

Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf Faculté de Chimie - Département de Génie des Procédés

Phénomènes de surface et catalyse hétérogène

2022-2023

Fiche de TD N° 3

Exercice 1

GP-L3

Des mesures de l'adsorption du CS_2 sur un solide ont été faites de -10 à +30 °C. A l'aide des données expérimentales fournies au tableau, déterminer la chaleur d'adsorption du CS_2 sur ce solide pour différentes concentrations de surface du CS_2 (i.e. pour différentes valeurs de X données au tableau). Cette adsorption est-elle physique ou chimique ?

X (cm ³ g ⁻¹)	Pression (mm Hg)						
	−10 °C	0 °C	10 °C	20 °C	30 °C		
6,7	0,41	0,80	1,50	2,65	4,52		
21,4	2,98	5,42	9,38	15,70	25,30		
50,0	19,06	32,48	52,96	83,10	127,0		

Exercice 2

L'adsorption du butane sur un gramme de catalyseur à 0°C donne les valeurs suivantes :

P (mm Hg)	56,39	89,47	125,22	156,61	179,30	187,46
V(cm ³)	17,09	20,62	23,74	26,09	27,77	28,30

La surface de section d'une molécule de butane est estimée à $0,446 \text{ nm}^2/\text{molécule}$. La pression de vapeur saturante du butane à (273 K) est $P_0 = 774,4$ torrs.

I) À partir de ces données :

- 1. Vérifiez graphiquement que le système obéit à la loi de B.E.T. Évaluez les constantes C et Vm.
- 2. Calculez la surface interne du catalyseur ainsi que le volume poreux V_p sachant que le rayon poreux est égal à 160 Å, On considère que la surface externe est négligeable. Déduire la porosité de ce catalyseur.
- 3. Calculer en **kcal/mol**, la valeur de la chaleur d'adsorption (E_1) du butane sur ce catalyseur, sachant que sa chaleur de liquéfaction (E_L) est égale à 22,42 kJ/mole.
 - II) Une analyse de la porosité à l'aide de la méthode « t » a été réalisée sur un matériau X en traçant la courbe V=f(t). La partie linéaire du tracé V=f(t) est représenté par l'équation suivante : $Y=6.6457 \ x+10.08$
 - Calculer la surface spécifique en vous servant de la t-plot ainsi que le volume de pore V_p.
 - Déterminer la surface totale de ce matériau sachant que $S_{externe} = 25 \% S_{BET}$.
 - Calculer la surface interne. Déduire la porosité de ce matériau X.
 - Comparer l'efficacité catalytique des deux matériaux étudiés.

Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf Faculté de Chimie - Département de Génie des Procédés

Phénomènes de surface et catalyse hétérogène

2022-2023

Exercice 3: Adsorption de CO sur du charbon actif

L'adsorption de l'oxyde carbone sur 2,964 g de charbon activé est étudiée à 0 °C. On mesure le volume V (cm³/g) ramenée aux conditions TPN de gaz adsorbé sous différentes pressions P. Les résultats sont présentés par le modèle de Langmuir et le modèle de Freundlich qui donnent :

L'isotherme de LANGMUIR (P/V = f(P)):

$$y = 0.0247 x + 27.949$$

Avec: $R^2 = 0.989$

L'isotherme de FREUNDLICH (Ln V = Ln P):

$$y = 0.7873 x - 2.4096$$

Avec: $R^2 = 0.9975$

- 1. Calculer les constantes de ces deux modèles, interpréter les résultats obtenus.
- 2. À partir de ces résultats, calculez le volume d'oxyde de carbone adsorbé par 1 g de charbon activé en équilibre avec une pression de 400 mmHg de CO.

Que peut – on conclure ?

GP-L3