Chapitre II : Oscillation harmonique amortie à un degré de liberté Faculté de Chimie, Département GM, L2 Génie des Procédés GP, USTO

1. Introduction:

Dans le cadre des oscillations amorties, il est crucial de prendre en compte les forces de frottement. Ces forces, principalement de nature visqueuse, dépendent directement de la vitesse du mouvement.

2. Oscillateur amorti:

En pratique, le mouvement oscillatoire harmonique idéal n'existe pas. Tout système mécanique réel est soumis à des forces de frottement qui dissipent une partie de l'énergie mécanique sous forme de chaleur, ce qui entraîne l'amortissement progressif des oscillations.

3. Frottement et coefficient d'amortissement :

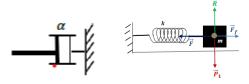
3.1 Frottements visqueux:

Le frottement visqueux est proportionnel à la vitesse du système et agit dans la direction opposée au mouvement. La force de frottement est exprimée par :

 α : Coefficient de frottement visqueux (kg/s).

3.2 Frottements solides:

Contrairement au frottement visqueux, le frottement solide est constant et toujours opposé au mouvement.



En mécanique, l'amortisseur est caractérisé par un coefficient α (N·s/m).

4. Équation de Lagrange :

L'équation de Lagrange dans le cas d'un système libre amorti s'écrit :

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{Y}}\right) - \frac{\partial L}{\partial Y} + \frac{\partial E_D}{\partial \dot{Y}} = 0$$

$$\frac{d}{dt}\left(\frac{\partial Ec}{\partial \dot{Y}}\right) + \frac{\partial Ep}{\partial Y} + \frac{\partial E_D}{\partial \dot{Y}} = 0$$

La forme de l'équation différentielle est :

$$\ddot{Y} + 2b\dot{Y} + \omega_0^2 Y = 0$$

5. Régimes de l'oscillateur amorti :

L'équation différentielle d'un oscillateur amorti est $\ddot{Y} + 2b\dot{Y} + \omega_0^2 Y = 0$

. Il existe trois régimes possibles :

5.1 Régime apériodique (b > ω_0):

Les frottements sont importants ; la valeur du coefficient d'amortissement est grande. Le système revient lentement à sa position d'équilibre sans effectuer d'oscillations.

$$Y(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$
Avec:
$$S_1 = -b - \sqrt{b^2 - \omega_0^2}$$

$$S_2 = -b + \sqrt{b^2 - \omega_0^2}$$

 S_1 et S_2 indiquent comment l'oscillation diminue au cours du temps, tandis que A_1 et A_2 fixent l'amplitude et la phase selon les conditions initiales.

Le mouvement est sans oscillation, et l'élongation décroît exponentiellement jusqu'à l'équilibre.

5.2 Régime critique (b = ω_0):

Le retour à la position d'équilibre se fait sans oscillation et rapidement. Il représente la limite entre les régimes pseudopériodique et apériodique.

$$Y(t) = (A_1 + A_2 t) e^{-bt}$$

 A_1 fixe la valeur initiale du déplacement et A_2 fixe la pente initiale (vitesse de départ). Ces deux constantes définissent comment le système démarre et à quelle vitesse il revient à l'équilibre, sans oscillation, car il s'agit du régime critique

Chapitre II : Oscillation harmonique amortie à un degré de liberté Faculté de Chimie, Département GM, L2 Génie des Procédés GP, USTO

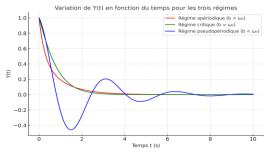
5.3 Régime pseudopériodique (b $< \omega_0$):

Régime des faibles amortissements. L'amplitude des oscillations décroît progressivement avec le temps :

$$Y(t) = A e^{-bt} cos(\omega t + \varphi)$$

$$\omega = \sqrt{(\omega_0^2 - b^2)}$$

- ▶ b : coefficient d'amortissement (s⁻¹) représente la perte d'énergie mécanique due au frottement.
- ω₀: pulsation propre (rad/s⁻¹)
 caractérise la fréquence naturelle
 d'oscillation du système sans
 frottement.
- ω: pseudo-pulsation (rad/s⁻¹) correspond à la fréquence réelle d'oscillation du système amorti.



6. Facteur d'amortissement :

Le facteur d'amortissement **F** influence la vitesse de retour à l'équilibre et la présence ou non d'oscillations :

$$F = \frac{b}{\omega_0} = \frac{\alpha}{\alpha_C}$$

 α_{c} : Coefficient de frottement critique.

Types de régimes selon **F**:

- $\mathbf{F} = \mathbf{0}$: Système non amorti (oscillations infinies)
- ullet 0 < F < 1 : Régime sous-amorti (oscillations décroissantes)
- $\mathbf{F} = \mathbf{1}$: Régime critique
- F > 1: Régime sur-amorti (retour lent sans oscillations)

7. Décrément logarithmique :

Le décrément logarithmique δ est le logarithme naturel du rapport des amplitudes successives A(t) et A(t+T)

$$\delta = \frac{1}{T} ln \frac{A(t)}{A(t + nT)}$$

En remplaçant les formules des amplitudes

$$\delta = bT$$
, où $T = 2\pi/\omega$.

8. Coefficient de qualité (Q) :

Le facteur de qualité **Q** caractérise le rendement de l'oscillateur amorti et s'exprime par :

$$Q = \frac{\omega_0}{2h} = 2\pi \frac{E_T}{\Delta E}$$

Avec $\Delta E = ET(t) - ET(t+T)$

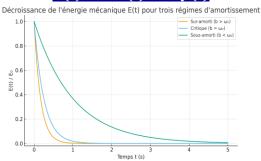
9. Énergie mécanique :

Pour un système faiblement amorti ($\boldsymbol{b} \ll \boldsymbol{\omega}_0$), l'énergie mécanique totale décroît exponentiellement :

$$E(t) = E_0 e^{-2bt}$$

$$E_0 = \frac{1}{2} kA^2 = \frac{1}{2} m\omega_0^2 A^2, \text{ où } E_0 \text{ est}$$
l'énergie initiale à $t = 0$.

$$E(t) = Ec(t) + Ep(t)$$



10. Conclusion:

L'étude des oscillations amorties permet de comprendre l'influence des frottements sur le mouvement. Les paramètres b, ω_0 , Q et δ décrivent la perte d'énergie, la nature du régime et la durée des oscillations. Dans la pratique, ces concepts sont essentiels pour la conception de systèmes mécaniques et vibratoires.