

Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf- USTO-MB Faculté de Chimie – Département de Génie des Matériaux L3/Génie de Procédés Bilan Macroscopique / 2023-2024

Fiche TD N° 2

Exercice N 1:

Du méthane est brulé avec 130 % d'excès d'air. La réaction de combustion étant considérée complète, calculer la composition des fumées.

- On veut bruler 1 kg de CH₄, combien de moles cela représente-t-il ?
- Calculer la masse de O₂ nécessaire à la combustion de 1 kg de CH₄.

Exercice N 2:

20 kg de C₂H₄ sont brulés dans un moteur à combustion interne avec 400 kg d'air. Cette combustion a donné naissance à 44 kg de CO₂.

Calculer le pourcentage d'excès d'air utilisé.

Exercice N 3:

On veut bruler un gaz dont la composition molaire indique qu'il y a 22,5 % de CO_2 , 20 % de H_2 , 1,5 % de CH_4 et 56 % de N_2 .

Si la combustion de ce gaz est effectuée en présence de 10 % d'excès d'air. On demande de donner la composition des fumées.

Exercice N 4 : traité au cours

80 kmoles d'éthane mélangées avec 20 kmoles d'oxygènes sont brulées avec 200 % d'excès d'air.

- Calculer la composition des gaz d'échappement si 80 % de l'éthane donne du CO₂, 10 % du CO et 10 % restant imbrulé.

Exercice N 5:

Un liquide ayant la composition suivante : 88 % de Carbone C et 12 % d'hydrogène. Le gaz d'échappement déshydraté contient 13,4 % de CO₂ ; 3,6 % d'O₂ et 83 % de N₂.

- Déterminer le nombre de moles de gaz d'échappement produit.
- Déterminer le pourcentage d'excès d'air utilisé.