


Fiche TD N°1

Exercice 1

(2023/2024)

On relève le spectre ultraviolet du monomère du 2-méthylbuta-1,3-diène :

- 1 Quelle est la valeur de la longueur d'onde du maximum d'absorption ?
- 2 Quelle est la valeur de l'absorbance au maximum d'absorption ?
- 3 Pour réaliser ce spectre, on dissout le 2-méthylbuta-1,3-diène dans le méthanol. L'épaisseur de la cuve spectroscopique est standard : l = 1 cm et le coefficient d'absorption molaire a pour valeur $\epsilon = 10800 \text{ Lmol}^{-1}\text{cm}^{-1}$
- a-Quelle condition le solvant doit vérifier afin de pouvoir être utilisé en spectroscopie UV ? b-Calculer la concentration molaire de la solution utilisée.

Exercice 2

Les molécules suivantes absorbent dans l'ultraviolet et proche visible :

Molécule 1	Molécule 2
Molécule 3	Molécule 4

Leurs longueurs d'onde au maximum d'absorption ont pour valeur classées dans l'ordre croissant:

λ_{\max} (nm)	215	314	380	480

Redonner à chaque molécule sa valeur de longueur d'onde au maximum d'absorption.

Exercice 3

A partir d'une solution mère de vanille, on prépare par dilution dans une solution aqueuse d'hydroxyde de sodium de concentration 0,1 mol/ L des solutions diluées et on mesure leurs absorbances. Les résultats sont rassemblés dans le tableau ci-dessous :

Solution diluée	S_1	S_2	S_3	S_4	S_5
[vanille] 10^5 (mol/L)	5	4	3	2	1
Absorbance	1,36	1,08	0,81	0,54	0,27

Calculer le coefficient d'extinction molaire