to which nearby neurons affect the weight update is determined by the 

neighborhood function L(t). Usually described as a Gaussian function, it is a decreasing 

function of separation from the Best Matching Unit. The neighborhood function makes 

sure that neighboring neurons in the SOM grid are updated as well, allowing the map to 

self-organize and maintain the input space's structure. 

Overall, the equation explains how the SOM algorithm updates a neuron's weight vector 

over time based on the input data and the connections between nearby neurons. More 

information about the Learning rate calculation can be found here (Cho et al., 2004). 

 

The tool used for dimensionality reduction in our case study, the vector quantization. 

Which is considered as a way of reducing the dimensionality of the input data while 

preserving the essential characteristics of the data. The squared distance between an 

observed data Xi and its corresponding centroid (Best matching unit BMU) is the 

quantization error (Bodt et al., 2002).   

 

In our case study, the relevant features selected for fault features extraction are trained 

using the SOM toolbox described by (Vesanto et al., 1999) in two steps: First, applying 

training with a large neighborhood radius and learning rate, followed by fine-tuning. After 

training, the next step is calculating the mean quantization, which produces the average 

distance between each data vector and its best matching unit.  

The Figure 12 represents the flowchart of the SOM algorithm implemented in our case 

study Where the Batch algorithm is applied twice. The first as a rough training and the 

second as a fine tuning. 
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Figure 12 : Self-Organizing Map flowchart 

III.4.1.2 Mean Quantization Error 

The mean quantization error (MQE) is a measure of this quantization error. It is defined 

as the average distance between each input vector and its BMU (Best Matching Unit) in 

the map. A lower MQE indicates that the SOM has learned to represent the input space 

more accurately. The MQE can be calculated as: 

𝑄𝑒𝑟𝑟𝑜𝑟 =
1

N
∑ ∑‖𝑋𝑖 − 𝐵𝑖‖

𝑁

𝑖=1

 

Where: 

N: Number of sample vectors x in the input data. 

Xi: Data-vector 

Bi: Best matching prototype of the corresponding Xi (equation 21) 
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Some key factors that affect the MQE are: 

o SOM size - A larger SOM with more neurons will typically have a lower MQE, 

as it can represent the input space with higher resolution. 

 

o Training iteration - The MQE will decrease over training iterations as the SOM 

learns to better quantize the input space. 

 

o Input distribution - A more uniform input distribution will generally lead to a 

lower MQE compared to a clustered distribution. Clustered data is harder for the 

SOM to quantize accurately. 

 

o Learning rate - A lower learning rate will often result in a lower MQE, as the SOM 

is able to make finer adjustments to neuron weights during learning. 

 

o Neighborhood function - A decreasing neighborhood size usually results in a 

lower MQE compared to a fixed neighborhood size.  This is because neurons 

become specialized to represent specific regions of the input space. 

So, in summary, the MQE measures how accurately the SOM can represent the input data, 

with a lower MQE indicating a more accurate quantization of the input space.   

 

MQE is a continuous value that can be used to monitor the health of the bearing over 

time. As the bearing degrades, the MQE value will increase, allowing for early fault 

detection. 

Figure 13 demonstrates the MQE flowchart which is used in our case as the health 

indicator allowing an early fault detection. 
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Figure 13: Mean Quantization Error 

III.4.2 HI-Based Principal Component Analysis 

PCA is a technique that can be used to simplify a dataset. More formally, it is defined as 

a linear transformation that chooses a new coordinate system for the data set such that the 

most significant variance by any projection of the dataset comes to lie on the first axis, 

which is called the first principal component (PC), the second most significant variance 
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on the second axis. The matrix after the transformation has a diagonal covariance matrix, 

which means new matrix column vectors are not correlated with each other. This makes 

it easy to eliminate the influence of noise or redundant variables on the determinant 

variables. Figure 14 gives one graphical example of PCA. (Jiang, 2012) 

 

 

Figure 14: Graphical example of PCA 

The dataset in Figure 14 consists of two groups of data. The left graph shows a scatter 

plot of the data. It is hard to identify the two groups using either the x variable or the y 

variable since x and y are correlated, and their duplicated information weakens their 

ability to classify the data by themselves. The right graph shows the result after PCA 

transformation. Data has been projected to a new coordinate system with PC1 and PC2. 

PC1 and PC2 are entirely uncorrelated, and the two groups can be easily identified by 

setting a dividing threshold for PC2. 

PCA converts feature vectors into a lower-dimensional random variable with 

independently distributed components; by finding the eigenvalues and eigenvectors of the 

covariance matrix to represent the statistical significance and directions of principal 

components, respectively.  More details about PCA are discussed in (Abdi & Williams, 

2010; Ardakani et al., 2012; Baraldi et al., 2010; Han et al., 2010; He & Yang, 2012). The 

first component and Hotelling’s T-squared values are used in our case study. 

III.4.2.1 First Component 

The objective of PCA is to find unit-length linear combinations of the variables with the 

most significant variance. The first principal component represents the line that 

minimizes the total sum of squared perpendicular distances from the points to the line. 
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It represents the maximum variance direction in the data, where each point may be 

projected onto this line to get a coordinate value along the principal component line. 

 

III.4.2.2 Hotelling’s T-Squared 

In 1931, Harold Hotelling proposed a multivariate generalization of the student t-

distribution. Hotelling's T-squared distribution is essential in statistics because it arises as 

a set of statistical distributions. In particular, the distribution arises in multivariate 

statistics in undertaking tests of the differences between the (multivariate) means of 

different observations. (Onwuka, 2012). 

III.5 Conclusion 

In conclusion, it is essential to clarify the difference between the feature extraction, 

reduction, and selection discussed in this chapter: 

 

• Feature Extraction:  

This step determines the signal descriptors according to a specific domain (time, 

frequency, and time-frequency). Features from multiple domains are used in 

our case study. 

 

• Feature Selection:  

A large dataset of features requires more time and cost for computation, which 

is a problem to avoid. The cross-correlation filter is applied in our algorithms.  

 

• Feature Reduction: 

Once the redundant features are ignored, we select only the relevant features at 

the end of the process. The SOM and PCA are applied to reduce the feature 

dimensionality. 
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IV. Trend Indicator (Based RUL Estimation) 

In recent years, prognostics got many definitions citing the Standard (ISO 13381-1: 

2015), which defines prognostics as “an estimation of time to failure and risk for one or 

more existing and future failure modes.” The main aim of prognostics analysis is to 

provide the needed information to make the right decision regarding the machine's 

condition.  

 

IV.1 Introduction 

One of the most significant pieces of information the prognostic can deliver is the RUL 

estimation. The RUL can be defined as the time to failure of a component or a system 

according to the state's current health and the component performance history. The RUL 

estimation is the process of estimating the remaining time left for an asset before failure. 

The industry uses it to manage risks that result from unexpected equipment failure. So 

far, the process is based on historical observations of the machine. 

 

IV.2 Prognostics Based Data-Driven 

Recently, various techniques have been applied to predict the RUL of monitored systems, 

which is reflected in the diverse range of applications. Data-driven models are based on 

statistical and learning techniques. In this thesis, the learning approach involves 

developing software that optimizes a performance criterion based on historical data. With 

the growing number of sensors in a real-world system, the possibility of detecting the 

machine's behavior and the current state increased. Therefore, most approaches in recent 

literature on failure type detection and predictive maintenance rely upon data-driven 

techniques. These models are more generic than physical and knowledge-based models. 

There are three different learning techniques, as described in the following Figure 15 

(Patrick Jahnke, 2015). 
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Figure 15: Data-Driven techniques 

 

IV.3 Remaining Useful Life Identification  

The aim of prognostics is “the estimation of the Time to Failure and the risk of existence 

or later appearance of one or more failure modes.” Medjaher, Tobon-Mejia, et al., 2012); 

to provide information that helps in making correct decisions. Therefore, the RUL can be 

defined as the time between the fault time and the failure time (Okoh et al., 2014; Qian et 

al., 2017; Tobon-Mejia et al., 2012). Thus, it is crucial to define suitable fault and failure 

thresholds for accurate prognostic.  

 

IV.4 Trend Indicator  

The life prediction model's key is finding a prognostic feature that generates a health 

indicator and then extrapolates it to a certain predefined critical failure threshold. To make 

an autonomous routine to effectively select the good features, a set of metrics to 

characterize the suitability of prognostic features has been proposed (Jin, 2016).  
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The following parameters can evaluate the Prognostic ability: 

• Separability: 

The general idea is to rank the features by their ability to distinguish the 

difference between the two classes: healthy and faulty, which means that the 

data are far apart between different classes and close to each other for the same 

class. For prognostics, the critical point is the continuity of the separation 

between time segments instead of separability between two clusters as in 

diagnostics. The prognostics separability measures the ability of feature 

separation between the continuous-time segments over the asset's entire life.  

• Monotonicity: 

It is a function that is either entirely nonincreasing or nondecreasing. A function 

is monotonic if its first derivative (which need not be continuous) does not 

change the sign.  

These two parameters are the key indicators to measure the effectiveness of a feature 

representing the failure progression. More details about the prognostic criteria are 

discussed in (Boukra & Lebaroud, 2014; Guo et al., 2017; Jin, 2016; Mosallam et al., 

2014a). We are interested in the trend indicator construction using regression methods in 

our case study. 

IV.4.1 Based on linear regression  

The name “LOWESS” is derived from “LOcally WEighted Scatterplot Smooth,” as the 

method uses locally weighted linear regression to smooth data based on linear polynomial 

fitting. The smoothing process is considered local because, like the moving average 

method, each smoothed value is determined by neighboring data points defined within 

the span. It is a popular tool used in regression analysis that creates a smooth line through 

time or scatters plots helping to see the relationship between variables and foresee trends. 

The robust function is not integrated into this case study since the outliers are essential to 

consider. 

LOWESS is a non-parametric strategy for fitting a smooth curve to data points. Because 

some distribution is assumed in advance, a parametric fitting can lead to fitting a smooth 

curve that misrepresents the data. In those cases, non-parametric smoothers are a better 

choice.  
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The local polynomials that fit each subset of the data are usually of the first or second 

degree. High-degree polynomials would tend to over-fit the data in each subset. They are 

also numerically unstable and make accurate computations difficult.  

IV.4.2 Based on Empirical Mode Decomposition  

Huang originally proposed the empirical mode decomposition (EMD) in 1998, and it has 

attracted attention due to its ability to self-adaptive decomposition of non-stationary 

signals. The EMD is based on the Intrinsic Mode Functions (IMFs), which decompose 

the health indicator into time signals with different frequencies. Each IMF must satisfy 

the following definition: 

 

• The IMFs have the same number of extrema and zero-crossings. 

• Among all the values of the signal x(t), the number of extrema and that of zero-

crossings must be equal or differ at most by one. 

• At each instant t, the average value of the envelope defined by the local 

maximum and the envelope defined by the local minimum is close to zero 

More explanations about the EMD implementation are provided by (J. Huang et al., 2011; 

Junsheng et al., 2006), and (Gouriveau et al., 2016). 
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Figure 16 : EMD Flowchart 

 

IV.5 RUL Estimation 

Estimating a system's RUL, which involves estimating when a component will stop 

working, is a crucial step in PHM. In order to prevent unplanned downtime and lower 

maintenance costs, proactive maintenance requires an accurate RUL estimate. we will 

focus on the use of GPR for RUL estimation, with a particular emphasis on the calculation 

of confidence intervals to provide a more robust estimate of RUL. 

 

For RUL estimation, where the underlying physics may be complex and nonlinear, GPR 

offers a probabilistic framework for regression analysis that can handle nonlinear and 

nonstationary data. Another crucial element of RUL estimation is the use of confidence 

intervals, which offer a level of assurance about the projected RUL. 

 

START

Input the health indicator

Calculate the upper spline envelope 

and the lower spline envelope from the 

input Extrema

Yes

Extract the mean envelope from the 

original signal

No  

Compute the mean envelope

END

IMF Checked?

IMF Check

•The number of extrema and the number of 
zero crossings must either equal or near by 1

• the mean value the local maxima and the 
local minima must be zero.

Replace the HI with the IMF

Calculate the residual

IMF Checked?

Yes

Trend Indicator = Residual

No

Input data = Residual



Chapter IV: Prognostics & Remaining Useful Life Estimation  

 

 

 
Development of an Intelligent Health Assessment Application for Bearing Machines. Page: 55 

IV.5.1 Gaussian Process Regression  

Only after degradation is detected can a machine's remaining useful life (RUL) be 

predicted. RUL is the remaining time until the machine can no longer serve its intended 

function. RUL is generally predicted by extrapolating the health metric to the defined 

end-of-life (EOL) threshold. Setting an appropriate threshold is not simple but can be set 

using statistical limits or more accurately based on previous experiences. 

One method for RUL prediction is to use time series models, such as regression 

techniques, to predict future health. Another way to use the similarity-based approach that 

predicts the RUL is by comparing the current degradation trend with historical run-to-

failure trends and using an aggregate of similar historical trends to make a prediction 

(Gouriveau et al., 2016; MOSALLAM, 2014). We are interested in our case study by the 

regression approach where the Gaussian process regression (GPR) method is applied. 

 

The Gaussian process regression is a flexible, powerful, and probabilistic approach to 

dealing with a nonlinear regression; it provides a variance around its mean predictions to 

describe the associated uncertainty. In GPR, the model-training inputs are generated from 

degradation data in the run-to-failure experiments. Then the dynamic model is applied to 

predict the bearing health state for the next period(MOSALLAM, 2014). More technical 

formulation is detailed in (Lei et al., 2018; MOSALLAM, 2014; Mosallam et al., 2014a; 

Wågberg et al., 2016), while the advantages and drawbacks of this method are discussed 

in (Kan et al., 2015; Lei et al., 2018). 
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Figure 17 : GPR Flowchart 

 

IV.5.1.1 GPR Parameters 

Gaussian Process Regression (GPR) is a powerful machine learning technique that is 

increasingly being used in the field PHM to predict the RUL of components and systems. 

GPR is a non-parametric Bayesian approach that can capture complex relationships 

between inputs and outputs, making it well-suited for PHM applications where there may 

be limited data or complex failure mechanisms. 

 

There are several parameters that need to be selected when using GPR for PHM, including 

the kernel function, hyperparameters, and noise level. The kernel function determines the 

shape of the covariance matrix between input data points and plays a crucial role in GPR's 

ability to capture underlying patterns and trends. The choice of kernel function depends 

on the nature of the data and the problem being solved. 
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Hyperparameters are another important parameter that needs to be selected when using 

GPR. These are parameters that define the behavior of the kernel function, such as the 

length scale or noise level. Proper selection of hyperparameters can lead to more accurate 

RUL predictions. 

IV.5.1.1.1 GPR Kernel 

In Gaussian Process Regression, the kernel function is essential because it establishes the 

correlation between the input variables and serves as the foundation for creating 

predictions. The underlying data and the current problem determine which kernel function 

should be used. The squared exponential kernel, usually referred to as the radial basis 

function kernel, is the most frequently used kernel function in GPR. Because it is 

infinitely differentiable and offers a smooth and adaptable function that may identify 

intricate patterns in the data, the squared exponential kernel is well-liked. Given sufficient 

data, it can approximate any function with arbitrary precision, earning it the nickname 

"universal kernel." Another advantage of the squared exponential kernel is that it can 

handle input variables with different units and scales, which is common in PHM 

applications. The squared exponential kernel is defined as: 

𝑘(𝑋𝑖, 𝑋𝑗|𝜃) = 𝜎𝑓
2. 𝑒

(−
1

2
 . 

(𝑋𝑖−𝑋𝑗)
𝑇

(𝑋𝑖−𝑋𝑗)

𝜎𝑙
2 )

 eq. (23) 

Where: 

𝜎𝑙  is the characteristic length scale, 

𝜎𝑓  is the signal standard deviation, 

𝜎𝑛
2  is the signal variance. 

IV.5.1.1.2 Length scale 

The length scale is a hyperparameter in GPR that determines the degree of correlation 

between input variables and controls the smoothness and flexibility of the function. It is 

typically optimized on a training set to achieve good generalization to new data, and can 

be thought of as the characteristic length over which the variables influence each other. A 

small length scale results in a wiggly function closely fitting the training data, while a 

large length scale results in a smoother function interpolating the data less closely. The 

length scale equation is defined as: 
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𝑘(𝑋𝑖, 𝑋𝑗) =  𝑒
(

1

2
 . 

‖(𝑋𝑖,𝑋𝑗)‖²

𝐿²
)
 eq. (24) 

Where: 

‖(𝑋𝑖, 𝑋𝑗)‖² is the squared Euclidean distance, 

L is the correlation coefficient 

IV.5.1.1.3 Noise level 

The noise level is a hyperparameter in GPR that accounts for the inherent noise in the 

data. It represents the variance of the Gaussian distribution that is added to the diagonal 

of the kernel matrix to ensure numerical stability and prevent overfitting. In other words, 

it controls the amount of noise that is allowed in the data and helps the GPR model to 

generalize to new data by smoothing out the predictions. The noise level is defined as: 

𝑦 = 𝑓(𝑥) + ℵ (0, 𝜎𝑛
2) eq. (25) 

Where: 

f(x) is the underlying Gaussian Process,  

ℵ (0, 𝜎𝑛
2)  is the Gaussian noise with zero mean 

 𝜎𝑛
2  is the signal variance. 

IV.5.2 Confidence Interval 

Confidence Interval (CI) measures the range of predictions among the different instances 

at the same time index, taking into account uncertainties in the input signals to the learned 

models(F. Yang et al., 2016). Knowing the probabilistic density allows specifying an 

interval on the output into which 95% of the observations are likely to fall. Therefore, the 

width of this interval measures how certain we are about the prediction made by this 

classifier. The confidence interval (CI) metric is defined as an interval that contains a 

specified percentage of the predicted RULs at a time index 
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Figure 18: Confidence Interval 

ε = Pr (𝑅𝑡 −
(1−ε)

2
≤ 𝑅𝑡

𝑖 ≤ 𝑅𝑡 +
(1−ε)

2
) eq. (26) 

Where:  

Pr is the probability density function.   |  𝑅𝑡
𝑖 is the predicted RUL of the instance i at t.  

ε is the pre-specified percentage, which is generally selected as 95%. 

 

 

IV.6 Conclusion 

Among the used methods for trend indicator construction, the residual of the EMD 

provides the best results. In contrast, the GPR is an adequate regression tool in our case 

study. Hereafter, the estimation process gets the prior probability distribution and the 

current observations as input. 
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V. Results and Discussion 

 

 

In this chapter, we discuss the results of our proposed methods related to predicting the 

remaining useful life of bearing.  

V.1 Introduction 

The Results and Discussion chapter is one of the most critical sections of this thesis. It 

represents the statistical analyses, and comparisons with existing techniques. The results 

are interpreted, discussed, and evaluated in the context of the research questions and 

objectives, providing insights into the effectiveness and limitations of the proposed 

method. 

V.2 Prognostics workflow 

Our proposed method aims to estimate the remaining useful life for multiple kinds of 

bearing under different conditions; starting by extracting twenty features, twelve time-

domain features, four domain-specific features, and four frequency-domain features from 

the vibration input signals. Hereafter, a cross-correlation filter is applied to select the 

relevant features automatically. The Self-Organizing Map is used to build a more coherent 

health indicator offering representation. Then, the empirical mode decomposition is 

applied, where the residual is considered the Trend Indicator (TI). Finally, to predict the 

RUL, many algorithms were used for the trend indicator, but the GPR provides the best 

result overall for the datasets. 

Figure 19: The proposed method for prognostics 
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The process can be divided into two main parts: Learning and Production.  

V.2.1 Learning mode 

The learning is based on extracting multiple domain descriptors from the raw vibration 

signal. Once the features are extracted, the cross-correlation filter is used to eliminate the 

redundant and irrelevant features. Since more than half of the features are time domain, 

an unsupervised machine-learning algorithm is requested to determine only features 

carrying relevant information. In this case, the Euclidean square distance of K-Means 

determines the optimal features.  

Hereafter, the health indicator is built for monitoring the health state of the bearing using 

a self-organizing map or principal component analysis as dimension reduction 

approaches. The method’s simplicity and ease of implementation make it suitable for real-

time industrial applications. 

An idle health indicator has a monotonic curve, but such a curve is almost impossible to 

get in real life. Thus, a smoothing of the results is required to make the results more 

exploitable without altering the significance of the health indicator. Then, fault and failure 

thresholds are set. The RUL is calculated for all the bearings in multiple datasets and 

compared to the known RUL to find a formula that can be applied on all the bearings with 

a minimal error marge. Finally, the formula with the lowest error rate is maintained. The 

organigram in Figure 21 illustrates the production process.  

V.2.2 Production mode 

In contrast to the learning mode, which is based on well-known bearings for learning, the 

production mode is applied to new bearings. The acquisition process remains the same as 

in the learning mode, and the feature extraction this time is faster and more accurate since 

the adequate features to be extracted are already known from the learning phase. 

Moreover, the trend indicator is built using the residual of the EMD method applied to 

the health indicator. Hereafter, the results are used in GPR to predict the future state of 

the bearings, and a confidence interval is set to judge the rightness of the results before 

implementing the results into an aid-decision system. The following organigram 

illustrates the production mode process. 
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Figure 20: Flowchart of the learning phase 
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Figure 21: Flowchart of the production phase 
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V.3 Benchmark Datasets 

To validate our research, three international benchmark databases are used. Table 4 

resumes the principal information of each database.  

Table 4: Benchmark-bearing datasets 

Databases / 

Type 

Bearing 

type 

Speed 

[RPM] 

Radial 

load 

Samples 

per sec 

Bearing 

Quantity 
Fault types 

IMS Center 

/ 

Run-to-Failure 

Rexnord 

ZA-2115 

double 

row 

2000 
26689 

N 
20 000 

12 

(4 Known 

failures) 

Inner Race 

Outer Race 

Roller 

Element 

IEEE PHM’12 

Data Challenge 

FEMTO-ST  

/ 

Run-to-Failure 

Rotating 

deep 

groove 

ball 

bearings 

1800 4000 N 

2 560 

each 10s 

17 

(6 Known 

failures) 

Undefined 

type 

1650 4200 N 

1500 5000 N 

Case Western 

Reverse 

University 

-CWRU- 

/ 

Classification 

6205-2RS 

JEM SKF, 

normal 

deep 

groove 

ball 

bearing 

1797 0 N 

12 000 

57 

 

(54 

Faulty 

/ 

3 

Healthy) 

Inner Race: 

7mm – 

14mm – 

21mm 

Outer Race: 

7mm – 

14mm – 

21mm 

Ball: 

7mm – 

14mm – 

21mm 

1750 1 471 N 

1730 2 206 N 

1797 0 N 

48 000 

1750 1 471 N 

1730 2 206 N 

 

V.4 Data Acquisition 

In this case study, we are interested in the prognostic based on the vibration data. For 

accurate results, the data cannot be used directly in the prognostic process and requests 

some conditioning before being exploited, such as the windowing process where a 

rectangle window is used to divide the continuous vibration signal into small windows. 

The windows length is specified in the following Table 5: 
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Table 5: Benchmark Databases windows 

Databases Database type Windows [second] Number of points 

IMS Run to failure 1.024 20480 

PHM’2012 Run to failure 1.000 2560 

CWRU (12K) Classification 0.050 600 

CWRU (48K) Classification 0.050 2400 

V.5 Feature Extraction 

The feature extraction process is considered as one of the most critical phases in both 

diagnostics and prognostics—a reliable prognostic consists of the best choice of the used 

features. To get the possible information from the input signal, we extracted the most used 

features in bearing.  

From the figure below (Figure 22), we note that several features mostly have the same 

shape, and it is irrelevant to treat the same data more than once. Therefore, and for 

optimization purposes, two phases are needed: 

• Learning mode: where all the potential features are extracted from more than 

one domain, citing: 12 features from the time domain, 04 features from the 

frequency domain, and 04 specific bearing features from the time and frequency 

domain. 

• Production mode: only the optimal selected features are extracted, 

considerably reducing computational power and time. The feature selection 

criteria are discussed in the next chapter. 
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Figure 22: Data extraction from PHM datasets. 

 

V.6 Feature Selection 

Before tackling the feature selection, feature reduction is required in this phase. 

Therefore, the cross-correlation filter is applied to eliminate the redundant –irrelevant– 

features. Where the two features with the highest correlation value are selected. The 

correlation coefficient is calculated using one of these two with the rest of the features. 

The feature giving the highest correlation coefficient is removed, and the whole process 

is repeated until the overall coefficient reaches a threshold of 0.8, according to the 

algorithm described in equation 17.  

 

The overall results show that seven dominant features remain from the twelve time-

domain features: Mean, Peak, RMS, Skewness, Kurtosis, Shape Factor, and Max 

Amplitude. In addition to the frequency domain and specific domain features. Figure 23 

shows the relevance of the time-domain features and their correlation. 
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Figure 23: Dominant time-domain features for bearing 

The red graphs in Figure 24 represent the dominant features, while those in blue refer to 

the redundant features. 

 

 Figure 24: Selected non-redundant features for bearing applied to the PHM database 

To extract the optimal time-domain features and to confirm that the chosen features are 

adequate for fault and failure detection; we used the CWRU classification database. 

Where the K-Means is used to determine the characteristics given the further square 
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Euclidian distance between healthy and faulty bearing, this process was applied only to 

the time domain since they represent more than half the selected features.  

The simulation started with twelve features, and seven were eliminated at the isolation of 

redundant features process using the cross-correlation filter. At the same time, the 

remaining was normalized for the relevant features selection task. Hereafter, the two 

features with the best representation (density distribution) and the highest distance are the 

relevant fault features in the time domain. Table 7 shows the squared Euclidean distance 

between the health centroid and the fault one for the dominant features. 

Table 6: Comparison of original and normalized data for kurtosis and Crest factor. 

Kurtosis-Crest Factor 

Health /Inner R_12 (Norm-Org)007 (Norm-Org)014 (Norm-Org)021 

RPM 1797 0-0 0-0 0-0 

RPM 1750 0-1 0-0 0-0 

RPM 1730 0-2 0-2 0-1 

Health /Outer R_12    

RPM 1797 0-0 0-12 0-0 

RPM 1750 0-0 0-85 0-0 

RPM 1730 0-0 0-94 0-1 

Health /Ball_12    

RPM 1797 0-12 0-75 0-12 

RPM 1750 0-89 0-58 0-36 

RPM 1730 0-79 0-67 0-111 
 

Normalized error: 0 
 

Original errors: 737 

 

 Table 7: Squared Euclidean distance between health and fault states of time-domain features 

Features 
RMS - 

Skewness 

RMS - 

Kurtosis 

RMS- 

Crest 

F. 

Peak- 

Kurtosis 

Skewness- 

Crest F. 

Skewness- 

Kurtosis 

Kurtosis- 

Crest F. 

Squared 

Euclidean 

distance 

0.1605 0.1642 0.1648 0.1646 0.1647 0.1641 0.1682 

 

The kurtosis and crest factor gives the most considerable distance. Thus, they are 

considered relevant features and can be described as: 
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• Kurtosis: Defined as the fourth normalized moment and described as the ratio 

of the fourth moment to the variance. It measures peakedness and its degree of 

distribution compared to a normal distribution. A high value of kurtosis means 

a long tail of the distribution. 

• Crest factor: Defined as the ratio of the peak value over the RMS value. It 

gives an idea about any impacts present in the signal, which detects acceleration 

bursts even if the signal RMS has not changed.  

Many researchers confirm that Kurtosis and Crest factor are the more suitable features 

for fault diagnosis.  These features are non-dimensional magnitudes, so they are immune 

from weaknesses in the data process due to the quality of the sensors or the location where 

they are mounted(Öztürk et al., 2015). 

Table 8. Relevant Features are classified by the measure of separability.  

  Occurrence Occurrence %  

Kurtosis – Crest Factor 14 52% 

Shape Factor– Crest Factor 11 41% 

Mean-Skewness 02 7% 

TOTAL 27 100% 

 

Table 8 shows the results applied to nine cases of classification between “healthy bearing 

and Inner race fault”, “healthy bearing and Outer race fault” and “healthy bearing and 

Ball bearing fault”, from the CWRU database. The 27 cases show that the two features 

providing the farther distance intra-class are Kurtosis and Crest fact. 

Moreover, the frequency and specific domain features are added after optimizing the 

time-domain features. From the results, it can be deduced that even for the same kind of 

bearing, there is a slight difference in the number of dominant features because of the 

measurements and manufacturing conditions. In our case study, the seven optimal overall 

features are:  

Time domain: Kurtosis – Crest Factor,  

Specific domain: BPFI – BPFO – BSF, 

Frequency domain: Frequency Max amplitude, and Root Variance Frequency.  

In the scope of the study of the features, several combinations of features are taken: 
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• Optimized selection [07]: Kurtosis – Crest Factor – BPFI – BPFO – BSF – 

Max Frequency Amplitude. 

• Overall selection [11]: Mean – Peak – Skewness – Kurtosis – Crest factor – 

Shape factor – BPFI – BPFO – BSF – FTF – Max frequency amplitude. 

• Time-only selection [02]: Kurtosis – Crest Factor. 

• Frequency only selection [04]: Max frequency amplitude – Frequency center 

– Frequency RMS – Root variance frequency. 

• Specific only selection [04]: BPFI – BPFO – BSF – FTF. 

 

The results show that using a single domain gives unsatisfactory results. On the other 

hand, using all the features takes relatively more time and computational power with less 

accurate results than optimizing features. 

 

V.7 Health Indicator Construction 

The health indicator construction aims to identify fault and failure and comprehensively 

represent the bearing health state. The health indicator can also be considered a feature 

reduction technique since it reduces the selected optimal features to one feature with a 

two-dimensional projection. 

The health indicator is considered reliable if the level of failure is always higher than the 

level of fault. Moreover, once the fault level is reached, it cannot step back to a healthy 

level. Therefore, several HIs are experimented in order to get more accuracy from one 

hand. On the other hand, getting a generic formula to be applied to multiple types of 

bearings in various working conditions. In addition, the smoothing process is applied at 

the end of the health indicator construction to get a coherent curve representing the 

bearing health states. Where smoothing is removing the unnecessary oscillations 

associated with the raw signal by modifying its data points. So, points with higher values 

than neighboring points are reduced, and points with lower values are increased. The 

resulting signal is smoother with reduced noise levels and outliers. A moving average 

filter is used to smooth our health indicator with an experimental span taken at 200. 
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V.7.1 Self-Organizing Map (SOM) 

The application of the SOM provides overall accepted results. Figure 25 demonstrates the 

results of the PHM’2012 database. 

Condition 1 Set 3       Condition 2 Set 4 

Figure 25: Health Indicator using the SOM method 

This method provides good results on both benchmarked databases and offers a coherent 

representation of the bearing health states.  

V.7.2 1st component of Principal Component Analysis  

The results obtained from the PCA are not suitable for all the cases of bearing that we 

have. Figure 26  illustrates different results given by the first component of PCA.  

PHM’12 - Condition 1 Set 3      IMS - Set 1 Bearing 4 

Figure 26: Health Indicator using the first component of the PCA method 

The curve obtained from the PHM database, as illustrated on the left of Figure 26, is 

reliable and suitable for fault detection tasks, while the right curve from the IMS database 

presents a wrong indicator since the level of the health state reaches the failure edge and 

return to the healthy area before reaching the failure level once more. Therefore, the PCA 

using the first component is not considered a reliable health indicator in this case. 
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V.7.3 T-square of Principal Component Analysis. 

To explore this field more, we studied another parameter extracted from the PCA: 

Hotelling’s T-Square. Figure 27 shows the results of the T-square when applied to the 

first set of the first condition of the PHM’2012 database. The HI on the left is built using 

the optimized features (07 features: Kurtosis – Crest Factor – BPFI – BPFO – BSF – Max 

Frequency Amplitude). While the suitable HI on the right is built using (Mean – Peak – 

Skewness – Kurtosis – Hyper kurtosis – Crest factor – Shape factor – BPFI – BPFO – 

BSF – FTF). Even if five features are common between the two configurations, the results 

are very different for the HI. 

Optimized Features      Current Features 

 Figure 27: PHM’ 2012 Condition 1 Set 1 HI using the T-Square of PCA method 

V.8 Remaining Useful Life Identification. 

Once the HI is constructed, the decision is made according to the position of the health 

indicator to the fault threshold (Green) given by equation (27) and failure threshold 

(Black) given by equation (28), as illustrated in Figure 28. 

 

Fault =
1

𝑛
∑ (𝐻𝑖𝑖)

𝑛
𝑖=1

√2
 eq. (27) 

 

Failure = 2 × √
1

𝑛
∑ 𝐻𝑖𝑖

2𝑛
𝑖=1  eq. (28) 
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Figure 28: Health Indicator with fault and failure identification 

The prognostic is based on the prediction of the RUL, which means detecting the fault 

and estimating the failure. Thus, wrong identification of the fault or the failure 

compromises the process.  

Table 9 is extracted using the empiric threshold calculated according to equations 27 and 

28 for the fault and the failure, respectively. 

Table 9: HI Comparison 

Bearing ACTUAL 

RUL (s) 

SOM 

(s) 

1st Component 

- PCA (s) 

T-Square 

- PCA (s) 

Error % 

SOM 

Error % 

1st - PCA 

Error % 

TS - PCA 

Bearing1_3 5730 4820 4320 5760 15.88 24.61 -0.52 

Bearing1_4 2900 2570 2910 2330 11.38 -0.34 19.66 

Bearing1_5 1610 670 640 4380 58.39 60.25 -172.05 

Bearing1_6 1460 4110 8490 8580 -181.51 -481.51 -487.67 

Bearing1_7 7570 680 640 640 91.02 91.55 91.55 

Bearing2_3 7530 650 670 720 91.37 91.10 90.44 

Bearing2_4 1390 170 670 720 87.77 51.80 48.20 

Bearing2_5 3090 570 660 0 81.55 78.64 100.00 

Bearing2_6 1290 370 670 780 71.32 48.06 39.53 

Bearing2_7 580 280 330 360 51.72 43.10 37.93 

Bearing3_3 820 410 590 850 50.00 28.05 -3.66 
 

TOTAL 38.99 3.21 -21.51 
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The mean error is minimal using the first component of PCA against SOM. But, after 

considering the error range as illustrated in Table 10, we deduce that the SOM’s error 

range is less than half of the error range of the two HI extracted from the PCA method, 

as shown in Table 10. 

Table 10: HI Error Analysis 

/ Error % SOM Error % 1st - PCA Error % TS - PCA 

Min Err -181.50685 -481.5068 -487.67123 

Max Err 91.3678619 91.545575 100.00000 

Mean Err Range 272.874711 573.05242 587.671233 

 

 

Our results are compared to the work of (Guo et al., 2017), illustrated in Table 11. 

 

Table 11: Comparing the HI with different methods 

Testing ACTUAL RUL (s) Current (s) Predict (s) 
SOM-HI 

Error% 

Bearing1_3 5730 18010 3250 -31.76 

Bearing1_4 2900 11380 1100 62.76 

Bearing1_5 1610 23010 1980 -136.03 

Bearing1_6 1460 23010 1150 -32.88 

Bearing1_7 7570 15010 6220 -11.09 

Bearing2_3 7530 12010 4680 44.22 

Bearing2_4 1390 6110 1660 -55.40 

Bearing2_5 3090 20010 1410 68.61 

Bearing2_6 1290 5710 1470 -51.94 

Bearing2_7 580 1710 900 -68.97 

Bearing3_3 820 3510 790 -21.96 

   TOTAL 53.24 

 

Our results are 14.25% better than those provided by the same SOM algorithm. The 

featured effect can be clearly shown when getting different results using the same 

algorithm. In addition, these results are obtained from one database only while our 

algorithms are trained with three databases and designed for generic use. 
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V.9 Trend Indicator Construction 

The prognostic is based on the evolution of the health indicator over time. However, the 

health indicator can distinguish the health states perfectly in time (t) but cannot provide 

reliable information in (t+1) (Agarwal et al., 2015). Therefore, a trend indicator is built to 

provide class separability over time. Several methods were used to select an adequate 

indicator. 

V.9.1 Autoregression 

The trend indicator’s shape based on the autoregression method is not monotonic, as 

demonstrated in Figure 29. Therefore, the estimation of the RUL based on this trend 

indicator is unreliable with a significant estimation error. 

 

Figure 29: Trend Indicator using an Autoregression method 

V.9.2 Time Variation 

Besides the autoregression, the time variation method is used where the signal represents 

the health indicator evolution over time, as illustrated in Figure 30. Statistically, this 

method is another representation of the health indicator, which is not designed for 

prognostic tasks. This trend indicator cannot be used for RUL estimation because of the 

bad results provided. 
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Figure 30: Trend Indicator using the time variation method 

 

V.9.3 Empirical Mode Decomposition 

 A trend indicator is considered reliable and reprehensive if it is monotonic. The EMD is 

applied to the health indicator to get a monotonic signal, as illustrated in Figure 31. The 

residual of EMD constitutes the best trend indicator among all the methods tested earlier. 

Figure 31: Trend Indicator using EMD Method 
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Moreover, studying the EMD residual of multiple databases shows that every fault has a 

specific pattern. Plotting the trend indicator of a healthy bearing and a faulty one clearly 

shows the difference in shape, which is also used for diagnostics and failure identification. 

Figure 32 illustrates the difference between three types of failure. 

 

 

Figure 32: Three  trend indicators of failures  

V.10 Remaining Useful Life Estimation. 

The trend indicator is selected by applying several methods to known RUL. The RUL 

estimation is based on the extrapolation or the prediction of t+1 of the trend indicator 

once it reaches the fault point. The Gaussian process regression (GPR) and multiple curve 

fitting algorithms are used for that. 

V.10.1 Gaussian Process Regression 

Figure 33 demonstrates the results of the RUL estimation applied to the PHM’2012 

database and the IMS database, respectively. The regression is based on the trend 

indicator learned from the beginning of the acquisition to the fault point. The RUL 

estimation using the GPR applied on the trend indicators based on the SOM, and the EMD 

residual provides accepted results over all the tests. 
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Figure 33: RUL estimation using GPR based on EMD trend indicator  

Different trend indicators based on the autoregression method and the time variation were 

generated for comparison to investigate the RUL estimation and the effectiveness of the 

GPR. The results show that the trend indicator selection has a significant role in a reliable 

and accepted RUL estimation. Figure 34 illustrates an imperfect RUL estimation applied 

to the autoregression trend indicator based on the PCA 1st component health indicator. 

Figure 34: RUL estimation using GPR based on Auto regression trend indicator 
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Thus, the correct estimation relies not only on a suitable extrapolation method but on the 

whole process of prognostics, starting from the feature extraction to the RUL estimation. 

Figure 35 represents how the HI choice affects the final decision, while 

Figure 36 represents the importance of the TI choice for reliable estimation. 

Figure 35: RUL estimation using GPR based on PCA HI 

 

Figure 36: RUL estimation using GPR based on Auto regression TI 
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V.10.2 Curve fitting 

Besides the GPR, several curve fittings were applied for the RUL estimation task, citing 

model names and equations: 

• Exponential    

𝐸2 =  𝑎. 𝑒(𝑏∗𝑥) + 𝑐. 𝑒(𝑑∗𝑥) eq. (29) 

• Polynomial 

𝑃3 =  𝑃1. 𝑥3 + 𝑃2. 𝑥2 + 𝑃3. 𝑥1 + 𝑃4 eq. (30) 

𝑃8 =  𝑃1. 𝑥8 + 𝑃2. 𝑥7 + ⋯ + 𝑃9 eq. (31) 

• Fourier  

𝐹3 =  a0 + a1. cos(𝑥. 𝑝) + b1. sin(𝑥. 𝑝) + ⋯ + a3. cos(3. 𝑥. 𝑝) + b3. sin(3. 𝑥. 𝑝) eq. (32) 

𝐹8 =  a0 + a1. cos(𝑥. 𝑝) + b1. sin(𝑥. 𝑝) + ⋯ + a8. cos(8. 𝑥. 𝑝) + b8. sin(8. 𝑥. 𝑝) eq. (33) 

Where 𝑝 =
2.𝜋

(𝑚𝑎𝑥(𝑥𝑑𝑎𝑡𝑎)−𝑚𝑖𝑛 (𝑥𝑑𝑎𝑡𝑎))
 

•   Gaussian 

𝐺2 =  𝑎1. 𝑒
(−

(𝑥−𝑏1)

𝑐1
)

2

+ 𝑎2. 𝑒
(−

(𝑥−𝑏2)

𝑐2
)

2

 eq. (34) 

𝐺8 =  𝑎1. 𝑒
(−

(𝑥−𝑏1)

𝑐1
)

2

+ ⋯ + 𝑎8. 𝑒
(−

(𝑥−𝑏8)

𝑐8
)

2

 eq. (35) 

•  Power  

𝑃𝑜𝑤2 =  𝑎. 𝑥𝑏 + 𝑐 eq. (36) 

 

The results obtained from these models can fit for one case only over all the databases 

where the second-order exponential provides bad results for the case “Condition 2 Set 6,” 

and the “Condition 1 Set 1,” as illustrated in Figure 37. 

Figure 38 demonstrates another concept with the polynomial model, where it fits perfectly 

for the case “Condition 1 Set 3” and badly for the case “Condition 1 Set 7” even if it is 

under the same condition. 
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Figure 37: RUL estimation using exponential curve fitting 
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Figure 38: RUL estimation using polynomial curve fitting 

 

V.10.3 Confidence Interval Analysis 

Using the GPR for RUL estimation provides a good result where the real RUL is almost 

in the 95% marge of the predicted real RUL. Figure 39 presents the accurate estimation 

over the PHM’2012 database, whereas Figure 40 presents a slight deviation of the 

predicted RUL. This deviation is due to the generic formula since each bearing’s kind and 

each fault type have a specific signature. Thus, finding a formula that works for all 

bearings is tricky, and some tolerance is required in this study case. 
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Figure 39: Confidence interval for RUL estimation using GPR 

 

Figure 40: Confidence interval for RUL estimation using Gaussian curve fitting  

 

To study the effectiveness of the generic algorithm, we apply the RUL estimation on all 

the bearings over the two datasets, and we calculate the error between the estimated RUL 

and the real one. The results are presented in Figure 41 and Table 12. 
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Figure 41: Error analysis for RUL estimation using GPR. 

Table 12: Error analysis for RUL estimation in % 

 

We deduce from the result that the RUL error tends to have larger values with every step 

after the Fault point. Moreover, it is essential to clarify that the error in Table 12 represents 

only the errors in the GPR estimation and not in the overall process. 

 

Bearing Fault 50% 

RUL 

90% 

RUL 

Failure 110% 

RUL 

EOL 

Bearing1_3 0.023 0.321 1.009 1.330 1.697 2.248 
Bearing1_4 0.017 6.776 34.957 45.788 57.027 91.035 
Bearing1_5 0.461 2.245 3.414 3.753 4.091 7.352 
Bearing1_6 0.010 3.222 21.886 30.912 35.849 38.993 
Bearing1_7 0.343 1.680 2.331 2.571 2.743 5.348 
Bearing2_3 0.093 1.296 1.666 1.814 1.944 2.907 
Bearing2_4 1.157 2.546 1.852 1.852 1.852 1.157 
Bearing2_5 0.122 1.345 1.264 1.223 1.182 0.897 
Bearing2_6 0.188 3.347 5.604 6.469 7.202 10.831 
Bearing2_7 0.019 3.710 6.520 7.747 8.696 12.905 
Bearing3_3 0.097 3.267 5.978 7.236 8.398 11.592 
MEAN 0.230 2.705 7.862 10.063 11.880 16.842 
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V.11 Conclusion 

This chapter discussed the results obtained over several years of tests and analyses 

dedicated to studying bearings, their fault features, condition monitoring, and prognostics. 

The lack of labeled data in this field constitutes a challenge. Moreover, developing a 

generic solution that provides accepted results over other multiple kinds of bearings 

running under different conditions is another problem we have to deal with to establish 

this work. 

The results show the sensibility of the prognostics process and the effect of the features 

on the result. Combining the Optimized features, the SOM, the EMD, and the GPR 

provided accepted results for the bearing prognostics.  
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General Conclusion & Perspectives 

This thesis investigated prognostics as one of the PHM pillars and its application to 

bearing machines. For that purpose, multiple machine learning algorithms were discussed 

under the data-driven approach. The work presented in this thesis demonstrates the 

usefulness of the trend indicator in prognostic and focuses on the methodology applied 

from feature extraction to RUL estimation. Three methods (PHM layers) were discussed: 

• Data acquisition and manipulation 

Where the cross-domain descriptors are extracted from vibration signals followed by 

feature selection, the results indicate that the optimized combination (Kurtosis – Crest 

Factor – BPFI – BPFO – BSF – Max Frequency Amplitude) is the most adequate and 

sensitive to the bearings fault variation. It is important to note that the feature selection 

process is done only once in the learning phase. 

• Condition Monitoring 

Focusing on health indicator construction, fault detection, and failure identification. The 

results indicate that the SOM using the Batch algorithm is more suitable as a health 

indicator than other methods such as the PCA. For more precision, the mean quantization 

error extracted from the SOM was taken as the HI because of its pseudo-monotonic shape 

provided over the different bearing databases and its sensitivity to the degradation of the 

bearings. Hereafter, the HI is used to determine the fault and failure thresholds, which 

highly influence the RUL estimation results. For that purpose, we developed new 

dynamic thresholds for fault and failure, and the results show their effectiveness. 

• Prognostics 

The last phase consists of the trend indicator construction and the RUL estimation. The 

EMD residual demonstrates its effectiveness as the TI, and the GPR provided the best 

results for the RUL estimation. An accurate prognostic depends on the trend indicator and 

the GPR as a regression technique. Where the trend indicator determines how precisely 

the health indicator evolves, and the GPR determines how accurately the TI can be 

projected in the future. 

This thesis illustrates the challenge of finding generic parameters that can be applied over 

different bearings under different conditions. 
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Future Work:  

 

Although numerous headways have been accomplished within the field of prognostics, 

several research areas still have to be explored. As perspectives and guidelines for 

researchers in this field, some investigations are preferable, such as: 

 

•   Integration of the transfer learning to transfer the acquired knowledge from 

one type of bearing to another or even to new components. 

 

• Application of the current HI on different new types of bearing to validate the 

generic aspect of the bearing HI since there is currently no well-known generic 

HI for bearings. 

 

• Application of the same algorithm on the same data type but acquired from 

different emplacements of the machine to get the best possible place for fault-

bearing detection and prognostics. 

 

• Discover other features from multiple domains and study their effects and their 

effectiveness. 

 

•  In this thesis, we applied the common GPR for RUL estimation. In future work, 

we look to develop a new regression tool based on the GPR to meet the 

particular requirement of the bearing prognostics. 

 

•  Using a single indicator that merges both quality of the HI (Class separability) 

and the TI (Overtime separability) is an interesting research field that requests 

more attention. 
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Abbreviation List  

AI  Artificial Intelligence 

BBAS  Basic Belief Assignments  

Bd  Ball diameter 

BMU  Best matching unit  

BPF  Ball Pass Frequency 

BPFI  Ball Pass Frequency Inner race 

BPFO  Ball Pass Frequency Outer race 

BS  Ball Spin 

CBM  Case Based Maintenance 

DAE  Deep Auto Encoder  

EMD  Empirical Model Decomposition 

FTF  Fundamental Train Frequency 

GA  Genetic Algorithm  

GPR  Gaussian Process Regression  

GRNN  generalized regression neural network  

HI  Health Indicator  

IR  Inner Race frequency 

LLE  locally linear embedding  

LOWESS Locally Weighted Scatterplot Smooth 

LSTM  Long Short-Term Memory 

MIMOSA Machinery Information Management Open Standards Alliance 

MTBF  Mean Time Between Failures 

MTTF  Mean Time to Failures  

NN  Neural Network 

OR  Outer Race frequency 

OSA  Open system architecture 
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PC  principal component  

PCA  Principal Component Analysis  

Pd  Pitch diameter 

PDF  Probability Density Function 

PdM  Predictive maintenance 

PHI  Physical health indicators 

PHM  prognostics & health monitoring  

RF  Random Forest 

RNN  recurrent neural network 

RUL  Remaining Useful Lifetime  

SAE  Society of Automotive Engineers 

SNR  Signal-to-Noise Ratio 

SOM  Self-Organizing Map 

TI  Trend Indicator  

VHI  virtual health indicators   
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