

# Transfert de chaleur Fiche TD N°3



### Problème N°1

1. Calculer les paramètres de convection suivants : Nusselt, Prandtl et Reynolds.

#### Données:

1)L = 3 m ; V = 2 m/s ; 
$$\lambda$$
 = 0,086 W/m.K ;  $\rho$  =543,52 kg/m³ , Cp=4,1818 J/kgK ;  $\mu$  = 0,2 kg/ms.

2) L = 4.5 m; V = 5 m/s; ; 
$$\lambda = 1$$
 W/m.K;  $\rho = 850.1$  kg/m<sup>3</sup>, Cp=4.1818 J/kgK;  $\mu = 1.2$  kg/ms.

3) 
$$L = 2.5 \text{ m}$$
;  $V = 8 \text{ m/s}$ ; ;  $\lambda = 0.026 \text{ W/m.K}$ ;  $\rho = 1000.52 \text{ kg/m}^3$ ,  $Cp = 4.1818 \text{ J/kgK}$ ;  $\mu = 0.35 \text{ kg/ms.}$ 

$$T-T_{\infty} = 36$$
; Ø = 780 W.

### Problème N°2

Dans un cylindre de 1,8 cm de diamètre et de 2,5m de long circule de l'air à la température de 195°C. Le cylindre maintenu à la température de 25°C, reçoit un flux de chaleur égal à 3500W.

- 1. Déterminer le coefficient de l'échange de chaleur par convection (h).
- 2. Déduire le nombre de Nusselt de l'écoulement sachant que:  $\lambda = 0.026$  W/m.°C.
- 3. Calculer le nombre de Reynolds de l'écoulement.

En permettant que:  $Nu = 0.013Re^{0.8} Pr^{0.4}$ ; si le nombre de Prandtl est égal à 0,83.

## Problème N°3

La température est donnée dans une surface plane soumise à la convection thermique par :

$$T_i - T = T_i - T_\infty = \sin(\frac{\pi x}{0.01})$$

Si le coefficient de conduction est 0,03W/mK, déterminer la valeur du coefficient de convection.

### Problème N°4

Une plaque mince d'une longueur de 3m et d'une largeur de 1,5m est sous l'effet d'un écoulement d'air à la vitesse de 3m/s et de température de 20°C. La température des surfaces de la plaque est de 94°C.

#### Calculer:

- 1. Le coefficient d'échange de la chaleur par convection suivant la longueur (pour Pr=0,71);
- 2. Le flux de chaleur transmis par la plaque à l'air.

Les caractéristiques de l'air à 20°C sont:  $\rho$ =1,175 kg/m³,  $\mu$ =1,8.10<sup>-5</sup> kg/m.s,  $\lambda$ =0,026 W/m.K et Cp=1006 J/kg. K.