

Fiche de T. D N°01: Procédés d'Adsorption et de séparations membranaire Adsorption Dynamique

Exercice Nº01 :

L'étude de l'adsorption dynamique (lit fixe) du vert de malachite sur du charbon actif en grains. La concentration initiale du vert de malachite $C_0 = 100 \, \text{mg/L}$, l'expérience a été faite pour deux cas différents :

- a. $h_1 = 2.5$ cm avec une masse $m_1 = 50$ mg
- b. $h_2 = 3.5$ cm avec une masse $m_2 = 75$ mg

Le débit est le même Q= 5mL/mn, et on fait varier le temps d'écoulement de 5 à 450 mn

	h1	h2
t(mn)	Ce(mg/L)	Ce(mg/L)
5	1,587	1,057
10	2,625	1,216
20	3,715	2,126
30	4,958	3,026
45	7,002	4,287
60	9,236	5,011
75	11,547	7,255
90	14,969	10,589
105	20,524	14,366
120	23,549	17,366
150	29,326	21,148
180	36,218	26,741
210	47,685	35,569
240	58,258	44,366
270	70,145	55,258
300	82,251	66,236
330	88,236	72,365
360	93,259	83,571
390	95,327	88,967
420	98,258	92,999
450	99,255	94,258

- 1. Tracer les courbes de percées et trouver les valeurs de $t_{\text{percée}}$ et $t_{\text{d'épuisement}}$ dans les deux cas.
- 2. Trouver les différents paramètres en utilisant le modèle de Thomas

.

Fiche de T. D N°02: Procédés d'Adsorption et de séparations membranaire Adsorption en Batch-Cinétique

Exercice N° 01:

Pour l'étude de l'adsorption du PNP (Penta nitrophénol) sur une argile modifiée, on a pris les conditions suivantes : pH = 6.9; masse du charbon actif en grains $= 100 \, \text{mg}$; volumes des solutions du PNP =100 mL, le temps de contact varie de 0 à 300 minutes et la concentration du PNP est de $100 \, \text{mg/L}$.

$Q_e(th\'{e}orique) = 95,09 \text{ mg/g}.$

t(s)	Ce (mg/L)
0	100
5	53,68
15	34,80
30	21,80
44	15,10
60	10,80
75	9,30
90	8,30
120	7,49
150	7,31
180	6,02
210	6,68
240	7,15
270	7,22
300	6,98

- 1. Tracer et discuter la cinétique d'adsorption.
- 2. Calculer les différents paramètres des modèles cinétiques : (1er et 2nd pseudo-ordre).
- 3. Quel est à votre le modèle qui décrit au mieux cette cinétique et dites pourquoi.
- 4. Tracer et discuter le modèle de diffusion intra particulaire.
- 5. Est-ce que le modèle de diffusion intra particulaire peut s'appliquer et dites pourquoi.
- 6. Que peut-on conclure de cette cinétique

Fiche de T. D N°03: Procédés d'Adsorption et de séparations membranaire Adsorption en Batch-Isothermes d'adsorption

Exercice n°01 : Pour l'étude de l'adsorption de la Rouge Congo sur du charbon actif en poudre, on a pris les conditions suivantes :

- pH = 7,5;
- masse du charbon actif = 100mg;
- volumes des solutions de Rouge Congo = 100 mL,
- le temps de contact = 120 minutes.
 On fait varié les concentrations initiales de la solution du de Rouge Congo de 25 à 1000 mg/L.

C ₀ (mg/L)	Ce(mg/L)
0	0
25	3,6236
50	12,3303
75	21,6133
100	31,9846
150	53,5211
200	77,1293
300	152,2343
400	232,2570
500	312,2484
600	416,3015
700	502,2407
800	594,0973
900	678,2366
1000	776,3256

- a. Tracer l'isotherme d'adsorption du Rouge Congo sur le charbon actif en poudre
- b. Calculer les différents paramètres de Langmuir et Freundlich.
- c. Quel est le modèle qui s'applique le mieux dans ce cas et dites pourquoi?
- d. Est-ce que l'adsorption est favorable ? Pourquoi.

Exercice n°02: Pour l'étude de l'adsorption du Naphtol Green B (**NGB**) sur **MCM-41** modifié par APTES, on a pris les conditions suivantes : pH = 7,3; masse de MCM-41 = 100mg; volumes des solutions de(**NGB**) =100 mL, le temps de contact = 90 minutes et on fait varié les concentrations initiales de la solution du de Rhodamine de 10 à 500 mg/L. On a obtenu les résultats suivants :

Co	Се
0	0
10	0,129
30	1,761
50	5,077
75	11,077
100	20,285
120	27,694
150	39,113
200	69,287
250	101,922
300	140,742
400	218,635
500	300,626

- a) Tracer l'isotherme d'adsorption de NGB sur MCM-41 modifié.
- b) Calculer les différents paramètres de Langmuir et Freundlich.
- c) Quel est le modèle qui s'applique le mieux dans ce cas et dites pourquoi?
- d) D'après le modèle trouvé, comment se fait l'adsorption/
- e) Est-ce que l'adsorption est favorable ? Pourquoi.

Fiche de T. D N°04: Procédés d'Adsorption et de séparations membranaire Adsorption en Batch-Etude thermodynamique

Exercice N° 01:

L'étude thermodynamique de l'adsorption du Rouge Congo sur le charbon actif en poudre a donné les résultats suivants :

T(°K)	Ce(mg/L)	Qe (mg/g)
298	31,36	68,64
323	22,25	77,75
348	16,36	83,64
373	10,51	89,49

- 1. Trouvez les différents paramètres thermodynamiques.
- 2. D'après les valeurs trouvées, que peut-on dire

Exercice 2:

L'étude thermodynamique de l'adsorption de NGB sur MCM-41 modifié a donné les résultats suivants :

T(°K)	Ce (mg/L)	Qe (mg/g)
298	70,64	29,360
323	77,75	22,250
348	83,64	16,360
373	89,49	10,510

- a. Trouvez les différents paramètres thermodynamiques.
- b. D'après les valeurs trouvées, que peut-on dire

Donnée:

L'équation de la droite de l'étude thermodynamique est :

$$y = 439,9X - 1,067$$