Université des Sciences et de la Technologie d'Oran-Mohamed BOUDIAF

Faculté de Chimie

Département de Génie Des Matériaux LMD S3 / Module : Probabilités-Statistiques 2025-2026

Partie A: Statistiques

Fiche de TD n°03 : Séries statistiques à deux variables

Exercice 1 : Tableau à double entrée

On classe 60 pièces en acier selon :

- Type de traitement thermique : T1, T2, T3
- Niveau de défauts : Faible, Moyen, Élevé

Traitement	Faible	Moyen	Élevé	Total
T1	12	8	2	22
T2	6	10	4	20
Т3	3	9	6	18
Total	21	27	12	60

- 1. Compléter le tableau des fréquences conjointes.
- 2. Calculer les fréquences marginales (ligne et colonne).
- 3. Calculer les fréquences conditionnelles :
 - -f(Élevé|T1)
 - f(T3|Faible)
- 4. Interpréter : quel traitement minimise les défauts élevés?

Exercice 2 : Mesures sur un gaz parfait (linéarité parfaite)

On étudie la relation entre la **température** T (en K) et la **pression** P (en bar) d'un gaz parfait confiné dans un volume fixe (loi : P = kT avec $k \approx 0,08314$) :

Échantillon	1	2	3	4	5	6	7	8	9	10
T(K)					340			370		
P (bar)	24.94	25.77	26.60	27.44	28.27	29.10	29.93	30.76	31.60	32.42

Table 1 – Données expérimentales température-pression (gaz parfait)

- 1. Calculer la **covariance** entre T et P. (Attendu : covariance positive élevée)
- 2. Regrouper en classes (ex. : T : [300-330[, [330-360[, [360-390[; P : [25-27[, [27-30[, [30-33[) et calculer les **fréquences marginales** et **conditionnelles**.
- 3. Tracer le nuage de points et la droite de régression linéaire par moindres carrés. (La droite passera parfaitement par tous les points!)
- 4. Interpréter : Quelle est la relation physique observée?

Exercice 3 : Porosité et Densité

On étudie 12 échantillons de céramique poreuse :

Porosité (%)	Densité (g/cm³)
2.0	3.80
2.5	3.75
3.0	3.70
3.0	3.70
3.5	3.65
4.0	3.60
4.5	3.55
5.0	3.50
2.0	3.82
2.5	3.78
3.5	3.62
4.0	3.58

- 1. Calculer les moyennes \bar{x} , \bar{y} , et la covariance Cov(X, Y).
- 2. Établir la droite de régression y = ax + b.
- 3. Quelle est la densité prédite pour une porosité de 3,2 %?
- 4. Tracer le nuage de points et la droite.

Exercice 4 : Régression et Prédiction

On mesure la **dureté Brinell (HB)** et la **résistance à la fatigue (MPa)** de 8 échantillons d'acier trempé :

НВ	Fatigue (MPa)
180	420
190	440
200	460
210	475
220	490
230	505
240	515
250	530

- 1. Calculer la covariance et la droite de régression y = ax + b.
- 2. Tracer le nuage de points et la droite.
- 3. Prédire la résistance à la fatigue pour HB = 215.
- 4. Calculer le coefficient de corrélation linéaire r (facultatif).
- 5. Interpréter la force de la relation.