

Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf Faculté de Chimie - Département de Génie des Procédés Phénomènes de surface et catalyse hétérogène

2022-2023

Fiche de TD N° 1

Exercice 1

- A) Un liquide mouillant parfaitement le verre et de masse volumique $\rho=1,05.10^3\, kg.m^{-3},$ s'élève à une hauteur moyenne h = 1,5 cm dans un tube capillaire en verre, vertical et de diamètre intérieur d = 1 mm.
 - Calculer le coefficient de tension superficielle du liquide dans les deux systèmes « SI » et « CGS ». On donne : $g = 10 \text{ m.s}^{-2}$.
- B) Si la montée de la sève (assimilée à de l'eau) dans un arbre de 30 m est explicable sur la base de la montée capillamétrique. Quel devrait être le diamètre des canaux responsable de cette montée. On donne : $\gamma = 72$ dyne/cm, $\theta = 0$ ° (mouillage parfait).

Exercice 2

Démontrer la loi de Laplace par un résonnement énergétique dans le cas d'une goutte d'eau et le cas d'une bulle de savon.

Trouver la pression à l'intérieur d'une goutte d'eau ayant un diamètre de 0,5 mm à 20 ° C si la pression extérieure est de 1,03 N / cm² et la tension superficielle de l'eau à cette température est de 0,0736 N/m.

Exercice 3

Un liquide a une constante de tension superficielle $\gamma = 25.10^{-3} \, \text{N.m}^{-1}$. Avec ce liquide, on souffle une bulle de savon de rayon R = 3 cm.

Calculer la surpression à l'intérieur de cette bulle.

La pression extérieure étant égale à 10⁵ Pa, calculer le travail total dépensé pour souffler la bulle.

Exercice 4

La variation de la tension superficielle d'un liquide (γ_L) en fonction de la température (T) est donnée dans le tableau suivant :

T (K)	100	200	300	400	500
$\gamma_L \text{ mJ/m}^2$	114,6	76,7	46,4	23,6	8,5

- 1. Expliquer la diminution de γ_L en fonction de la température
- 2. Tracer $\gamma_L = f(T)$. En déduire la valeur de γ_L à 0 K et la valeur de la température critique pour laquelle $\gamma_L = 0$
- 3. On remarque que γ_L est de la forme $\gamma_L = (a+bT)^n$. En utilisant le premier point du tableau et les valeurs en question 2. Déterminer les valeurs de n, a et b
- 4. Vérifier par le calcule les valeurs de γ_L à 0 K et la température critique.