Bibliothèque de la Faculté des sciences de la nature et de la vie université USTOMB
Détail d'une collection
Documents disponibles dans la collection (1)
trié(s) par (Pertinence décroissant(e), Titre croissant(e)) Affiner la recherche Interroger des sources externes

(2011)
Titre : |
Intégration : intégrale de Lebesgue et introduction à l'analyse fonctionnelle |
Type de document : |
texte imprimé |
Auteurs : |
Thierry Goudon (1969-....), Auteur |
Editeur : |
Paris : Ellipses |
Année de publication : |
2011 |
Collection : |
Références sciences, ISSN 2260-8044 |
Importance : |
1 vol. (191 p.) |
Présentation : |
couv. ill. en coul. |
Format : |
25 cm |
ISBN/ISSN/EAN : |
978-2-7298-7041-6 |
Note générale : |
Bibliogr. p. 189. Index |
Langues : |
Français (fre) |
Index. décimale : |
515.4 |
Résumé : |
Cet ouvrage décrit la construction de l’intégrale de Lebesgue, en s’appuyant sur le point de vue de la théorie de la mesure. Il présente les techniques et les résultats fondamentaux issus de cette théorie, incluant l’analyse de Fourier. Une place importante est réservée à la discussion des espaces fonctionnels basés sur les propriétés d’intégrabilité, offrant ainsi l’occasion de se familiariser avec les notions de l’analyse fonctionnelle (théorie hilbertienne, dualité, différentes notions de convergence).
Le propos est enrichi par de nombreux exemples, contre-exemples, problèmes et exercices.
L’ouvrage s’adresse aux étudiants découvrant la théorie de l’intégration, mais aussi à des lecteurs plus avancés qui y trouveront matière à affermir ou compléter leurs connaissances. En particulier, l’ouvrage peut servir dans le cadre d’une préparation aux concours d’enseignement, ou en référence pour un public scientifi que se spécialisant sur l’analyse mathématique d’équations aux dérivées partielles. |
Intégration : intégrale de Lebesgue et introduction à l'analyse fonctionnelle [texte imprimé] / Thierry Goudon (1969-....), Auteur . - Paris : Ellipses, 2011 . - 1 vol. (191 p.) : couv. ill. en coul. ; 25 cm. - ( Références sciences, ISSN 2260-8044) . ISBN : 978-2-7298-7041-6 Bibliogr. p. 189. Index Langues : Français ( fre)
Index. décimale : |
515.4 |
Résumé : |
Cet ouvrage décrit la construction de l’intégrale de Lebesgue, en s’appuyant sur le point de vue de la théorie de la mesure. Il présente les techniques et les résultats fondamentaux issus de cette théorie, incluant l’analyse de Fourier. Une place importante est réservée à la discussion des espaces fonctionnels basés sur les propriétés d’intégrabilité, offrant ainsi l’occasion de se familiariser avec les notions de l’analyse fonctionnelle (théorie hilbertienne, dualité, différentes notions de convergence).
Le propos est enrichi par de nombreux exemples, contre-exemples, problèmes et exercices.
L’ouvrage s’adresse aux étudiants découvrant la théorie de l’intégration, mais aussi à des lecteurs plus avancés qui y trouveront matière à affermir ou compléter leurs connaissances. En particulier, l’ouvrage peut servir dans le cadre d’une préparation aux concours d’enseignement, ou en référence pour un public scientifi que se spécialisant sur l’analyse mathématique d’équations aux dérivées partielles. |
|  |
Exemplaires (2)
|
00765 | 04-02-18 | livres | Bibliothèque de la faculté S.N.V * HARCHE MERIEM* | livres | Consultation sur place Exclu du prêt |
00766 | 04-02-18 | livres | Bibliothèque de la faculté S.N.V * HARCHE MERIEM* | livres | prêt possible Disponible |