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Abstract

In this thesis, we have considered signal processing using the subspaces tech-
nique. Indeed, due to its various applications such as data compression,
parametric estimation, source separation, tensor decomposition, etc., the es-
timation of the main or minor subspaces of a multi-variant signal has been
the subject of a large number of research works, in particular in the case
where the considered system is time-varying. In this case, the estimation of
the subspace must be done in an adaptive way, and if possible at a low cost,
we, therefore, aim to always reduce the computational complexity. In our
work cited below, we have addressed the problem of non-Gaussian noise, i.e.
impulsive noise such as burst noise or α-stable noise, outliers, or missing data.
In this context, we have presented new robust subspace tracking algorithms.
Later, we applied these algorithms to the state representation in the case of
the estimation and tracking of directions of arrival. We then extended our
algorithms to the case of principal eigenvectors estimation. Finally, we have
applied them to blind source separation. The proposed algorithms’ perfor-
mances have been evaluated and validated by simulation and have all been
submitted and accepted for scientific production

Keywords

Robust subspace; Eigenvectors; State representation; Blind source separa-
tion; Source localization; Signal processing; Robust estimation
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Résumé

Dans ce mémoire, nous avons considéré le traitement de signal par la tech-
nique des sousespaces. En effet, de par ses applications diverses telles que la
compression de données, l’estimation paramétrique, la séparation de sources,
la décomposition tensorielle, etc., l’estimation des sous-espaces principaux ou
mineurs d’un signal multi-variant a fait l’objet d’un grand nombre de travaux
de recherche, en particulier dans le cas où le système considéré est variant
dans le temps. Dans ce cas, l’estimation du sous-espace doit être réalisée de
manière adaptative et si possible à faible coût, nous visons par conséquent à
toujours réduire la complexité calculatoire. Dans nos travaux cités ci-après,
nous nous sommes penchés sur la problématique des bruits non-gaussien, soit
le bruit impulsif tel que le bruit en créneaux ou le bruit α-stable, ou les don-
nées erronées ou manquantes. Nous avons donc présenté dans ce contexte,
de nouveaux algorithmes robustes de poursuite de sous-espaces. Plus tard,
nous avons appliqué ces algorithmes à la représentation d’état avec le cas de
l’estimation et la poursuite des directions d’arrivées de cibles mouvantes en
champ lointain. Nous avons par la suite étendu nos algorithmes au cas de
l’estimation des vecteurs propres principaux. Enfin, nous avons appliqué ces
derniers pour le blanchiment adaptatif en séparation aveugle de sources. Les
performances de tous les algorithmes proposés ont été évalués et validés par
simulation, et les travaux corrspendants ont tous été soumis et acceptés en
production scientifique.

Mots-clé

Sous-espace robuste ; Vecteurs propres ; Représentation d’état ; Séparation
aveugle de sources ; Localisation angulaire ; Traitement du signal ; Estima-
tion robuste
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ملخص
نظرًا،بالفعلالجزئیة.الفضاءاتتقنیةباستخدامالإشاراتمعالجةدرسنا،الأطروحةھذهفي

إلىوما،الموتراتتحلیل،المصادرفصل،البرمتراتتقدیر،البیاناتضغطمثلالمختلفةلتطبیقاتھ

كبیرلعددموضوعًاالمتغیراتالمتعددةللإشارةالثانویةأوالرئیسیةالجزئیةتقدیرالفضاءاتكان،ذلك

بمرورمتغیرًاالنظرقیدالنظامفیھایكونالتيالحالةفيالخصوصوجھعلى،البحثیةالأعمالمن

،منخفضةبتكلفةأمكنوإذا،تكیفیةبطریقةالجزئيالفضاءتقدیریتمأنیجب،الحالةھذهفيالزمن.

الغاوسیة،غیرالضجیجمشكلةتناولنا،أدناهالمذكورعملنافيالحسابي.التعقیدتقلیلإلىدائمًانھدففإننا

القیمأوالفا-المستقرةتوزیعاتحسبضجیجأوقصیرةزمنیةلمدةكبیركضجیجالاندفاعيالضجیجمثل

فيالجزئي.الفضاءلتتبعجدیدةمقاومةخوارزمیاتقدمنا،السیاقھذافيالمفقودة.البیاناتأوالمتطرفة

ثمالوصول.اتجاھاتوتتبعتقدیرحالةفيالحالةتمثیلعلىالخوارزمیاتھذهبتطبیققمنا،لاحقوقت

بتطبیقھاقمنا،أخیرًاالرئیسیة.الذاتیةالأشعةتقدیرحالةلتشملبناالخاصةالخوارزمیاتبتوسیعقمنا

طریقعنصحتھامنوالتحققالمقترحةالخوارزمیاتأداءتقییمتمالأعمى.المصادرفصلعلى

العلمیة.لإنتاجاتوقبولھاجمیعھاتقدیموتمالمحاكاة

مفتاحیةكلمات
موقعتحدیدالأعمى؛المصادرفصلالحالة؛تمثیلالذاتیة؛الأشعةالمقاومة؛الجزئیةالفضاءات

المقاومالتقدیرالإشارات؛معالجةالمصدر؛
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Chapter 1

General Introduction

Stream processing is attracting more and more attention from both academia
and industry due to the continuous increase of massive data stream collection
over the years and their high utilization in the discovery of new insights and
valuable information. Several examples can be cited such as online applica-
tions, Servers and security logs, or moreover, the Internet of Things (IoT)
where a huge number of sensing devices Are installed and in use. In the
latter for example, The devices are capable of real-time data collection, man-
agement, and transmission via IoT networks. Therefore, stream processing
is necessary to quickly and efficiently extract crucial insights from such data
in order to support real-time decision-making.

It is very well known that Singular Value Decomposition (SVD) is one
of the most powerful and widely-used linear algebra techniques with a num-
ber of applications in various domains. In an online setting, data samples
are continuously collected with time. Accordingly, recomputing the batch
Principal Components Analysis (PCA) methods like SVD and Eigen value
Decomposition (EVD) at each time step becomes inefficient due to their high
complexity and time variation. This has led to defining a variant of the PCA
called online (adaptive) PCA in which we may want to track the underlying
process that generates streaming data with time.

1



Chapter 1. General Introduction

Later, it has been shown that in a lot of applications, the exact principal
components are not needed. Instead, only an orthogonal basis that spans the
same subspace was. This was the beginning of the Principal Subspace Anal-
ysis (PSA) journey. Moreover, the need for real-time applications has been
raised. Thus, researchers began to aim for fast (low complexity) algorithms
that can estimate subspaces in the most accurate way.

Although this was achieved in a satisfactory way in the last decade, the
limitations of harsh environments are still up to date. Indeed, in practice,
the Gaussian noise environment is rarely encountered, instead, one can find
several adverse scenarios such as impulsive noise, sparse outliers, or missing
data, but the literature about fast methods is still very thin. The latter have
motivated as to dive into the subject and propose new algorithms that could
thrive in the field.

Consequently, in this thesis, we will introduce new approaches to deal
with the subject. But also, apply the latter to real-world applications such
as target tracking, source localization, and blind source separation. The rest
of this thesis is organized as the following outline.

Chapter 2

In the second chapter of this thesis, we will present a general overview of
the problem handled. Indeed, we will detail the system equations as well
as the various noises that can affect it. Then, we will state the problematic
addressed along with the main objectives of our work. Just after that, we will
cite the state of the art with all the literature works related to our study, and
the contributions we have made in relation to them including the motivation
of the latter.

Chapter 3

In the third chapter, we will address low-cost robust subspace tracking in
an impulsive noise environment. Indeed, we will present a new cost function

2



Chapter 1. General Introduction

based on the weighted least square criterion and a projection approximation,
where two new methods of calculating the weight will be proposed: a calcu-
lated method based on the robust estimation of the covariance matrix and a
hard-thresholding one leading to a reduction of the computational cost. The
proposed algorithms will be both tested via simulation in both burst noise
and α-stable noise.

Chapter 4

In this fourth chapter, we will first extend the subspace tracking issue to
the PCA one. Indeed we will present new fast algorithms that estimate and
track the eigenvectors of a system evolving in an impulsive noise environment
as well as s system conflicted with outliers and missing data. We will then
follow our works with an application to the blind source separation context
using the second-order statistics technique. All of our proposed work will be
tested and validated with simulation.

Chapter 5

Chapter five will be about state representation, where the domain of track-
ing a mobile point is introduced. We will, thus, present one of the various
applications of subspace tracking; the estimation and tracking of directions
of arrival. In this context, we will present a novel robust algorithm based on
our robust subspace tracking followed by a results smoothing using adaptive
filtering. Indeed, two tracking filters will be detailed, e.i. The Kalman filter
and its low-cost, steady-state variant the αβ filter. Again, the algorithm
performance will be evaluated with monte-Carlo simulation and compared
to similar algorithms’ performances.

Chapter 6

Finally, in the last chapter of the thesis, we will present a general conclusion
where a discussion of our proposed algorithms will be conducted. Some
limitations will be also discussed and an overall perspective will be proposed.

3
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Chapter 2

Problem Statement and State of
the Art

2.1 Introduction

Subspace tracking is a powerful technique used in signal processing and con-
trol theory to estimate the dynamics of a system from a set of observations.
It involves tracking the evolution of a low-dimensional subspace that captures
the important dynamics of the system. Subspace tracking has applications
in a wide range of fields, including radar signal processing, computer vision,
and structural health monitoring. In this technique, the subspace is esti-
mated recursively from a sequence of data, allowing for real-time tracking of
system dynamics. The accuracy of the subspace estimate depends on several
factors, including the quality of the data and the complexity of the system
being tracked. Subspace tracking has proven to be a valuable tool for a wide
range of applications and continues to be an active area of research in the
field of signal processing and control theory. However, and most likely in
the practical field, one can come across harsh environments such as systems
with missing data, outliers, or impulsive noises. Here we are interested in
the latter, and we will present new solutions for both subspace tracking and
principal components tracking in adverse scenarios and at a low computa-
tional cost.
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Chapter 2. Problem Statement and State of the Art

In this chapter, we will define the system studied along with its possible
adverse complications. Then we will overview the most popular methods on
the subject in the recent literature.

2.2 Problem statement

2.2.1 The structure of the studied system

Since we are interested in subspace tracking in the adaptive context, we
consider in the rest of this thesis a continuous observed data stream in time.
This observations are modeled by a multivariate vector x(t) of dimension n

and covariance Cx = E[xxH ], composed of source signals s(t) affected by a
noise n(t) of variance σ2

n according to:

x(t) = s(t) + n(t) (2.1)

2.2.1.1 Signal structure

For the works considered in this thesis, we take the particular case where the
received signals are a combination of any p signal sources s̃(t) mixed by a
(n× p) mixing matrix A:

s(t) = As̃(t) (2.2)

We consider two cases of mixing: either, the general case where A is a
random orthogonal matrix, or, the case of a linear antenna array regularly
spaced by a distance of half the received plane wavelength:

A = [a(ω1); a(ω2); · · · ; a(ωp)] (2.3)

with: a(ωi) = [1, ejωi , · · · , ejωi(n−1)]T and ωi = π sin(θi) where θi represent
the angles of arrival of the different sources.
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2.2.1.2 Noise structure

In theory, as in practice, there are several types of noise. In this part, we
present some of these noises that we will treat later in our work.

a Gaussian noise: This is the most common modeling. In this case,
n(t) = nG(t) in (2.1) is an additive white noise with Gaussian distri-
bution and variance σ2

G.

b Burst noise: In this case, n(t) in (2.1) is the sum of nG(t) and an
impulsive term. The latter is modeled as in [6] by a burst noise such
as:

n(t) = nG(t) +

NI∑
i=1

u
(t− ti

bi

)
niI(t) (2.4)

where niI(t) is also a white and centered Gaussian of variance σ2
I >> σ2

G.
niI(t) weighted by a rectangular function u(.). This one is used to
describe the appearance of impulsive noise for a short period of time.
NI refers to the number of impulsive events while ti and bi denote
respectively the center of the ith event and its duration.

c α-stable noise: Here, the noise n(t) has an α-stable distribution
named here after nα(t) [7]. This one represents events with a heavy
tail characterized by a factor 0 < α ≤ 2. This factor controls the
heaviness of the tail. These trails are then heavier, and therefore the
events are more impulsive, for small values of α, while for large values,
distribution is less impulsive. Finally, α = 2 corresponds to a Gaussian
distribution.

n(t) = nα(t) (2.5)

d Outliers: For this case, the data are modeled by the desired signal s(t),
an additive Gaussian noise nG(t) plus a vector of outliers i(t) assumed
large and sparse:

n(t) = nG(t) + i(t) (2.6)

7
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2.2.1.3 Other adversities

Besides noises, one can come across other adversities such as:

a Missing data: In this case, we consider that some data are missing.
The observations are therefore written as follows:

x(t) = P(t) (s(t) + nG(t)) (2.7)

where P(t) is a random diagonal matrix with 1s or 0s entries depending
on whether the input is observed or not.

b Simultaneous outliers and missing data: In the latter case, the
worst one, we model a system that contains missing values and is af-
fected by erroneous values at the same time:

x(t) = P(t) (s(t) + n(t) + i(t)) (2.8)

2.2.2 Objectives

One of the most common techniques in signal processing is the decompo-
sition of the signal into its edge components (PCA for "Principal Compo-
nents Analysis"). The main objective is therefore to estimate in time the
edge components of the covariance matrix Cx. That is its p eigenvectors
U(t) = [u1(t), · · · ,up(t)] corresponding to its first p eigenvalues, where the
eigenvalues λi are supposed to obey to λ1 ≥ λ2 ≥ · · · ≥ λp > λp+1.

However, in many applications, one would only need a D(t) basis that
generates the same subspace as the one generated by the principal eigenvec-
tors, called the principal subspace or the signal subspace. The latter is called
Principal Subspace Analysis (PSA).

This has been widely discussed in the literature, however, there are still
limitations to overcome such as the robustness in the presence of non-Gaussian
noises as presented previously. In the following section, we will discuss the
different existing methods dealing with the tracking of subspaces and eigen-
vectors, as well as the difficulties encountered in the field.
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2.3 State of the art

2.3.1 Subspace tracking

The PSA methods have known a very wide interest and continue to evolve
on several axes. One can find that they have been classified according to two
main criteria:

Classification according to the estimation method in time:
we will find two types of method classes;

• Batch methods: They are applied on blocks of data supposed to be
stationary or invariant in time. The most used algorithms for that are
the single value decomposition (SVD) applied to the signal’s sequence,
and the eigenvalue decomposition (EVD) applied to the covariance ma-
trix of the signal. These types of algorithms are very expensive and are
therefore used offline.

• adaptive algorithms: they are applied in non-stationary systems, where
an estimation of the eigenstructures is made at each instant using the
observations available at that instant. In this type of algorithm, the
EVD and the SVD are very computationally expensive. In addition,
and in several applications, it has been shown that instead of com-
puting the whole structure it would be sufficient to compute only the
basis of the desired signals or only an approximation of it. Several al-
gorithms have been proposed including modified Batch algorithms and
optimization methods. Finally, it is worth mentioning, due to the high
demand, that these methods can be used in online mode.

Classification by complexity rank:
In general, in the estimation of subspaces, we find methods such as EVD
and SVD in batch computation, although these algorithms have a complex-
ity of order three, i.e. O(n3) and are therefore not adequate for adaptive
algorithms. The latter has been developed according to three (03) classes:
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• high complexity algorithms. They require a computation of O(n2p) or
O(n2) where p is the rank of the principal subspace. The algorithms
of this class offer a very good convergence but are very expensive in
computation.

• algorithms with medium or moderate complexity. With a computation
of O(np2), this class offers a very good compromise between conver-
gence and cost.

• Finally, the low complexity algorithms or linear complexity have a com-
putation of O(np), that we would always want to reach while working
on the performance of its algorithms.

In the rest of this thesis, we are interested in linear complexity methods,
since this one is the best adapted for online processing, and consequently,
the best adapted for tracking.

As already stated, Subspace Tracking (ST) is a crucial topic that has been
extensively researched and surveyed in the literature. Comon and Golub were
among the first researchers to conduct a survey on principal subspace tracking
algorithms, as described in [8]. Their survey primarily focused on methods
that could handle the low-rank approximation of covariance matrices that
vary slowly over time, and which had high to moderate computational com-
plexity. Another significant survey, provided by Delmas in [9], offers a com-
prehensive overview of the advancements made in classical ST algorithms
with low (linear) complexity. These surveys provide valuable insights into
the various techniques and approaches used in ST and serve as an essential
resource for researchers and practitioners alike.

In [9], it has been stated that the adaptive eigenvector estimation with
linear complexity was introduced by Oja in [10], initially for a single principal
eigenvalue p = 1. This marked the beginning of the era of fast algorithms.
We note that the methods based on power iteration as well as those based
on least square errors represent derivatives of Oja’s method, if we perform
a gradient descent estimation on their respective cost functions [9]. This
method has been extended for the case of p > 1 in [11].

10
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Indeed, Oja’s algorithm converges to an orthonormal basis but does not
ensure orthogonality at each time instant, a property that is highly favored
in the field. For this reason, the Orthogonal Oja (OOja) algorithm was pro-
posed in [12] where orthogonalization is ensured at each time instant where
the new basis D(t) is replaced by D(t) = D(t)DT (t)D−1/2(t). The linear
completeness is then ensured by the fast implementation of the following
property:

(
I+ xxT

)−1/2
= I+

(
1√

1 + ||x||2
− 1

)
xxT

||x||2
(2.9)

In [13], they proposed to normalize the forgetting factor by estimating it
adaptively in order to improve the convergence speed of Oja’s algorithm as
well as its orthogonal version OOja. However, in all the cases proposed so
far, the instant covariance matrix used is estimated as Cx = xxT , while a
better accuracy can be achieved with the estimation Cx = βCx(t− 1)+xxT

[9].
Later on, another version of OOja, named Fast OOja (FOOja) has been

proposed in [14]. it has been proven theoretically and by simulation that
it is more stable than the others but was outperformed by the Fast Data
Projection Method (FDPM) which will be discussed later in this section in
terms of computation cost despite giving the same accuracy.

On the other hand, In [15], two new theorems were presented by Yang,
stating that an orthonormal basis of the principal subspace can be achieved
by minimizing the following least square criterion:

J(D) = E∥x−DDHx∥

= tr(Cx)− 2tr(DHCxD
H) + tr(DHCxDDHD)

∆(J(D)) = 2[−2Cx +CxDDH +DDHCx]D

(2.10)

• D is a stationary point of J(D), if and only if D = UQ where the
columns of U are p distinct eigenvectors of Cx and Q is an arbitrary
unitary matrix

11



Chapter 2. Problem Statement and State of the Art

• All stationary points are saddle points except when U contains the p
eigenvectors corresponding to the p greatest eigenvalues.

As stated before, the matrix D that achieves the minimization of the cost
function doesn’t contain the eigenvectors of Cx but only an orthonormal basis
that spans the signal subspace. Consequently, the matrix D is not unique,
only the projection matrix DDH that projects the observation x into the
signal subspace is.

From here, Yang proposed to approximate the previous cost function with
its exponential window mean with a forgetting factor 0 < β < 1 in order to
achieve adaptability:

J(D(t)) =
t∑
i=1

βt−i∥x(i)−D(t)DH(t)x(i)∥2 (2.11)

= tr(Cx(t))− 2tr(DHCx(t)D
H) + tr(DHCx(t)DDHD)(2.12)

Where the covariance matrix Cx is also estimated as an exponential mean
of xxH :

Cx(t) =
t∑
i=1

βt−ix(i)xH(i) = βCx(t− 1) + x(t)xH(t) (2.13)

It is indeed stated that the two precedent theorems stay valid for the
above approximation.

Furthermore, a projection approximation DHx(i) ≃ DH(i− 1)x(i) where
1 ≤ i ≤ t was introduced to achieve the minimization of the later cost
function. This led to the new cost function:

J ′(D(t)) =
t∑
i=1

βt−i∥x(i)−D(t)y(i)∥2 (2.14)

with y(i) = DH(i− 1)x(i)

One can note that the error for this approximation is negligible when we
take into account that the signals vary slowly in time, in particular, when

12



Chapter 2. Problem Statement and State of the Art

i is close to t. Moreover, even when i is further away, the deviation in the
approximation does not affect the estimation of the subspace thanks to the
forgetting factor.

Finally, the minimization of the latter can be achieved using a Recursive
Least Squares (RLS) algorithm, and by making good use of the inversion
lemma, a fast algorithm can be deducted straightforwardly giving the Pro-
jection Approximation Subspace Tracking (PAST) algorithm.

However, due to the approximation, the estimated basis of the principal
subspace is not orthogonal. Later on, it has been proposed in [16], an orthog-
onalization step that ensured the orthonormality of the subspace at each time
instant. the latter was reached at a low-cost by using the propriety stated in
(2.9) which led to the Orthogonal PAST algorithm (OPAST).

Meanwhile, other methods based on an instant iterative estimation of the
covariance matrix have been discussed. Those methods rely on the power
method and are discussed hereafter.

The primary objective of the first subspace problem is to determine the
eigenvector that corresponds to the largest eigenvalue of a given matrix.
One of the simplest iterative techniques for solving this problem is the power
method, which is described in the following section. If the unique dominant
eigenvalue of a real symmetric matrix C is denoted as λ1, and its correspond-
ing eigenvector with a unit 2-norm is u1, then the power method, starting
from an arbitrary unit 2-norm d0 that is not orthogonal to u1, produces a
sequence (αi;di) that converges to the largest eigenvalue λ1 and its corre-
sponding eigenvector with a unit 2-norm u1. The proof of the sequel can be
found in [17].

d0 arbitrary such that dT0 u1 ̸= 0

for t = 0, 1, . . .

d′
t+1 = Cdt

d′
t+1 = d′

t+1/||d′
t+1||2

αt+1 = dTt+1Cdt

(2.15)
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Assuming that the matrix C is non-negative, a simple extension of the
power method enables the calculation of the p eigenvectors that correspond
to the p largest eigenvalues of C, given that the first p+1 eigenvalues are dis-
tinct. Alternatively, the same method can be used to compute the subspace
that corresponds to the p largest eigenvalues of C if the p-th eigenvalue is
strictly greater than the (p + 1)-th eigenvalue, denoted as λp and λp+1, re-
spectively. This method can be found in the literature under the name of
orthogonal iteration, e.g., in [17], subspace iteration, e.g., in [18] or simulta-
neous iteration method, e.g., in [19].

D0 arbitrary (n× p) matrix such that DT
0U1is not singular

for t = 0, 1, . . .

D′
t+1 = CDt

D′
t+1 = D′

t+1Rt+1 skinny QR factorization

Λt+1 = diag(DT
t+1CDt)

(2.16)

or

D0 arbitrary (n× p) matrix such that DT
0U1 not singular

for t = 0, 1, . . .Dt+1 = Orthonorm{CDt}
(2.17)

where the orthonormalization (Orthonorm) procedure is not necessarily given
by the QR factorization.

As stated in [9], we can write the following variant of the adaptive imple-
mentation:

D(t+ 1) = Orthonorm{(I+ µC)D(t)} (2.18)

Where µ > 1 is a small parameter known as a step size. Now, by replacing
C bu its instant estimate C(t), one can have the adaptive orthogonal iterative
algorithm:
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D(t+ 1) = Orthonorm{(I+ µC(t))D(t)} (2.19)

At this point, depending on the choice of the instant estimate C(t) and
the chosen orthonormalization process, we can obtain various alternative ST
algorithms.

One straightforward option for selecting the matrix C(t) is to use the im-
mediate approximation x(t)xT (t), which leads to the Data Projection Method
(DPM) that was initially presented in [20]. In this approach, the orthonor-
malization process is carried out utilizing the Gram-Schmidt procedure.

From here, one can write:

D(t+ 1) =
(
D(t) + µx(t)xT (t)D(t)

)
G(t+ 1) (2.20)

To reduce the complexity of the G(t + 1) computation, two families of
algorithms have been proposed in the literature. The approximate symmetric
orthonormalization family which leads back to the Oja derivatives algorithms
stated previously, and The exact orthonormalization family.

The latter can be performed exactly at each iteration by two ways; First,
by the symmetric square root inverse of D′T (t+1)D′(t+1) using the property
2.9. This leads to the Fast Rayleigh quotient-based Adaptive Noise Subspace
algorithm (FRANS) introduced by Attallah et al. in [21]. Or, using the two
steps method introduced in [22] and [23], such as:

D(t+ 1) = Normalize{
(
D(t) + µx(t)xT (t)D(t)

)
G(t+ 1)} (2.21)

Where, Normalize{·} stands for the normalization of the columns of its
entry. Note that here G(t + 1) is not unique. For the fast computation of
the latter, Doukopoulos et al. proposed to use the Householder transform
in [24] which gave the very stable algorithm: Fast Data Projection Method
(FDPM).

Furthermore, The algorithms mentioned above, which don’t rely on the
rank one characteristic (e.i. p = 1) of the instantaneous estimate x(t)xT (t)
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of Cx(t), can be applied to the exponential or sliding window estimates of
C(t). However, this would result in a significant increase in complexity. To
overcome that, the Natural Power method 3 (NP3), that has been proposed
in [25], uses the exponential windowed estimate:

C(t) = βC(t− 1) + x(t)xT (t). (2.22)

based on the approximation:

C(t− 1)D(t) = C(t− 1)D(T − 1) (2.23)

which is clearly valid if D(t) is slowly varying in time.
Later on, an algorithm called the Approximated Power Iteration (API)

has been introduced in [26], which is based on the assumption that D(t) and
D(t+ 1) span the same r-dimensional subspace. This algorithm, along with
its faster implementation (FAPI), uses the same power-based approach but
unlike the NP3 algorithm, the API algorithm can accommodate the expo-
nential or sliding windowed estimates of Cx(t) within the same framework,
with a complexity of O(nr) operations.

In addition, many practitioners (e.g., [27, 9]) have acknowledged the FAPI
algorithm as the top-performing power-based subspace tracking method among
those based on the exponential or sliding window and having the same com-
putational complexity.

2.3.2 Robust subspace traking

Although the previous algorithms present good performances in accuracy,
complexity, and stability, they only handle environments with the presence
of Gaussian noise only. Indeed, when impulsive noise occurs, those algorithms
diverge very quickly and all accuracy is lost.

When we refer to "impulsive" noise, we are primarily talking about three
types of noise: burst noise [28, 29], Spherically Invariant Random Variable
(SIRV) noise [30, 31], or alpha-stable noise [32, 7]. Although the algorithms
in the literature were developed to mitigate the impact of impulsive noise
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in general, the majority of the simulation results only demonstrate their
performance in the context of burst noise.

2.3.2.1 Robust variants of PAST

Various approaches have been proposed in the literature to handle impulsive
noise, with many relying on robust statistics. Among them, some studies
have introduced robust versions of the PAST algorithm to mitigate impulsive
noise. For example, in [33], a Robust PAST (RPAST) was proposed, which
consists of two main steps. Firstly, the algorithm identifies the presence of
impulsive noise by applying a threshold, and then removes any undesirable
effects by discarding contaminated observations. The threshold is determined
empirically using a function of the noise variance, assuming that the error
vectors are subject to a Gaussian distribution that has been corrupted by
additive impulsive noise.

In their work, Zhang et al. proposed a variant of PAST, known as MCC-
PAST, that utilizes the Maximum Correntropy Criterion (MCC) to address
impulsive noise, as described in [34, 35, 36]. The MCC-PAST algorithm
incorporates a correntropy, a new statistic that can capture both the temporal
structures and the statistics of two random processes, to mitigate the effects
of impulsive noise. The objective function of PAST is modified by replacing
the mean square error criterion with the MCC. The MCC-PAST algorithm
is implemented using the RLS technique, and a variable forgetting factor
technique is introduced to improve its tracking performance.

In parallel, Shengyang et al. developed a different variant of PAST, called
BNC-PAST, which aims to track the underlying subspace using a novel cri-
terion [37]. To deal with non-Gaussian noise with a heavy-tailed distribu-
tion, the authors introduced the concept of Bounded Non-linear Covariance
(BNC) and utilized bounded nonlinear maps to eliminate the effect of im-
pulsive noise. As a result, a new robust PAST algorithm based on BNC was
derived.
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2.3.2.2 Adaptive Kalman filtering

Adaptive Kalman filtering is another viable option for coping with impulsive
noise. Liao et al. presented a robust subspace tracking (RST) algorithm that
employs an adaptive Kalman Filter with a Variable number of Measurements
(KFVM) in [38] and its variant the adaptive Kalman Filter with a Variable
Number of Measurements in [39]. KFVNM enables the tracking of fast-
varying subspaces by dynamically adjusting the number of past observations
used in the recursion process [39]. To handle impulsive noise, the algorithm
employs the M-estimate technique. However, the KFVNM-based algorithm
is computationally more demanding than PAST-based algorithms, especially
when a large number of observations are used for the subspace update.

2.3.2.3 Weighted recursive Least-Squares method

In a recent work, Linh-Trung et al. proposed a robust subspace tracking
algorithm with linear computational complexity, called ROBUst Subspace
Tracking Algorithm (ROBUSTA), based on a weighted RLS approach using
robust statistics [6]. The convergence analysis of ROBUSTA was provided in
the presence of SIRV noise, which showed that the algorithm corresponds to
adaptive robust covariance estimation. The results showed that ROBUSTA
outperformed many state-of-the-art algorithms for various types of impul-
sive noise including burst noise, SIRV noise, and α-stable noise. Moreover,
ROBUSTA can be easily adapted by incorporating pre-processing steps to
handle α-stable noise.

As for the robustness in terms of missing data and outliers, the literature
is very rich in methods that deal with the subject. Indeed, one can refer to
the recently published survey [40] to have a full idea of what has been done
so far.

2.4 Conclusion

In this chapter, after stating the problem and the main objectives of our work,
we have tackled the state of the art regarding both the subspace tracking field
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and the robust subspace tracking one.
From what we could have gathered, one can notice that despite the miss-

ing data and outliers cases being often handled, the works about impulsive
noise remain very thin. Reason for which, we will focus our efforts on this
area for the upcoming chapters.

19



Chapter 3

Robust Subspace Tracking

3.1 Introduction

As mentioned in the previous chapter, the Subspace tracking field has long
attracted researchers due to its various applications. For that matter, let’s
recall that the main aim is not only to estimate an orthonormal basis of
the principal subspace but to do it in an adaptive way as well. Such an
approach is very convenient, especially for online processing, however, it is
often subject to computational cost and complexity limitations. This gave
the motivation for the appearance of fast subspace tracking algorithms such
as [10, 12, 13, 15, 16, 24, 26].

Despite their efficiencies, the latter algorithms assume the noise in (2.1) to
be of Gaussian-centered white distribution and thus lack robustness. While
our interest here is focused on the impulsive noise environment represented
in the sequel by either burst noise or α-stable distribution.

For that concern, one can find in the literature a few robust algorithms
including the RPAST algorithm [33] and ROBUSTA [6]. It has been shown in
[6] that the ROBUSTA outperforms the other algorithms in this case. Indeed,
the algorithm proposes to replace the least squares criterion of the subspace
estimation by a more appropriate weighted criterion WLS "Weighted LS".
This helps significantly to reduce the effect of corrupted data through the
choice of an appropriate attenuation coefficient. Yet, this algorithm uses the
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projection approximation introduced in [15], while it has been pointed in [26]
that a more accurate approximation exists.

In this chapter, we present our proposed robust algorithm Mahalanobis
FAPI (MFAPI) to impulsive noise that is derived from the FAPI approxima-
tion in [26], and exploit the weighted criterion to deal with impulsiveness, as
well as its low-cost version, the Hard Thresholding FAPI (HTFAPI).

the remaining of this chapter is organized as follows: Section 3.2 gives
some details about the related works. The proposed algorithms are presented
and detailed in section 3.3. Simulation results are given in section 3.4. While
section 3.5 concludes the chapter.

3.2 Related works

In order to estimate and track the signal subspace (represented by the n× p

matrix D(t)) of the covariance matrix Cx(t) = E[x(t)xH(t)], it has been
shown in [15] that one can minimize, under unitary constraint on D(t), the
following cost function:

J (D(t)) =
t∑
i=1

βt−i
∥∥x(i)−D(t)DH(t)x(i)

∥∥2 (3.1)

where 0 < β ≤ 1 is a forgetting factor. To simplify this non-linear optimiza-
tion problem, a projection approximation was proposed in [15], for slow time-
varying systems. The latter consists of approximating y(i) = DH(t)x(i) ≈
DH(i− 1)x(i). This leads to a simplified cost function:

J ′ (D(t)) =
t∑
i=1

βt−i ∥x(i)−D(t)y(i)∥2 (3.2)

The resolution of this latter is done usually by a recursive least squares
algorithm, conducting the method to converge promptly and at a low com-
putational cost. However, the obtained basis is not orthonormal. Reason for
which, the algorithm OPAST was proposed in [16] where a low complexity
orthonormalization was introduced.
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Algorithm 1 (table 1): FAPI algorithm
1: Initialization

2: D(0) =

[
Ip

0(n−p)×p

]
; Z(0) = Ip

for each time step do :
3: input vector x(t)
4: y(t) = DH(t− 1)x(t)
5: h(t) = Z(t− 1)y(t)
6: ϵ2(t) = ||x(t)||2 − ||y(t)||2
7: g(t) = h(t)

β+yH(t)h(t)

FAPI common section
8: τ(t) = ϵ2(t)

1+ϵ2(t)||g(t)||2+
√

1+ϵ2(t)||g(t)||2

9: η(t) = 1− τ(t)||g(t)||2
10: y′(t) = η(t)y(t) + τ(t)g(t)
11: h′(t) = ZH(t− 1)y′(t)

12: ϵ(t) = τ(t)
η(t)

(Z(t− 1)g(t)− (h′(t)Hg(t))g(t))

13: Z(t) = 1
β
(Z(t− 1)− g(t)h′(t)H + ϵ(t)gH(t))

14: e′(t) = η(t)x(t)−D(t− 1)y′(t)
15: D(t) = D(t− 1) + e′(t)gH(t)

Later on, a novel projection approximation was proposed in [41]: D(t) ≈
D(t− 1)Θ(t) where Θ(t) is an orthonormal matrix of size p× p. This results
in the cost function given by:

J ′′ (D(t)) =
t∑
i=1

βt−i ∥x(i)−D(t)Θ(t)y(i)∥2 (3.3)

In [41], it was shown that this method named API, leads to a more accurate
projection approximation than the one proposed in [15]. Moreover, the esti-
mated basis of the signal subspace is perfectly orthonormal. Finally, a fast
implementation of this method, i.e. Fast API (FAPI), has been proposed in
[26], where both orthonormality and linear complexity are satisfied.

This FAPI algorithm, which provides a basis for the next robust methods,
is summarized in table 1.
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3.3 Robust PSA algorithms for impulsive noise

case

In [6], where PSA is considered in an impulsive noise environment, the least
squares criterion in (3.1) is replaced by the weighted least squares crite-
rion (denoted Ji where i stands for impulsive) given by equation (3.5). The
weighting factor ω(t), usually considered for the fixed-point robust estimation
of the covariance matrix, e.g. [42], is given by

ω(t) =
1

xH(t)C−1
x (t− 1)x(t)

(3.4)

This factor represents a ’soft’ threshold which takes small values when large
impulsive noise values occur so that the impact of erroneous data is mitigated.

Ji(D(t)) =
t∑
i=1

βt−iω(i)
∥∥x(i)−D(t)DH(t)x(i)

∥∥2 (3.5)

By applying the FAPI’s projection approximation, the previous cost function
is modified as:

J ′
i(D(t)) =

t∑
i=1

βt−iω(i) ∥x(i)−D(t)Θ(t)y(i)∥2 (3.6)

To solve this new cost function, one can follow the pattern of the FAPI’s
algorithm as follows: From the power iteration method in [43], the compu-
tation of D(t) reduces to a data compression (projection) step (3.7) and an
orthonormalization step at each iteration (3.8):

Cxy(t) = Cx(t)D(t− 1) (3.7)

D(t)R(t) = Cxy(t) (3.8)

Where Cxy is an n× p correlation matrix between the data vectors x(t) and
y(t), R(t) is a p×p matrix such that RH(t)R(t) = Φ(t) and Φ(t) = CH

xyCxy.
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Thus, RH(t) is a square root of Φ(t). In order to reduce the complexity, the
projection approximation proposed in [26] is used, according to:

D(t) ≃ D(t− 1)Θ(t) (3.9)

Where the p × p matrix Θ(t) is orthonormal. Considering D(t − 1) to be
orthonormal, Θ(t) is then obtained as:

Θ(t) = D(t− 1)HD(t) (3.10)

For a fast implementation of the latter, one must proceed through the
following steps:

3.3.1 Recursive data compression

The projection approximation can be used in (3.7) to compute Cxy(t) recur-
sively, then, in (3.8) to update D(t) as described below.

First, let us set a robust estimate of the covariance matrix Cx according
to:

Cx(t) = βCx(t− 1) + ω(t)x(t)x(t)H (3.11)

Substituting (3.11) into (3.7) yields to

Cxy(t) = βCx(t− 1)D(t− 1) + ω(t)x(t)y(t)H (3.12)

Then, applying the projection approximation at time t− 1 leads to

Cxy(t) = βCxy(t− 1)Θ(t− 1) + ω(t)x(t)y(t)H (3.13)

3.3.2 Recursive orthonormalization

The recursive computation of D(t) requires the introduction of an inter-
mediate p × p matrix Z(t) [26]. Let’s define S(t)

∆
=
(
R(t)Θ(t)

)H a p × p

non-singular matrix and
Z(t)

∆
= S(t)−1 (3.14)
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Where the symbol ∆
= refers to equal by definition.

To find a recursion to the latter, we substitute equation (3.8) into equation
(3.13) and left multiply it by D(t − 1)H . Then considering the projection
approximation, we have:

Θ(t)R(t) = βSH(t− 1) + ω(t)y(t)y(t)H (3.15)

After applying the Schur matrix inversion lemma to the latter, we obtain(
Θ(t)R(t)

)−1

=
1

β
Z(t− 1)H

(
Ip − y(t)g(t)H

)
(3.16)

where:
g(t) =

ω(t)h(t)

β + ω(t)h(t)Hy(t)
(3.17)

and
h(t) = Z(t− 1)y(t) (3.18)

Now, by left multiplying the complex conjugate transpose of (3.16) by Θ(t)H

and right multiplying it by Θ(t)−H , one obtain

Z(t) =
1

β
Θ(t)H(Ip − g(t)y(t)H)Z(t− 1)Θ(t)−H (3.19)

Next, in the aim of finding a recursion of D(t), we substitute equation (3.8)
into equation (3.13) and right multiply it by Θ(t) to get

D(t)S(t)H =
(
βD(t− 1)S(t− 1)H + ω(t)x(t)y(t)H

)
Θ(t) (3.20)

Then substituting equation (3.15) into the above yields to

D(t)S(t)H = D(t− 1)Θ(t)S(t)H + ω(t)e(t)y(t)HΘ(t) (3.21)

where
e(t) = x(t)−D(t− 1)y(t) (3.22)

On the other hand, left multiplying (3.15) by g(t)H and replacing g(t) by its
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definition in (3.17) gives

g(t)HΘ(t)R(t) =
ω(t)

β + ω(t)h(t)Hy(t)

(
βh(t)HS(t−1)H+ω(t)h(t)Hy(t)y(t)H

)
(3.23)

Using equations (3.14) and (3.18), we can conclude that

βh(t)HS(t− 1)H = βy(t)H (3.24)

Hence, substituting the latter into (3.23) leads to

g(t)HΘ(t)R(t) = ω(t)y(t)H (3.25)

Then substituting equation (3.25) into equation (3.21) and right multiplying
it by S(t)−H yields finally to the recursion

D(t) =
(
D(t− 1) + e(t)g(t)H

)
Θ(t) (3.26)

3.3.3 A fast solution for Θ(t)

Since D(t− 1) is orthonormal, then e(t) is orthogonal to D(t− 1). Besides,
considering the orthonormality of D(t) associated with the equation (3.26),
we come to

Θ(t)Θ(t)H =
(
Ip + g(t)(e(t)He(t))g(t)H

)−1

(3.27)

To fast compute a solution for (3.27), let’s set ϵ(t) to be the square root of
e(t)He(t):

ϵ2(t) = eH(t)e(t)

= xH(t)x(t)− xH(t)D(t)y(t)− yH(t)DH(t)x(t) + yH(t)DH(t)D(t)y(t)

= xH(t)x(t)− yH(t)y(t) = ||x(t)||2 − ||y(t)||2 (3.28)

Substituting (3.28) into (3.27) then applying the Schur matrix inversion
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lemma, we get

Θ(t)Θ(t)H = Ip − ϵ(t)2g(t)g(t)H/ρ(t) (3.29)

Where ρ(t) = 1 + ϵ(t)2||g(t)||2. To further reduce the computation cost, we
look for a solution of the special form

Θ(t) = Ip − τ(t)g(t)g(t)H (3.30)

Where τ(t) = ϵ(t)2/ρ′(t). Manipulating equations (3.29) and (3.30), we find
ρ′(t) = ρ(t) +

√
ρ(t). For the sequel, let’s set

η(t) = 1− τ(t)g(t)Hg(t). (3.31)

3.3.4 Principal subspace update

Substituting (3.30) into (3.19) leads to

Z(t) =
1

β

(
Z(t− 1)− g(t)h′(t)H + ϵ(t)g(t)H

)
(3.32)

where
y′(t) = y(t)η(t) + g(t)τ(t) (3.33)

h′(t) = Z(t− 1)Hy′(t) (3.34)

ϵ(t) =
τ(t)

η(t)

(
Z(t− 1)g(t)− (h′(t)Hg(t))g(t)

)
(3.35)

Finally, substituting (3.31) into (3.26) yields

D(t) = D(t− 1) + e′(t)g(t)H (3.36)

Where e′(t) = η(t)x(t)−D(t− 1)y′(t).
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3.3.5 Fast computation of ω(t)

Now, the direct computation of the weighting coefficient ω(t) costs O(n2)

flops which is relatively expensive. Next, we propose to exploit the covariance
structure of the data model in (2.1) for its fast computation.

As in [6], the weight ω(t) is taken to be the inverse of the square of
Mahalanobis distance, i.e.

ω(t) =
1

d2M

(
x(t),C−1

x (t− 1)
) =

1

xH(t)C−1
x (t− 1)x(t)

(3.37)

Indeed, one can see that when the observation is corrupted, the distance
takes large values, and thus the weighting factor is small which mitigates the
impact of the corrupted data.

A direct computation of this factor involves the inversion of the covariance
matrix C−1

x (t − 1) which is computed recursively. By applying the matrix
inversion lemma to (3.11), we obtain

C−1
x (t) =

1

β

[
C−1
x (t− 1)− ω(t)C−1

x (t− 1)x(t)xH(t)C−1
x (t− 1)

β + ω(t)xH(t)C−1
x (t− 1)x(t)

]
(3.38)

Let K(t) = C−1
x (t). Then, the previous equation can be rewritten as:

K(t) =
1

β

(
K(t− 1) + ω(t)u(t)vH(t)

)
(3.39)

Where
u(t) = K(t− 1)x(t) and v(t) =

u(t)

β + ω(t)xH(t)u(t)

We can then deduce:

ω(t) =
1

δ(t)
, δ(t) = xH(t)u(t) (3.40)

The overall cost of this direct computation of the weighting factor ω(t) is of
order O(n2). For a faster computation of the latter, let us set Ds to be an
orthonormal basis of the signal subspace, thus Πs = DsD

H
s is the orthogonal
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projection matrix on this subspace. Given the structure of the covariance
matrix Cx, we can write

x(t)HC−1
x x(t) = x(t)HΠsC

−1
x Πsx(t) + (x(t)H(I− Πs)x(t))/σ

2
n(t)

= xs(t)
HC−1

xsxsxs(t) +
||x(t)||2 − ||y(t)||2

σ2
n(t)

(3.41)

Where Cxs = E[xs(t)xs(t)
H ] and xs(t) = DH

s x(t). Now, let’s approximate
Ds with the estimated subspace basis D(t) and xs(t) by y(t). Since Z(t) can
be seen as an estimate of C−1

y (t), we can then put

x(t)HC−1
x (t− 1)x(t) ≈ y(t)Hh(t) +

||x(t)||2 − ||y(t)||2

σ2
n(t− 1)

(3.42)

On the other hand, one can estimate the noise power σ2
n(t) as

σ2
n(t) =

tr
(
Cx(t)

)
− tr

(
Cy(t)

)
n− p

(3.43)

where tr(.) refers to the matrix trace operator. Considering that Tx(t) =

tr
(
Cx(t)

)
and Ty(t) = tr

(
Cy(t)

)
, then (3.43) can be effectively calculated

using

Tx(t) = βTx(t− 1) + ω(t)||x(t)||2

Ty(t) = βTy(t− 1) + ω(t)||y(t)||2

We can now write

ω(t) = 1/(y(t)Hh(t) +
(||x(t)||2 − ||y(t)||2)(n− p)

Tx(t− 1)− Ty(t− 1)
) (3.44)

This algorithm, referred to as MFAPI, achieves a robust PSA and is
summarized in table 2.
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Algorithm 2 (table 2): MFAPI algorithm
1: Initialization

2: D(0) =

[
Ip

0(n−p)×p

]
; Z(0) = Ip; Tx = 0;Ty = 0;

for each time step do :
3: input vector x(t)
4: y(t) = DH(t− 1)x(t)
5: h(t) = Z(t− 1)y(t)
6: ϵ2(t) = ||x(t)||2 − ||y(t)||2

fast computation of the weight
7: δ′(t) = y(t)Hh(t) + (||x(t)||2−||y(t)||2)(n−p)

Tx(t−1)−Ty(t−1)

8: ω(t) = 1/δ′(t)
9: Tx(t) = βTx(t− 1) + ω(t)||x(t)||2

10: Ty(t) = βTy(t− 1) + ω(t)||y(t)||2
11: g(t) = h(t)ω(t)

β+yH(t)h(t)ω(t)

12: FAPI common section tb. 1, lines: (8-15)

3.3.6 HTFAPI for robust PSA

To further reduce the computation cost, we propose now a new method [1]
based on order statistics (OS) [44] to determine the value of the weighting
factor in such a way the corrupted data are disregarded.

Given the fact that the quantity ϵ2(t) in (3.28) is positive valued, this new
method consists of thresholding it to determine whether the new weighting
factor ω(t) takes 0 or a 1 value at time instant t.

Indeed, since ϵ2(t) represents approximately (up to a constant factor) the
instantaneous noise power, and given the fact that impulsive noise realiza-
tions would have instantaneous power much higher and less frequent than the
median power value, we propose here to use the well known Inter Quartile
Range (IQR) method1 for outliers detection [45, 46]. Using a sliding window
of size L, we define:

ϵ̃(t) = {ϵ2(t− L+ 1) · · · ϵ2(t)}
1The threshold considered by this method has been chosen in such a way that, for

Gaussian distribution, about 99% of the data falls under its value.
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Algorithm 3 (table 3): HTFAPI algorithm
1: Initialization

2: D(0) =

[
Ip

0(n−p)×p

]
; Z(0) = Ip;

for each time step do :
3: input vector x(t)
4: y(t) = DH(t− 1)x(t)
5: h(t) = Z(t− 1)y(t)
6: ϵ2(t) = ||x(t)||2 − ||y(t)||2

compute weight:
7: ϵ̃(t) = [ϵ2(t− L+ 1) · · · ϵ2(t)

]
8: IQR(t) = Q3

(
ϵ̃(t)
)
−Q1

(
ϵ̃(t)
)

9: threshold(t) = Q3
(
ϵ̃(t)
)
+ 1.5IQR(t)

10: if ϵ2(t) < threshold(t) then
11: ω(t) = 1
12: else
13: ω(t) = 0
14: end if
15: g(t) = h(t)ω(t)

β+yH(t)h(t)ω(t)

16: FAPI common section tb. 1, lines: (8-15)

IQR(t) = Q3
(
ϵ̃(t)
)
−Q1

(
ϵ̃(t)
)

threshold(t) = Q3
(
ϵ̃(t)
)
+ 1.5IQR(t) (3.45)

Where Q1(.) and Q3(.) represent respectively the lower and the upper
quartiles. Note that the adaptive computation of these quartiles is of neg-
ligible cost and many algorithms exist for its fast, adaptive evaluation, e.g.
[47]. The weighting factor is then determined as follows:ω(t) = 0 if ϵ2(t) > threshold(t)

ω(t) = 1 if ϵ2(t) ≤ threshold(t)
(3.46)

This algorithm, named HTFAPI (Hard Threshold FAPI), is summarized
in table 3.
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3.4 Simulations and results

To assess the performances of the proposed algorithms, we run several simula-
tion experiments relative to the adverse scenarios considered in this chapter.

The performance quality is measured via the following criteria evaluated
for a sample size of N = 5000 (in all simulations, we consider the sampling
period as unit time reference, then we will not use the unit time). The
estimation process are averaged over 100 independent runs:

• Subspace Tracking Error [6] (i refers to the i-th run):

STEi(t) =
tr
(
DH
i (t)

(
I−Dex(t)D

H
ex(t)

)
Di(t)

)
tr
(
DH
i (t)

(
Dex(t)DH

ex(t)
)
Di(t)

) (3.47)

where Di(t) is the subspace estimate at time step t and Dex(t) is the
exact (orthonormal) principal subspace weight matrix.

• Orthonormality Error [15]:

OEi(t) = ||I−DH
i (t)Di(t)||2F (3.48)

where ||.||F denote the Frobenius norm.

Based on the previous metrics, the algorithms accuracy is compared to the
SVD applied adaptively to the robust estimate of the covariance matrix Cx(t)

given in (3.11), as well as the Orthogonal ROBUSTA (OROBUSTA) algo-
rithm from [6] and the RPAST algorithm from [33]. They are also compared
to the OPAST algorithm [16] to showcase their performance in contrast to
the one of an adaptive standard but ’non-robust’ algorithm. The forgetting
factor in all algorithms is set to β = 0.999, hence, The newest data is more
taken into consideration over the old one.

In all scenarios, we generate signals of the form 2.2. In the sequel, we
consider observations x(t) of length n = 80 and signals s̃(t) of size p = 4.

Note also that our comparisons are done with existing algorithms of simi-
lar computational complexity (except for the SVD which is used here just for
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Figure 3.1: Principal subspace tracking error in a Gaussian noise environment

benchmarking). More precisely, all considered algorithms robust to impulsive
noise (MFAPI, HTFAP, RPAST, OROBUSTA) are of linear complexity2, i.e.
O(np) flops per iteration.

3.4.1 Gaussian noise environment

Here, we compare the FAPI algorithm with OPAST. The mixing matrix A is
defined as A =

[
a(ω1), a(ω2), · · · , a(ωp)

]
with a(ωk) =

[
1; ejωk ; · · · ; ejωk(n−1)

]
.

ωk are chosen to be as in [26], hence ωk ∈ [0.11; 0.08; 0.05; 0.025]. The addi-
tive noise n(t) is a zero mean Gaussian white noise.

We can see from figure 3.1 that, besides the fact that the projection
approximation in FAPI is more accurate to that of the OPAST, FAPI out-
performs the OPAST in terms of convergence speed (at least for the first
iterations). Reasons why, we have chosen the FAPI as a base for our pro-
posed algorithms.

2There are slight differences in their respective numerical complexities, but the domi-
nant cost remains of order O(np).
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3.4.2 Non-Gaussian noise environment

To assess the robustness performance of the proposed algorithms, we inves-
tigate two types of impulsive noise: Burst noise and α-stable noise. The
mixing matrix A is generated randomly (with Gaussian entries).

3.4.2.1 Burst noise case

Here, we consider the noise n(t) in (2.4)
In the absence of an impulsive noise, the signals will each have an SNR =

10dB. However, in four distinct period of time: P1 = [1000, 1050], P2 =

[2500, 2600], P3 = [3500, 3550] and P4 = [4000, 4050], an additive high am-
plitude Gaussian noise forces the SNR to drop to −40dB.

the threshold of the HTFAPI is defined over a time window equal to
L = 1000.

Our simulation results, given in figures 3.2 and 3.3, show that in a burst
noise environment, our proposed algorithms (ie. MFAPI and HTFAPI) per-
form almost as well as the SVD while maintaining a linear complexity and
the orthonormality of the estimated weight matrix.

3.4.2.2 α-stable noise case

Now, we consider the impulsive noise n(t) in 2.1 to be α-stable distributed.
Indeed, for small values of α, the mass of the tail becomes significant, repre-
senting a challenging problem.

One can note from figures 3.4, 3.5 and 3.6, that our algorithms still out-
perform the others up to α = 1.3, with the MFAPI performing slightly better
than the HTFAPI for the smaller values of α. Indeed, when the noise impul-
siveness is high, the chosen IQR based threshold becomes less efficient due
to the heaviness of the distribution tail.

Note that all listed algorithms handling non-adverse scenarios or designed
for impulsive noise environments are of linear complexity of order O(np) flops
per iteration.
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Figure 3.2: Subspace tracking error in an impulsive noise environment: Burst
noise.
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Figure 3.3: Orthonormality error in an impulsive noise environment: Burst
noise.
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Figure 3.4: Principal Subspace tracking error in an impulsive noise environ-
ment: α-stable noise. α = 1.5
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Figure 3.5: Principal subspace tracking error in an impulsive noise environ-
ment: α-stable noise. α = 1.4

3.5 Conclusion

In this chapter, we provided new robust and fast adaptive algorithms for
the estimation and tracking of the principal subspace. Indeed first, we en-
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Figure 3.6: Principal subspace tracking error in an impulsive noise environ-
ment: α-stable noise. α = 1.3

hanced the robustness of the Mahalanobis distance for the computation of the
weighting factor by using the robust estimate of the covariance matrix, which
yields to the MFAPI algorithm. Then we proposed new hard thresholding to
determine the same weighting factor in order to reduce further the compu-
tational cost, this case corresponds to the HTFAPI algorithm. Finally, the
effectiveness and accuracy of the proposed algorithms were assessed through
simulated experiments where it has been shown that they outperform the
existing methods in both accuracy and orthonormality.

In the next chapters, we will investigate the efficiency of the proposed
algorithms for two applications. First, we utilize them in the localization
field, by estimating and tracking the directions of arrival from the principal
subspace. Then, we employ them in blind source separation after extracting
the principal eigenvectors.
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Chapter 4

PCA and its Application to Blind
Source Separation

4.1 Introduction

As mentioned before, PSA and PCA are important problems involved in
many applications such as array processing and source localization [48, 49],
equalization and multi-user detection in communications [50], space-time
adaptive processing for radar systems [51], blind system identification [52,
53, 54], background subtraction in computer vision [55], etc.

While for the PSA, only a basis of the principal subspace is considered,
the PCA, our target in this chapter, consists of estimating the principal
eigenvectors of the data covariance matrix. The conventional matrix alge-
braic approaches such as eigenvalue or singular value decompositions provide
a good solution for batch processing, but they become inappropriate (too ex-
pensive) for real-time applications especially when the dimensions are large.

Hence, our objective was to develop adaptive solutions for the PCA, ap-
propriate for streaming data or time-varying contexts. In the non-adverse
scenario (e.g. in the Gaussian noise case), several effective solutions for PCA
exist in the literature ranging from low complexity algorithms, e.g. [56] which
cost O(np) flops per iteration (n being the size of the observation vector and
p << n is the number of principal eigenvectors to estimate), to high com-
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plexity algorithms with a cost of O(n2p) flops or more per time instant [57].
In our study here below, we are first, interested in adaptive PCA in

adverse scenarios where impulsive noise or strong and sparse outliers affect
the observations, along with the case of missing data.

Indeed, we extend the FAPI method [26] from PSA to the PCA using
Givens rotations. The resulting algorithm referred to as GFAPI (G stands for
Givens), extracts and tracks the PCA in non-adverse contexts (e.g. Gaussian
noise case). This allows us to proceed in the same manner for the robust
versions algorithms of the FAPI, hence MFAPI and HTFAPI, when dealing
with impulsive noise such as burst noise and α-stable noise, which leads to
the robust PCA algorithms Givens MFAPI (GMFAPI) and Givens HTFAPI
(GHTFAPI).

Moreover, in the presence of sparse outliers and/or missing data, we pro-
pose a PCA method adapted from the robust PSA algorithm in [58] which
relies on PETRELS method (Parallel Estimation and Tracking by REcursive
Least Squares) [59] and the ADMM (Alternating Direction Method of Mul-
tipliers) technique for the outliers detection. We refer to this algorithm as
PCAPA for Principal Component Analysis using PETRELS-ADMM.

In a second place, We are interested in the application of the PCA in
the Blind Source Separation (BSS) field. Indeed, the BSS consists of the ex-
traction of source signals from their observed mixtures without prior knowl-
edge of the mixing matrix or its inputs. BSS is widely used in many signal
processing applications, and a plethora of works have been devoted to de-
velop solutions in different contexts and under different mixing models, e.g.,
[60, 61, 62, 63, 64, 65, 66]. In particular, second order statistics based meth-
ods are highly regarded due to their low computation load and efficiency to
separate temporally coherent (colored) sources. These features make them
suitable for adaptive scheme when dealing with streaming data. Several al-
gorithms have been already dedicated to such an adaptive scheme including
[63, 64, 67, 68, 69, 70, 71, 72]. However, most of the existing algorithms con-
sider noise as being Gaussian or negligible. Whereas, in many applications,
the measurements are affected by impulsive noise or outliers, e.g., [73, 74, 75],
in which context standard methods fail to achieve the BSS. To deal with im-
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pulsive noise, some authors have proposed robust batch BSS algorithms, e.g.,
[76, 77, 78, 79, 80, 66].

here, we propose to deal with both streaming data (i.e. adaptive scheme)
and impulsive noise. Hence, a new approach that ensures both robustness
and adaptivity is introduced based on second-order decorrelation approach.

To achieve the latter, we rely on the streaming data case and introduce
the adaptive Second Order Blind Identification (SOBI) algorithm for the
Gaussian noise case. In this algorithm, referred to as Adaptive SOBI (A-
SOBI), the source separation is performed in two steps: whitening and joint
diagonalization. The whitening is achieved using an adaptive PCA algorithm
Givens-OPAST (GOPAST) followed by the joint diagonalization conducted
on several non-zero lag correlation matrices. Similarly, our proposed Robust
Adaptive SOBI (RA-SOBI) algorithm is derived via the use of our robust
PCA tracking algorithms [1] for the whitening step. Moreover, to improve
furthermore the robustness of the algorithm, we propose here to estimate
the non-zero lag correlation matrices, considered in the joint diagonalization
step, via robust estimation techniques [81].

The rest of this chapter is organized as follows. Our robust PCA algo-
rithms are detailed in section 4.2. Then sections 4.3 and 4.4 present both
the whitening and the joint diagonalization steps respectively. Algorithms
performances and assessment are given in section 4.5. Finally, section 4.6
concludes this chapter.

4.2 Eigenvectors tracking: PCA

4.2.1 Impulsive noise

In order to extract the PCA, Thameri et al. proposed in [56] and [82] to
apply Givens rotations to the principal subspace estimated from OPAST
leading to the GOPAST algorithm. In the same manner, we propose here to
exploit the FAPI algorithm’s subspace estimate as well as Givens rotations
to transform the orthonormal basis of the principal subspace D(t) into the
desired principal eigenvectors basis (denoted U(t)). Indeed, since the two
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basis are orthonormal and span the same subspace, there exists an orthog-
onal matrix Q(t) that links the two previous basis, i.e. U(t) = D(t)Q(t).
We compute matrix Q(t) iteratively as product of elementary Givens rota-
tions. This algorithm will be referred to as GxFAPI (GFAPI, GMFAPI or
GHTFAPI depending on which algorithm we use to estimate the subspace
D(t)).

A p×p Givens rotation denoted Gl,m(θ, ϕ) is a matrix equal to the identity
except for its (l, l), (l,m), (m, l) and (m,m) entries. It is given by:

Gl,m(θ, ϕ) =



1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · c · · · −s∗ · · · 0
...

... . . . ...
...

0 · · · s · · · c · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1


(4.1)

where c = cos(θ) and s = sin(θ)e−jϕ.
To compute matrix G in equation (4.1), we consider the fact that the

exact matrix Z′ = (UHCxU)−1 is diagonal. Hence, every matrix G is com-
puted in such a way one minimizes the departure from diagonal structure of
Z′ = GZGH where Z is the matrix involved in FAPI algorithm (see table 1).
This corresponds to writing U ≈ DGH . The Givens parameters are obtained
by minimizing the sum of the square modulus of the off diagonal elements of
Z′ according to:

(θ, ϕ) = argmin
θ,ϕ

∑
a̸=b

|Z ′
ab|2 (4.2)

After some straightforward derivations, the latter cost function can be shown
to correspond to:

(θ, ϕ) = argmax
θ,ϕ

|vT f(t)|2 (4.3)
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where

v =

 cos(2θ)

sin(2θ) cos(ϕ)

sin(2θ) sin(ϕ)

 and f(t) =

Zll(t)− Zmm(t)

2ℜ (Zlm(t))

2ℑ (Zlm(t))


ℜ(.) and ℑ(.) denote the real and imaginary parts of their argument and Zlm
is the (l,m)-th entry of matrix Z. An optimal solution of (4.3) is finally given
by v = [v1, v2, v3]

T = sign(f1(t))f(t)/||f(t)||, (where sign(f1(t)) refers to the
sign of the first entry of f(t)) and the angle parameters are obtained as:

c =

√
v1 + 1

2
and s =

v2 − jv3
2c

Now, to select the rotation indices (l,m), different strategies can be consid-
ered. Also, several rotations can be applied at each time instant t. In our
work, we have opted to use 2 rotations per time instant, as a good trade-
off between complexity and the algorithm’s accuracy. For the first rotation,
the indices correspond to those of the off-diagonal element of Z(t) with the
largest amplitude, i.e.

(l,m) = arg max
{(a,b)|a<b}

|Zab(t)| (4.4)

The second rotation’s indices, denoted by (l′,m′), are chosen in such a way
that all indices are visited periodically along the iterations according to:

(l′,m′) =


(l,m+ 1) if m < p

(l + 1, l + 2) if m = p and l < p− 1

(1, 2) if m = p and l = p− 1

(4.5)

(l,m) being the chosen indices at time t− 1. Table 4 summarizes this algo-
rithm.

42



Chapter 4. PCA and its Application to Blind Source Separation

Algorithm 4 (table 4): GxFAPI algorithm
1: Initialization

(l,m) = (1, 2)

for each time step do :
2: input: D(t)

1st rotation:
3: Select rotation indices as in (4.4)
4: f(t) =

[
Zll(t)− Zmm(t), 2ℜ(Zlm(t)), 2ℑ(Zlm(t))

]T
5: v = sign(f1(t))f(t)/||f(t)||
6: c =

√
v1+1
2

and s = v2−v3
2c

7: Determine G as in equation (4.1)
8: Z(t) = GZ(t)GH

9: D(t) = D(t)GH

10: U(t) = D(t)
2nd rotation

11: Select rotation indices as in (4.5)
12: Apply the same steps as for the first rotation, lines: (4-10)

4.2.2 PCAPA algorithm for missing data and sparse

outliers case

In this section, we focus on the adverse scenarios d, e and f in section 2.2.1.2.
Indeed, the standard PCA algorithms performance may be degraded signif-
icantly if the measurement data are corrupted by outliers or missing obser-
vations [83]. Many recent papers highlighted the fact that latter scenario is
ubiquitous and more and more frequent in large dimensional systems, e.g.
[84].

Recently, an efficient algorithm, namely PETRELS-ADMM [58] has been
proposed for robust subspace tracking (i.e. PSA). Our purpose here is to
modify it in such a way, one achieves the PCA objective in such an ad-
verse context. PETRELS-ADMM relies on two techniques to deal with both
outliers and missing data. It uses the approach considered in PETRELS al-
gorithm [59] to solve the PSA problem in the case of missing data. On the
other side, it exploits the ADMM technique for the outliers detection. Once
detected, the corrupted measurements are simply disregarded and treated as

43



Chapter 4. PCA and its Application to Blind Source Separation

Algorithm 5 (table 5): PCAPA algorithm
1: For each time step do:

Subspace estimation:
2: Detect outliers unsing ADMM. Algorithm 2 in [58]
3: Update P(t) to remove the outliers. Algorithm 1 in [58]
4: Estimate D(t) using PETRELS. Algorithm 3 in [58]

PCA extraction:
5: D̃(t) = D(t)

(
DH(t)D(t)

)−1/2 % Orthonormalizing D(t)

6: ỹ(t) = D̃H(t)x(t)
7: Rỹỹ(t) = βRỹỹ(t− 1) + ỹ(t)ỹH(t)
8: U(t) = diagonalization of Rỹỹ % Rỹỹ = U(t)Λ(t)UH(t)
9: U(t) = D̃(t)U(t)

missing data. The data model encompassing these two situations is described
in (2.8):

In this work, we use Algorithm 2 in [58] for outliers detection which are
then removed before applying PETRELS algorithm (i.e. Algorithm 1 in [58])
for subspace tracking in presence of missing data (see [58] for more details).
PETRELS-ADMM output is a n × p matrix D whose columns span the
principal subspace.

Now, in order to extract the p principal components of the data covariance
matrix, we propose to proceed according to the three following steps:

• Orthonormalize matrix D, using fast QR decomposition or simply by
computing: D̃ = D(DHD)−1/2 which costs O(np2) flops per iteration.

• Compute ỹ = D̃Hx as well as its (adaptively estimated) covariance
matrix Rỹỹ. This costs O(np) flops per iteration.

• Compute the eigendecomposition of Rỹỹ according to Rỹỹ = UΛUH ,
(U being the unitary eigenvectors matrix while Λ is the diagonal eigen-
values matrix). The desired principal components are obtained as D̃U.
This final step costs again O(np2) flops per iteration.

This new PCAPA algorithm is summarized in table 5.
The overall cost of the resulting algorithm is of order O(np2). The latter

can be reduced to O(np) if one replaces PETRELS by OPAST and instead of
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a full eigendecomposition, one applies only few Givens rotations. However,
this cost reduction leads to a significant loss in terms of estimation accuracy,
especially for large dimensional systems, and hence is not considered here.

4.3 Data whitening

This step consists of projecting the observed vector x(t) onto the principal
subspace spanned by the column vectors of the mixing matrix A, with the
purpose of transforming it into a unitary matrix. The used matrix in this
transformation is called the whitening matrix W.

In [62], it has been shown that the whitening matrix W can be computed
from the eigendecomposition of the covariance matrix of x(t), denoted Cx,
as follows:

Cx = UsΛUH
s + σ2I (4.6)

W = Λ−1/2UH
s (4.7)

where Us and Λ are the matrices of the p principal eigenvectors and eigen-
values of the noise-free covariance matrix. For a streaming data scheme,
Thameri et al. proposed in [56, 68] to replace the exact eigenvectors and
eigenvalues by their adaptive estimates using GOPAST algorithm according
to:

W(t) = Λ(t)−1/2UH
s (t) (4.8)

In the same manner, in order to compute the whitening matrix W(t),
we use here the robust estimates of the principal components U(t) obtained
in the previous section, as well as the matrix Z(t), which represents the
inverse of the eigenvalues up to a scaling factor, which results in preserving
a linear cost i.e. O(np) flops per iteration. This will lead us to the whitening
equation:

W(t) = Z(t)1/2UH(t) (4.9)

Remark: In the above, Λ corresponds to the diagonal matrix of the principal

45



Chapter 4. PCA and its Application to Blind Source Separation

eigenvalues of the covariance matrix Cx. Implicitly, this means that the noise
term (i.e. noise power σ2) has been neglected in (4.6). In case, the latter
cannot be considered negligible, one can estimate it as shown in (3.43) and
replace in (4.9) Λ(t) by Λ(t)− σ2(t)I.

4.4 Joint diagonalization

After whitening, the mixing matrix is approximately reduced to a p × p

unitary matrix denoted WH(t) and hence the noiseless whitened signal can
be written as x̃(t) = W(t)x(t) ≈ BH(t)s(t). To estimate the separation
matrix B(t), A-SOBI uses a joint diagonalization of K correlation matrices
Rt(τk) corresponding to K chosen non-zero lags τ1, · · · , τK . The latter are
adaptively estimated as:

Rt(τk) = βRt−1(τk) + ŝ(t)ŝH(t− τk) (4.10)

Where 0 < β < 1 is a forgetting factor and ŝ(t) = B(t)x̃(t).
To further enhance the robustness of the proposed algorithm, we propose

to estimate the correlation matrices via robust estimation techniques.
Hence, since we consider several correlation matrices with different time

lags for the diagonalization step, it is important to take into account whether
the observations at these time lags are corrupted or valid. Thus, we propose
here to weight the estimates of the correlations with a combination of ω(t)
and ω(t− τk) to ensure the mitigation of erroneous data.

Thus, the correlation matrices are estimated as

Rt(τk) = βRt−1(τk) +
√
ω(t)ω(t− τk)ŝ(t)ŝ

H(t− τk) (4.11)

Now, to achieve the joint diagonalization, it is first stated that the uni-
tary separation matrix can be computed as a product of elementary Givens
rotations:

B =

p−1∏
l=1

p∏
m=l+1

Gl,m(θ, ϕ) (4.12)
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where Gl,m(θ, ϕ) is a p × p matrix equal to the identity except for its (l, l),
(l,m), (m, l) and (m,m) entries. It is given by:

Gl,m(θ, ϕ) =



1 · · · 0 · · · 0 · · · 0
... . . . ...

...
...

0 · · · c · · · −s∗ · · · 0
...

... . . . ...
...

0 · · · s · · · c · · · 0
...

...
... . . . ...

0 · · · 0 · · · 0 · · · 1


(4.13)

where c = cos(θ) and s = sin(θ)e−jϕ. Thanks to the mutual decorrelation
of the source signals, the separation is achieved when the correlation matrices
R(τk) are diagonalized.

To perform the latter diagonalization in an adaptive way, one multiplies
at each time step R(τk) at its left and right sides by the elementary Givens
rotation G(t) according to:

R′(τk) = G(t)R(τk)G
H(t) (4.14)

The rotation indices l and m are selected to be the corresponding indices of
the entries of largest amplitude according to:

(l,m) = arg max
{(a,b)|a<b}

K∑
i=1

|Rab(τi)| (4.15)

Remark: Another way to select rotation indices (l,m) at time t would be to
visit periodically along the iterations all entries of the correlation matrices,
according to:

(l,m) =


(l′,m′ + 1) if m < p

(l′ + 1, l′ + 2) if m = p and l′ < p− 1

(1, 2) if m = p and l′ = p− 1

(4.16)
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(l′,m′) being the chosen indices at time t − 1. Also, instead of one single
rotation per time instant, one can use two rotations with indices chosen
according to the previous two methods in order to increase the algorithm’s
convergence rate, at the cost of increased computational complexity.

Finally, the rotation angles are obtained by minimizing the sum of off-
diagonal elements of the K considered correlation matrices:

(θ, ϕ) = argmin
θ,ϕ

∑
a̸=b

K∑
i=1

|R′
ab(τi)|2 (4.17)

This is proven to be equivalent to solving

(θ, ϕ) = argmax
θ,ϕ

vHFFHv (4.18)

where

v =

 cos(2θ)

sin(2θ) cos(ϕ)

sin(2θ) sin(ϕ)


and

F =

Rll(τ1)−Rmm(τ1) · · · Rll(τK)−Rmm(τK)

2ℜ (Rlm(τ1)) · · · 2ℜ (Rlm(τK))

2ℑ (Rlm(τ1)) · · · 2ℑ (Rlm(τK))


ℜ(·) and ℑ(·) denote the real and imaginary parts of their argument and
Rlm(τk) is the (l,m)-th entry of matrix R(τk). An optimal solution is finally
given by v = [v1, v2, v3]

T = sign(u1)u (u1 being the 1st entry of u) where
u is the unit-norm eigenvector corresponding to the principal eigenvalue of
matrix FFH . The angle parameters are finally obtained as:

c =

√
v1 + 1

2
and s =

v2 − jv3
2c

(4.19)

The above proposed RA-SOBI algorithm is summarized in the table 6
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Algorithm 6 (table 6): RA-SOBI
1: Initialization
2: B(0) = Ip

for each time step do :
3: input: Z(t) and U(t) from tb. 4
4: W(t) = Z(t)1/2UH(t)

for k = 1, · · · , K
5: ŝ(t− τk) = B(t)W(t)x(t− τk); k = 1, · · · , K
6: Rt(τk) = βRt−1(τk) +

√
ω(t)ω(t− τk)ŝ(t)ŝ

H(t− τk)
end for

7: determine (l,m) as in (4.15) or (4.16)

8: F =

Rll(τ1)−Rmm(τ1) · · · Rll(τK)−Rmm(τK)
2ℜ (Rlm(τ1)) · · · 2ℜ (Rlm(τK))
2ℑ (Rlm(τ1)) · · · 2ℑ (Rlm(τK))


9: u = eigs(FFH , 1)

10: v = sign(u1)u

11: c =
√

ṽ1+1
2

and s = ṽ2−ṽ3
2c

12: define G(t) as in (4.1)
for k = 1, · · · , K

13: R(τk) = G(t)R(τk)G
H(t)

end for
14: B(t) = B(t)GH(t)

4.5 Simulations and results

4.5.1 PCA

To assess the proposed algorithms’ performance related to the PCA prob-
lem, we run several simulation experiments relative to the adverse scenarios
considered above.

Here the performance quality is measured via the PCA Tracking Error
(PTE) criterion [85, 56] evaluated for a sample size of N = 5000 and averaged
over 100 independent runs:

PTEi(t) = ||Uex(t)−Ui(t)||2F (4.20)

where Uex(t) is the matrix of the exact principal eigenvectors of Cx(t). ||.||F
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denote the Frobenius norm.
Based on the previous metric, the algorithms’ accuracy is compared to

the SVD applied adaptively to the robust estimate of the covariance matrix
Cx(t) given in (3.11). They are also compared to the GOPAST algorithm
[56, 82] to showcase their performance in contrast to the one of an adaptive
standard but ’non-robust’ algorithm. The forgetting factor in all algorithms
is set to β = 0.999.

In the sequel, we consider observations x(t) of length n = 80 and signals
s̃(t) of size p = 4.

Note also that our comparisons are done with existing algorithms of sim-
ilar computational complexity (except for the SVD which is used here just
for benchmarking). More precisely, all considered algorithms that are ro-
bust to impulsive noise (GMFAPI, GHTFAP, RPAST, OROBUSTA) are of
linear complexity1, i.e. O(np) flops per iteration, while all considered algo-
rithms dealing with missing data and outliers (PCAPA, PETRELS-CFAR,
GRASTA) are of complexity order O(np2).

4.5.1.1 Gaussian noise

In this first experiment, we consider the scenario corresponding to the model
described by equation 2.1 where the observation is affected by an additive
Gaussian noise (a in 2.2.1.2).

Indeed, here, we compare GFAPI algorithm with GOPAST. The mix-
ing matrix A is defined as A =

[
a(ω1), a(ω2), · · · , a(ωp)

]
with a(ωk) =[

1; ejωk ; · · · ; ejωk(n−1)
]
. ωk are chosen to be as in [26], hence ωk ∈ [0.11; 0.08; 0.05; 0.025].

The additive noise n(t) is a zero mean Gaussian white noise.
We can see from figures 4.1 that our proposed algorithm GFAPI, out-

performs GOPAST in terms of convergence speed. This result is due, in
one way, to the fact that FAPI outperforms OPAST, and hence GFAPI is
slightly more accurate (at least for the first iterations) than GOPAST. On
the other hand, the Givens rotations, when applied to the subspace estimate

1There are slight differences in their respective numerical complexities, but the domi-
nant cost remains of order O(np).
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Figure 4.1: Principal components tracking error in a Gaussian noise environ-
ment

of OPAST, affect the correctness of the projection approximation used in
this latter and impact its convergence rate as compared to GFAPI.

4.5.1.2 Impulsive noise

In this case, To assess the performance of the proposed algorithms, we in-
vestigate two types of impulsive noise: burst noise and α-stable noise (b and
c in 2.2.1.2 ). The mixing matrix A is generated randomly (with Gaussian
entries).

Burst noise case: In the absence of impulsive noise, the signals will each
have an SNR = 10dB. However, in four distinct period of time: P1 =

[1000, 1050], P2 = [2500, 2600], P3 = [3500, 3550] and P4 = [4000, 4050], an
additive high amplitude Gaussian noise forces the SNR to drop to −40dB.

In this scenario, we aim to evaluate our proposed algorithms which handle
the impulsive noise, namely the GMFAPI and the GHTFAPI (the threshold
of the GHTFAPI is defined over a time window equal to L = 1000), by
comparing them to GOPAST [56] and the SVD when applied to the robust
covariance matrix estimate Cx(t) in (3.11). In addition, we have compared
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Figure 4.2: Principal components tracking error in an impulsive noise envi-
ronment: Burst noise.

our proposed algorithms to existing adaptive PSA algorithms [33, 6] to which
we have added the PCA extraction step via the use of two Givens rotations
as for GFAPI.

Our simulation results given in figure 4.2, show that in a burst noise
environment, our proposed algorithms perform almost as well as the SVD
while maintaining a linear complexity.

α-stable noise case Now, we consider the impulsive noise n(t) in 2.1 to
be α-stable distributed. For small values of α, the mass of the tail becomes
significant, representing a challenging problem.

One can note from figures 4.3, 4.4 and 4.5, that our algorithms still out-
perform the others up to α = 1.3, with the GMFAPI performing slightly
better than the GHTFAPI for the smaller values of α. Indeed, when the
noise impulsiveness is high, the chosen IQR based threshold becomes less
efficient due to the heaviness of the distribution tail.
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Figure 4.3: Principal components tracking error in an impulsive noise envi-
ronment: α-stable noise. α = 1.5
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Figure 4.4: Principal components tracking error in an impulsive noise envi-
ronment: α-stable noise. α = 1.4
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Figure 4.5: Principal components tracking error in an impulsive noise envi-
ronment: α-stable noise. α = 1.3

4.5.1.3 PCAPA

In this scenario, we aim to assess the performance of our last proposed algo-
rithm dealing with missing data and outliers (d, e and f in 2.2.1.2). To do so,
we run a simulation with the same observations as earlier for SNR = 20dB.
The system might then be corrupted as in (2.8) with sparse outliers i(t) of
density ψoutliers and i.i.d. magnitude uniformly distributed over [0, 10]. In
addition, some entries might be non-observed (missed), with probability of
missing data denoted ψmissing.

We compare the algorithm’s performance with the SVD when applied to
the raw data. Also, for comparison purpose, we consider also the GRASTA
[86] and the PETRELS-CFAR [6] (both are PSA adaptive algorithms) to
which we added a PCA extraction step based of the proposed diagonalization
approach.

First, we assess our algorithm’s performance in the case where none of
the entries are missing and no outliers occur. As can be seen from figure 4.6,
its accuracy in this case is close to that of the SVD.

In figure 4.7, we considered the case where 20% of the data is missing and
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Figure 4.6: PCAPA performance comparison: absence of outliers and missing
data

in figure 4.8 the case where 20% of the data is missing and 20% of it is affected
by outliers. As can be seen, our dedicated PCAPA algorithm preserves its
relatively good performance in these adverse contexts and outperforms both
GRASTA and PETRELS-CFAR algorithms.

Next, we investigate in more details the impact of the outliers and missing
data densities on the algorithm’s performance.

Outliers impact In this experiment, we fix the missing data density low
at ψmissing = 0.1, and we vary the outliers density denoted ψoutliers in the
range [0.1, 0.6]. We can see in figure 4.9 that the algorithm preserves a
relatively good estimation performance up to ψoutliers = 0.4, a situation where
approximately half of the data is corrupted or missing (i.e. 10% of data
missing + 40% of the observed data corrupted by outliers).

Missing data impact Now, we fix the outliers density low at ψoutliers = 0.1,
and we vary the ψmissing in the interval [0.1, 0.6]. From figure 4.10, we can
see that, again, the algorithm still provides accurate eigenvectors estimation
even when half of the entries are not observed.

Joint missing data and outliers impact: Finally, we assess the perfor-
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Figure 4.7: PCAPA performance comparison: 20% missing data case
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Figure 4.8: PCAPA performance comparison: 20% missing data and 20%
outliers

mance of the algorithm in presence of both missing data and outliers. In
this case, we increase the densities simultaneously so that both ψoutliers and
ψmissing vary in the range [0.1, 0.5].
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Figure 4.9: Impact of outliers density on PCAPA performance
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Figure 4.10: Impact of missing data density on PCAPA performance

One can notice in figure 4.11 that even in bad scenarios with high corrup-
tion rates, the algorithm still achieves a relatively good estimation accuracy
(i.e., steady state PTE of order 10−2).
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Figure 4.11: Impact of both outliers and missing data densities on PCAPA
performance

4.5.2 BSS

In order to investigate our algorithms performance regarding blind source
separation, we simulate the streaming data vectors x(t) of dimension n = 8

during N = 6000 time steps. Those observations are generated using p = 3

source signals s̃(t) corresponding to filtered complex circular white Gaussian
processes by three AR filters of order 1 with respective coefficients a1 =

0.95 exp (j0.5) , a2 = 0.75 exp (j0.7) and a3 = 0.55 exp (j0.3).
These signals are then mixed and corrupted with additive white centered

Gaussian noise nG(t) imposing an SNR of 5dB.
We run M = 100 Monte Carlo simulations for all scenarios and we evalu-

ate the algorithms performance using the mean rejection level defined in [62]
as:

I(t) =
1

M

M∑
m=1

( p∑
i=1

∑
j ̸=i |Lij(t)|2

|Lii(t)|2
)

(4.21)

Where L(t) = B(t)A(t) is close to a diagonal matrix (after removing the
permutation indeterminacy).

Note that for all algorithms the forgetting factor is set to be β = 0.999

58



Chapter 4. PCA and its Application to Blind Source Separation

0 1000 2000 3000 4000 5000 6000

Time index

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

M
e

a
n

 r
e

je
c
ti
o

n
 l
e

v
e

l 
(d

b
)

A: random orthogonal mixing matrix

A-SOBI

RA-SOBI (GMFAPI based)

RA-SOBI (GHTFAPI based)

Natural gradient

Improved Natural gradient

Figure 4.12: Algorithms performance in case of random mixing matrix and
Gaussian noise only environment

and the number of considered correlation matrices is K = 10. Also, the
number of samples used in the threshold determination for the GHTFAPI
algorithm is L = 1000.

To make sure our algorithm performs well in an adaptive manner, we first
run the simulation without adding the burst noise. From Fig. 4.12, we can
clearly notice that our proposed algorithm RA-SOBI in its two versions as
well as the A-SOBI outperform the other state of the art algorithms when
dealing with Gaussian noise environment.

In addition, to evaluate the robustness of the algorithm, we simulate a
burst noise as defined in (2.4) that occurs during four periods of time, namely:
P1 = [1500, 1550], P3 = [2500, 2600], P3 = [3500, 3600] and P4 = [4500, 4600]

causing the SNR to drop to −40dB.
Furthermore, we investigate three scenarios with different mixing matri-

ces:

• First, we consider a general case with A being an (n × p) random
matrix.

• Then, we investigate a scenario where the mixing matrix A is structured
as in (2.3):
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Figure 4.13: Algorithms performance in case of random mixing matrix

Where θk is a direction of arrival chosen in this experiment as θ1 = 10◦,
θ2 = 30◦ and θ3 = 50◦.

• Finally, we study the case where the system is slowly time varying.
For that, we use the latter structure of A while linearly varying the
directions of arrival such that it begins with θ1(0) = 20◦, θ2(0) = 10◦,
θ3(0) = −10◦ and it ends at θ1(N−1) = 30◦, θ2(N−1) = 0◦, θ3(N−1) =

−10◦ (i.e. θ3 is kept time invariant).

As we can see from Fig. 4.13, Fig. 4.14, and 4.15, it is clear that our
robust algorithm RA-SOBI (with its two versions) maintains a good source
separation throughout the entire testing period, while the non-robust algo-
rithms (A-SOBI, natural gradient and the improved natural gradient [68])
collapse at the occurrence of the first noise impulse.

4.6 Conclusion

In this chapter, we have introduced robust adaptive algorithms for blind
source separation based on second-order decorrelation. The latter was achieved
thanks to robust fast whitening, as well as Givens rotations-based joint di-
agonalization performed on robust estimates of correlation matrices. Our
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Figure 4.14: Algorithms performance in case of directions of arrival depen-
dent mixing matrix
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Figure 4.15: Algorithms performance in case of time-varying mixing matrix

algorithms are shown, via simulation experiments, to be effective in an im-
pulsive noise environment, while having low computational complexity of
order O(np+ pK) flops per iteration.1
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Chapter 5

State Representation based on
Subspace Tracking: Direction of
Arrivals Estimation and Tracking

5.1 Introduction

Directions of Arrival (DoA) estimation and tracking have long presented a
great interest in signal processing. In the array signal processing literature,
we can come across several research axes on this subject. The high-resolution
methods that appeared in that context were the MUltiple SIgnal Classifi-
cation (MUSIC) method [87] and the Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) algorithm [88]. However, these
methods are very expensive in terms of complexity due to the eigendecom-
position of the data covariance. Thankfully, adaptive algorithms with linear
complexity have emerged to lower the cost of this eigendecomposition step,
such as the PAST [15], OPAST [16], PAST with the deflation technique
(PASTd) [15], FAPI [26] and FDPM [24]. Furthermore, to improve the re-
sults of these algorithms, several works have proposed to add a Kalman filter
to smooth the tracking of the DoA [89, 90, 91]. Despite their efficiency, these
algorithms lack of robustness. Indeed, in the presence of impulsive noise,
these algorithms diverge and the estimation error of the DoA becomes too
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large. In this context, one can find several subspace tracking algorithms
that deal with this problem [6, 33, 92, 58]. It has been shown in [1] that
our algorithm called MFAPI and its lower cost version HTFAPI out-perform
the other algorithms in the presence of data corrupted by impulsive noise or
outliers.

As seen in the previous chapter, the latter algorithms propose to replace
the least squares criterion of the subspace estimation with a more appropriate
weighted criterion WLS in order to mitigate the impact of corrupted data
through the choice of a proper attenuation coefficient as in [6]. In addition,
they use the projection approximation proposed in [26] which helps to reduce
significantly the computational cost.

In the sequel, we propose to smooth the results obtained by the HT-
FAPI algorithm by using a Kalman filter. More precisely, the directions of
arrival given by HTFAPI followed by a Total Least Squares ESPRIT (TLS-
ESPRIT), are considered to be measurements for Kalman’s filter. Besides,
the parameters of the latter are chosen dynamically according to the weight-
ing coefficient of the algorithm HTFAPI.

The rest of this chapter is organized as follows. Section 5.2 details the
problem statement of a moving point modelization. Then, the Kalman filter
principal is depicted in section 5.3. Moreover, the filter αβ is introduced in
section 5.4. The proposed smoothing algorithm is presented in section 5.5,
while the results of simulations are given in section 5.6. Finally, section 5.7
concludes this chapter.

Note: The Kalman filter related variables in this chapter are preceded
with a subscript K to not create confusion.

5.2 Moving point Modelization

5.2.1 the model

Let’s consider a moving point for which we aim to represent its state in
space. The model of this point sits on two differential equations (scalar or
vectorial). the first one describes the system dynamic whilst the second one
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represents the measurement. The continuous model is given by the following
two equations

Kẋ(t) = f(Kx(t); Ku(t); Kw(t); t) (5.1)

Kz(t) = h(Kx(t); Kv(t); t) (5.2)

The nx dimensional state vector Kx(t) holds the mobile dynamics’ evolu-
tion parameters. Ku(t) is the user entry vector of dimension nu (it represents
known parameters such as a command or the observer position). Kz(t) is the
nz dimensional measurement vector. For simplicity, the noises Kw(t) and

Kv(t) are considered mutually independent zero mean white sequences and
are usually additive and Gaussian.

Kw(t) is called the noise process and represents the modelization errors. it
can also represent the exact model lack of knowledge [93], e.g. when a target
performs a maneuver while following a second-order motion (see further in
this section) we have to use a noise with a large variance. And while the noise
process is introduced by the user, the measurement noise Kv(t) is related to
the measurement mechanism.

f(·) and h(·) are mostly non-linear functions, but for simplicity and/or
implementation concerns, we will consider them linear in the above. Now, if
the system is discrete or is processed through a discretization, the previous
equations become [94]

Kxt+1 = ft(Kxt; Kut; Kwt) (5.3)

Kzt = ht(Kxt; Kvt) (5.4)

With the index t being discrete. To simplify the writing, we omitted the
sampling time T by replacing tT with t.

In this manuscript, we will consider the above discrete model. In partic-
ular, the linear discrete model, as is applied in practice to a wild selection of
applications. It is given by the following differential equations:
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Kxt+1 = KFKxt + KGKut + KΓKwt (5.5)

Kzt = KHKxt + Kvt (5.6)

Where:

• KF is the transition matrix from the instant t to the instant t+ 1

• KG is the weighting matrix of entry Kut. In the absence of the latter,
the matrix KG is null.

• The matrix KH is called the measurement matrix.

• the sequence Kwt is often assumed Gaussian and centered with a co-
variance matrix equal to an identity matrix multiplied by σ2

w. Thus,
the noise process is centered and of the covariance matrix

KQ = E[(KΓKwt)(KΓKwt)
′] = σ2

wKΓKΓ
′

, where E[·] is the statistical mean.

• Likewise, the measurement noise Kvt is centered and is associated to
the covariance matrix KR = E[Kvt Kv

′
t]

5.2.2 the state vector

A state vector in the tracking field can contain various information about the
mobile according to its dynamics. Indeed, a mobile can move on a single axis
(1D), in a plane (2D), or in space (3D). Here we will detail the (2D) case as
the other cases can easily be deduced from it. In addition, the nature of the
mobile’s movement can be modeled by a constant velocity 5.7, a constant
acceleration 5.8, or it can be described by a hybrid model containing both
acceleration and rotary movements 5.9.

KxCV =
[
x y Vx Vy

]′
(5.7)
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KxCA =
[
x y Vx Vy ax ay

]′
(5.8)

KxR =
[
x y Vx Vy Kω

]′
(5.9)

When choosing the state vector, one has to take into account the system
dynamics. Thus, for the sequel, we will consider the constant velocity and
the constant acceleration cases.

5.2.3 System’s dynamics

In the tracking field, we often divide mobile points into two categories: ma-
neuvering and non-maneuvering mobiles [95]. Indeed, a mobile moving ac-
cording to a constant velocity is considered to be in a non-maneuvering mode,
otherwise, it is in a maneuvering one. By applying the mechanics’ rules of a
mobile point moving at a constant velocity, and assuming the sum of forces
applied to the said mobile of mass m at the instant t is

−→
F , then we have:[96]:[−→̈

x (t)
−→̈
y (t)

]
=

1

m

[−→
Fx(t)−→
Fy(t)

]
(5.10)

When the acceleration is null, or more precisely nearly null, we consider
the mobile in a non-maneuvering mode. In this case, the forces are mostly
reduced to friction. Let consider only the x component and define the accel-
eration by ax(t) = Fx/m, we thus obtain:

ẍ(t) = ax(t) (5.11)

5.2.3.1 Movement at a constant velocity: CV

The state vector of a point moving in the plan at a nearly constant velocity
is composed of its position in the two directions, plus their respective ve-
locities as shown in (5.7). In the absence of commands, assuming the two
coordinates aren’t correlated and considering a discrete model with an ac-
celeration modeled by a white noise: the Discrete White Noise Acceleration
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model (DWNA) leads to the following differential equation [93]:

Kxt+1 = KFCV Kxt + KΓCV Kwt (5.12)

with:

KFCV =


1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

 (5.13)

and

KΓCV =

T
2

2
0 T 0

0
T 2

2
0 T


′

(5.14)

The covariance matrix of the noise process corresponding to this model
is

KQCV = σ2
w



T 4

4
0

T 3

2
0

0
T 4

4
0

T 3

2
T 3

2
0 T 2 0

0
T 3

2
0 T 2


(5.15)

In practice, σw must be within the interval [0.5amax; amax] where amax
represents the maximal possible acceleration within a time step [93]. In
order to obtain (5.12) [96]:

• We assume that the acceleration (5.11) is constant between to sampling
instants Tt and T (t+ 1).

• We suppose the two components to be independent between to sam-
pling instants.

• Finally, we incorporate two times (5.11) between those two instants.
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This model is very popular and it is known under the appellation ’discrete-
time Constant-Velocity model’ (CV), or more precisely, ’discrete-time Nearly-
Constant-Velocity model’ (NCV) [93]. This is due to the fact that a low ac-
celeration in both directions is systematically modelized by the noise process.

5.2.3.2 Movement at a Constant Acceleration: CA

The state vector of a point moving in the plan at a constant acceleration
is composed of its position, velocity, and acceleration in both directions as
shown in (5.8). In the absence of commands, assuming the two coordinates
aren’t correlated and considering a discrete model with an acceleration mod-
eled by a Wiener process: the ’Discrete Wiener Process Acceleration model’
(DWPA) leads to the following differential equation :

Kxt+1 = KFCA Kxt + KΓCA Kwt (5.16)

with:

KFCA =



1 0 T 0 T 2

2
0

0 1 0 T 0 T 2

2

0 0 1 0 T 0

0 0 0 1 0 T

0 0 0 0 1 0

0 0 0 0 0 1


(5.17)

and

KΓCA =

T
2

2
0 T 0 1 0

0
T 2

2
0 T 0 1


′

(5.18)

The covariance matrix of the noise process corresponding to this model
is
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KQCA = σ2
w



T 4

4
0

T 3

2
0 T 2

2
0

0
T 4

4
0

T 3

2
0 T 2

2

T 3

2
0 T 2 0 T 0

0
T 3

2
0 T 2 0 T

T 2

2
0 T 0 1 0

0 T 2

2
0 T 0 1


(5.19)

In practice, σw must be within the interval [0.5∆amax; ∆amax] where
∆amax represents the maximal possible increase in acceleration within a time
step [93].

5.2.4 The measurement

In the tracking field, the measurement represents the image of the position
given by the measurement device. In the absence of noise, the relation be-
tween the state vector and the measurement vector is given by:

Kz̄ =

[
x

y

]
= KHKx (5.20)

with KH = KHCV in case of the CV model and KH = KHCA for the CA
model:

KHCV =

[
1 0 0 0

0 1 0 0

]′
(5.21)

KHCA =

[
1 0 0 0 0 0

0 1 0 0 0 0

]′
(5.22)

In this context, for the movement estimation, we rely on the hypothesis
of the two coordinates de-correlation x and y.
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5.3 Kalman filter principle

The system of equations of the Kalman filter (KF) relies on the definition of
two models describing the process and the measurement [96]. The process
model which describes the system evolution is given by (5.5) while the one
that describes the measurement is given in (5.6) and provides the link between
the measurement itself, the state and measurement noise.

• the noises Kwt and Kvt have typically different meanings: Kwtis con-
sidered the noise impacting the process, while Kvt represents the error
on the measurement.

• for simplicity reasons, we assume that the noises Kwt and Kvt are mu-
tually independent. The extension to the case where these noises are
correlated does not present any major difficulties.

• It is not necessary to make the assumption that the noises and the
initial condition are Gaussian [97, 98]. Indeed without this assump-
tion, the Kalman estimates are minimum variance estimates; with this
assumption, they are also optimal estimates in the sense of the condi-
tional mean.

• When using this filter, the assumptions are made such that the state
and the measurement noises have a priori known Gaussian distribu-
tions, independent, and independent of the initial state of the system.
The independence of the noises allows simplifying the derivation of the
Kalman filter equations.

• The initial state, along with its covariance is assumed to be known.

After an initialization step, the Kalman filter is used by recursively re-
peating a prediction step, then an update step. This allows us to follow and
estimate the evolution of the state of a system.
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5.3.1 Initialization

The initial state is assumed to be a Gaussian random variable, independent
of the noises, with a known mean and covariance matrix given by [99]:

Kx̂0|0 = E[Kx0] (5.23)

KP0|0 = E[(Kx0 − Kx̂0|0)(Kx0 − Kx̂0|0)
′] (5.24)

5.3.2 Prediction step

Given the estimated state and its covariance matrix at the time instant t, we
can make the prediction of the state and its precision at time t + 1, as well
as the prediction of the measurement. We, thus, obtain the predicted state

Kx̂t+1|t with its associated covariance matrix [99]:

Kx̂t+1|t = KFKx̂t|t (5.25)

KPt+1|t = KF KPt|t KF
′ + KQ (5.26)

The measurement prediction equation is given by:

Kẑt+1|t = KH Kx̂t+1|t (5.27)

5.3.3 Update step

Once the measure Kzt+1 is available, we compute the innovation Kŝt+1, which
represents the prediction error of the observation, whose associated covari-
ance matrix is KSt+1. The predicted state can then be corrected by this
innovation weighted by the gain of the filter KKt+1. We then deduce the
estimated state, Kx̂t+1|t+1, with its associated covariance matrix KPt+1|t+1

[93, 94]:

Kŝt+1 = Kzt+1 − Kẑt+1|t (5.28)
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Figure 5.1: A Kalman Filter cycle diagram

KSt+1 = KH KPt+1|t KH
′ + KR (5.29)

KKt+1 = KPt+1|t KH
′

KS
−1
t+1 (5.30)

Kx̂t+1|t+1 = Kx̂t+1|t + KKt+1Kŝt+1 (5.31)

KPt+1|t+1 = (I− KKt+1 KH) KPt+1|t (5.32)

The Kalman gain, KKt+1, takes into account the relative uncertainties
of the current estimate and the data. If the uncertainty KR of the data is
negligible compared to the uncertainty of the model KPt+1|t, we should have
a strong gain, i.e. the data is reliable. Conversely, if the uncertainty of the
data is large compared to that of the estimate, the gain should be very small,
i.e. the data is unreliable; it is normal then, that it does not, or only slightly,
modulate the uncertainty of the data.

A KF cycle is illustrated in Figure 5.1.
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5.3.4 The Kalman Filter advantages

The Kalman filter uses only the first two moments of the state, namely the
mean and the covariance, and ignores the moments of higher orders. this
approximation offers many practical advantages:

• The mean and covariance of a distribution requires only a small amount
of information, while this information is sufficient to cover a wide range
of applications. Thus we can say that the KF is an ideal compromise
between computational complexity and flexibility of representation.

• The mean and covariance or its square root are linearly translatable
quantities. This means that the mean and the covariance can be ef-
fectively evaluated when they undergo a linear transformation. We
note here that this characteristic does not remain valid for the other
moments of a distribution.

5.4 The αβ algorithm

In the mid-’50s, Radar systems qualified for tracking while scanning, Track
While-Scan radar system (TWS), have known the advancement of the struc-
ture of target tracking based on the αβ filter [100]. We note that the Kalman
filter appeared only in 1960 [98]. If the system is well-designed to provide
the state estimate, then we can get a good prediction of the next scan to
guarantee the track correlation [101]. In order to design such a system, the
best compromise must be found between intense filtering (steady state) and
the ability to follow a possible maneuver (transitional phase). Benedict and
Bordner proposed a filter topology based on the determination of a single pa-
rameter ensuring this trade-off and established the first relationship between
the parameters α and β which was β = α2/(2− α)[101]. The best choice of
the value α remained unknown until 1984 when Kalata introduced a factor
he called the tracking index. This factor is a function of the scan period and
the variances of the system and measurement noises [102].
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5.4.1 Derivation principle of the αβ filter

The derivation of the αβ filter is possible in two ways, the first one proposed
by Benedict-Bordner [101] is based on the theory of filtering and system
stability applied to time-invariant linear systems and has as objective a good
noise reduction and tracking during the maneuver. The equations obtained
are based on the calculation of variations. The second technique, which is
the most known, takes advantage of the Kalman filter equations. In fact, It
has been shown that this filter converges to an equilibrium or static state
[93, 94]. The αβ filter is used in the case of the CV model while in the case
of the CA model, it is the αβγ filter that is used. In this thesis, we will
consider only the approach followed by Kalata [93, 102] for the derivation of
the αβ filter, as we only consider a CV model.

For the sequel, we only consider a one-dimensional kinematic model. The
state equation and the measurement for the x component are given by:[

xt+1

Vxt+1

]
=

[
1 T

0 1

][
xt

Vxt

]
+

[
T 2/2

T

]
Kwt (5.33)

Kzt = KH

[
xt

Vxt

]
+ Kvt, KH =

[
1 0

]
(5.34)

We note the covariance of the system noise KQ and the variance of the
measurement noise KR. The covariance matrices of the estimated state and
the predicted state in steady state are respectively noted:

lim
t→∞ KP t|t =

[
p11 p12

p12 p22

]
(5.35)

lim
t→∞ KP t+1|t =

[
m11 m12

m12 m22

]
(5.36)

The existence, uniqueness, and positivity of the matrix (5.35) is guaranteed
as long as the observability and controllability conditions are satisfied [93].
In addition, the gain of the αβ filter is:
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KW = lim
t→∞ KWt

∆
=

[
g1

g2

]
∆
=

[
α

β/T

]
(5.37)

The parameters α and β as defined in this equation have no dimension.
The expression of the innovation covariance 5.29 is:

KS = KH

[
m11 m12

m12 m22

]
KH

′ + KR = m11 + KR (5.38)

The gain in 5.30 becomes:

KW =

[
m11 m12

m12 m22

]
KH

′
KS

−1 =
[

m11

m11+KR
m12

m11+KR

]′
(5.39)

From 5.37 and 5.39 we pull:

g1 =
m11

m11 + KR
(5.40)

g2 =
m12

m11 + KR
= g1

m12

m11

(5.41)

The covariance matrix becomes:[
p11 p12

p12 p22

]
= (I2 − KW KH)

[
m11 m12

m12 m22

]

=

[
(1− g1)m11 (1− g1)m12

(1− g1)m12 m22 − g2m12

]
,

(5.42)

where In is an n dimensional identity matrix. The equation 5.26 can be then
written as follows:

KP t|t = KF
−1
[
KP t+1|t − KQ

] (
KF

−1
)′
, KF

−1 =

[
1 −T
0 1

]
(5.43)

The static solution for the gain and covariance is given by the nonlinear
equations from 5.40 to 5.43, using the appropriate expression for the system
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noise covariance matrix. This development can also be applied to a model
obtained by discretization of the continuous state equation, but in our case,
we have limited ourselves to the DWNA model, see section 5.2.3.1. Using
5.15, corresponding to the covariance matrix of the DWNA model, in 5.43,
we obtain:

[
p11 p12

p12 p22

]
=

[
m11 − 2Tm12 + T 2m22 − 1

4
T 4σ2

w m12 − Tm22 +
1
2
T 3σ2

w

m12 − Tm22 +
1
2
T 3σ2

w m22 − T 2σ2
w

]
(5.44)

By identification between 5.42 and 5.44 we obtain

g1m11 = 2Tm12 − T 2m22 +
1

4
T 4σ2

w (5.45)

g1m12 = Tm22 −
1

2
T 3σ2

w (5.46)

g2m12 = T 2σ2
w (5.47)

At this stage, we have the system of equations 5.40, 5.41, 5.4.1, 5.46, and
5.47 with the five unknowns g1, g2,m11,m12, and m22. We can thus resolve
the system as follows:

From 5.40 and 5.41 we have:

m11 =
g1

1− g1
σ2
v (5.48)

m12 =
g2

1− g1
σ2
v (5.49)

From 5.46 and 5.47, we obtain:

m22 =
g1m12

T
+

1

2
T 2σ2

w =
(g1
T

+
g2
2

)
m12 (5.50)

By using equations from 5.47 to 5.50 in 5.4.1, we have:
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g21
1− g1

σ2
w = 2T

g2
1− g1

σ2
w − T 2

(g1
T

− g2
2

) g2
1− g1

σ2
w +

1

4
T 4 g22

1− g1
σ2
w (5.51)

After rearrangement, the above gives:

g21 − 2Tg2 + Tg1g2 +
T 2

4
g22 = 0 (5.52)

Using 5.37, 5.52 becomes:

α2 − 2β + αβ +
β2

4
= 0 (5.53)

The latter equation gives the first relation between α and β, namely:

α =
√

2β − β

2
(5.54)

The second relation between the two parameters can be deduced directly
from 5.47 and 5.49:

m12 =
T 2σ2

w

β/T
=

β/T

1− α
σ2
v, (5.55)

Thus:
β2

1− α
=
T 4σ2

w

σ2
v

(5.56)

By definition, we note:

λ
△
=
T 2σw
σv

(5.57)

The quantity λ was introduced by Kalata in [102], it is called the "target
maneuvering index" or the "target tracking index". Those appellations are
due to the fact that this quantity is proportional to:

• the uncertainty on the motion, denoted by the standard deviation of
the system noise,

• the uncertainty on the measurement, denoted by the standard deviation
of measurement noise.

The elimination of α from 5.54 and 5.56 gives:
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β =
1

4

(
λ2 + 4λ− λ

√
λ2 + 8λ

)
, (5.58)

Finally, from 5.54 and 5.58, we obtain:

α = −1

8

(
λ2 + 8λ− (λ+ 4)

√
λ2 + 8λ

)
(5.59)

Remarques

• When the system noise is relatively important to the measurement
noise, we get a high target maneuvering index λ. The latter generates
a higher gain in position α and thus, the filter gives a large weight to
the most recent measurement and, a small weight to old data, resulting
in low noise reduction.

• In the same way, a low λ gives a small α and an important noise
reduction. However taking arbitrarily a small value for α does not
reduce the noise further, unless this coefficient is determined in an
optimal way.

• The coefficients α and β can not be chosen undependably for one an-
other. Figure 5.2 represents the relation that exists between those two
coefficients.

5.5 DoA smoothing with Kalman filter

In the following, we consider the case where the targets have time-varying
directions. The state vector will therefore be Kxt(i) =

[
θk(i); θ̇k(i)

]
where

θk(i) is kth direction of arrival and θ̇k(i) is its rate of variation.
The dynamics of this motion, as well as the measurements, are modeled

by equations (5.60) and (5.61):

Kxk(t+ 1) = KF Kxk(t) + Kwk(t) (5.60)
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Figure 5.2: αβ coefficients of the static gain for the DWNA model.

θk(t) = KH Kxk(t) + Kvk(t) (5.61)

Where:

• KF =

[
1 T

0 1

]
is the transition matrix with a time step T , and KH =[

1 0
]

is the measurement matrix.

• Kwk(t) is the noise process supposed to be Gaussian with covariance

KQk(t) =

[
T 4

4
T 3

2
T 3

2
T 2

]
σ2
wk

• Kvk(t) is the measurement noise with variance

KRk(t) = σ2
vk

The Kalman filter proceeds in two steps: a prediction before the mea-
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surement and an update after it:

5.5.1 Prediction step:

Following the algorithm in section 5.3 and from the data available at time t,
we can make a prediction of the state vectors of the next time step, of their
covariance matrices KPk, as well as of the following measurements:

Kx̂k(t+ 1|t) = KF Kxk(t|t) (5.62)

KPk(t+ 1|t) = KF KPk(t|t) KF
T + KQk(t) (5.63)

θ̂k(t+ 1|t) = KH Kx̂k(t+ 1|t) (5.64)

• At this point, the measurements θk(t) are taken to be the directions
of arrival estimated by the HTFAPI algorithm followed by a TLS-
ESPRIT.

5.5.2 Update step:

After obtaining the new measurements, the innovation, and its covariance
are computed as follows:

Ks(t) = θk(t)− θ̂k(t+ 1|t) (5.65)

KSk = KH KPk(t+ 1|t) KH
H + KRk(t) (5.66)

This innovation is then used to improve the DoA estimation and their
corresponding covariance updates:

Kx̂k(t+ 1|t+ 1) = Kx̂k(t+ 1|t) + KKk(t+ 1) Ks(t) (5.67)
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KPk(t+ 1|t+ 1) = [I2 − KKk(t+ 1) KH] KPk(t+ 1|t) (5.68)

Where KKk(t+ 1) is the Kalman filter gain given by:

KKk(t+ 1) = KPk(t+ 1|t) KH
H

KS
−1
k (5.69)

To initialize the Kalman filter we use the two points technique so that:

Kxk(2) =

[
θk(2);

θk(2)− θk(1)

T

]
(5.70)

Therefore, the initial covariance depends on the measurement variance as
follows

KPk(2) =

[
1 1

T
1
T

1
T 2

]
KRk(2) (5.71)

Now, the choice of the Kalman filter parameters depends on the chosen
model and the measurement accuracy.

To detect the presence of impulsive noise and thus to better tune the
filter’s parameters, we propose to use the weight ω(t) calculated in the HT-
FAPI algorithm. Indeed, since it takes two distinct values (0 or 1) according
to whether there is a noise impulsion, we can determine the Kalman filter
parameters according to the context as explained in the next section.

5.6 Simulations and results

In this section, we investigate the performance of our proposed algorithm
according to the scenario below.

For the impulsive noise model, we consider here a burst noise generated
according to equation (2.4):

n(t) = nG(t) +

NI∑
j=1

u(
i− ij
bj

)njI(t) (5.72)
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Figure 5.3: Directions of arrival changes over the studied time sequence

where nG(t) is a white Gaussian and centered noise vector of variance σ2
G

and nI is white centered Gaussian of variance σ2
I >> σ2

G weighted by u(·) a
rectangular function, which is used to describe the short duration appearance
of the burst noise. NI refers to the number of impulsive events, ij is the center
of the j-th impulsive event, and bj is its duration.

We aim to estimate and track the directions of arrival of p = 3 sources
impinging on an antenna array of n = 9 sensors. We run ten Monte Carlo
simulations during N = 1000 instant time each.

The first source changes direction uniformly from 20◦ to 40◦ during the
observation sequence, the second begins at 10◦ and ends the sequence at 20◦

while the third begins at 0◦ and ends at 5◦, as displayed in Fig.5.3:
The noise model followed is the one described in (2.4), where the signal is

disturbed by an additive noise letting its signal-to-noise ratio (SNR) to be
at SNR = 0dB during the entire observation sequence except for two short
periods of time: P1 = [201, 250] and P2 = [601, 700], where an impulsive
noise appears inducing the signal SNR to be SNR = −20dB. A second
simulation is run to show the behavior of the filters in the presence of a more
important impulsive noise. In this latter, the signal SNR during P1 and P2
is set to be SNR = −40dB.
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Figure 5.4: RMSE of the k = 1 DoA tracking in signal with SNR=-20dB in
the presence of impulsive noise

The Kalman filter parameters are adjusted as follows: the noise process is
set to be σ2

ψk
= 0.000012 during the entire experiment while the measurement

noise is chosen dynamically as:σ2
υk

= 0.002 if ω(t) = 1

σ2
υk

= 120 ∗ 0.002 if ω(t) = 0

The performance of this algorithm is evaluated according to the RMSE of
the angular velocities ωk = π sin θk. The results shown in Fig.5.4, 5.5 and 5.6
are compared to those of the OPAST algorithm as a benchmark to showcase
the need for robust algorithms. Also, they are compared to those of the
ROBUSTA proposed in [6] and the RPAST [33] to illustrate the motivation
behind the choice of the subspace tracking algorithm. Lastly, our algorithm
is compared to the KFVNM [38] to showcase the performance difference as
compared to a similar algorithm. It is clearly noticeable that our algorithm
outperforms the other ones in the presence of impulsive noise. Moreover,
this performance gain is more noteworthy when the impulsive noise is more
important as shown in Fig.5.7, 5.8 and 5.9, when the signal SNR during the
impulsion is about SNR = −40dB.
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Figure 5.5: RMSE of the k = 2 DoA tracking in signal with SNR=-20dB in
the presence of impulsive noise
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Figure 5.6: RMSE of the k = 3 DoA tracking in signal with SNR=-20dB in
the presence of impulsive noise
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Figure 5.7: RMSE of the k = 1 DoA tracking in signal with SNR=-40dB in
the presence of impulsive noise
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Figure 5.8: RMSE of the k = 2 DoA tracking in signal with SNR=-40dB in
the presence of impulsive noise
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Figure 5.9: RMSE of the k = 3 DoA tracking in signal with SNR=-40dB in
the presence of impulsive noise

5.7 Conclusion

We have proposed in this chapter a new approach to enhance the directions
of arrival estimation and tracking in an impulsive noise environment using a
robust subspace tracking method followed by a conventional Kalman filter.
Indeed, the simulated experiments have shown that this latter combination
improves considerably the performances of the tracking in the presence of
strong impulsive noise. For future works, to further reduce the cost, we also
consider replacing the Kalman filter with its low-cost alternative, the αβ

filter.
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Chapter 6

General Conclusion

In this thesis, we have considered the subspace tracking technique to deal
with signal processing in the context of data stream in a non-Gaussian envi-
ronment while always keeping the lowest computation cost possible.

Indeed, After the general introduction, we have seen in chapter two, dif-
ferent studied systems along with the objectives we were trying to achieve.
Then we overlooked the related works that dealt with similar contexts. As
we have stated there, although a vast plethora of works exists, the ones that
deal with impulsive noise stay very slim. Reason for which, we have sug-
gested new algorithms presented in chapter three.

In chapter three, we proposed 2 novel, robust, and fast algorithms for
subspace tracking MFAPI and HTFAPI. the idea was to use a weighted least
square criterion combined with an accurate projection approximation for low-
cost estimation. The weight itself was then calculated by two means; the first
one used the Mahalanobis distance to decide whether the coming data was
valid or corrupted, and the second used robust statistical estimation to do
the same. the simulation results have shown that the proposed algorithms
outperform all those of the literature regarding slow time-variant systems.
This led us to think about implementing them with sliding window criterion
in order to include systems with sudden changes in behavior.
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In Chapter 4, we have considered an application of subspace tracking;
the blind source separation. Indeed, we have extended the results of ro-
bust subspace tracking to a principal components analysis point of view,
all while always keeping a linear complexity. The outcome was then used
in data whitening and later in actual source estimation. Simulation results
have proven the accuracy of the proposed methods as compared with similar
second-order-based ones.

In the last chapter, we handled another application of subspace track-
ing. Indeed, the latter is very well-known regarding parameters’ estimations.
Thus, we used it in the field of source localization and state representa-
tion. We have then proposed a new algorithm that relies on robust subspace
tracking to suppress impulsiveness in the received data, retrieve directions of
arrival, then use adaptive filtering to smooth and enhance the results. The
results obtained here were promising, and again, it opened for us the possi-
bility to consider maneuvering targets, as it has been wildly discussed in the
tracking area.
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