Fiche TD n°03: A STATISTIQUES – Corrigé

USTO-MB / Faculté de Chmie – 2025-2026

Module: Probabilités & Statistiques – LMD S3

Exercice 1 : Tableau à double entrée

On classe 60 pièces en acier selon :

- Type de traitement thermique : T1, T2, T3
- **Niveau de défauts** : Faible, Moyen, Élevé

Traitement	Faible	Moyen	Élevé	Total	
T1	12	8	2	22	
T2	6	10	4	20	
Т3	3	9	6	18	
Total	21	27	12	60	

1. Tableau des fréquences conjointes

On divise chaque effectif par le total N=60:

$$f_{ij} = \frac{n_{ij}}{60}$$

Traitement	Faible	Moyen	Élevé	Total
T1	0.20	0.13	0.03	0.37
T2	0.10	0.17	0.07	0.33
Т3	0.05	0.15	0.10	0.30
Total	0.35	0.45	0.20	1.00

2. Fréquences marginales

- Par ligne (traitement):

$$f_{T1} = 0.37$$
, $f_{T2} = 0.33$, $f_{T3} = 0.30$

- Par colonne (niveau de défauts) :

$$f_{\text{Faible}} = 0.35, \quad f_{\text{Moyen}} = 0.45, \quad f_{\text{Élevé}} = 0.20$$

3. Fréquences conditionnelles

$$f(\text{Élevé} \mid \text{T1}) = \frac{2}{22} = 0.091$$

1

$$f(\text{T3} \mid \text{Faible}) = \frac{3}{21} = 0.143$$

4. Interprétation

Le traitement $\mathbf{T1}$ présente la plus faible proportion de défauts élevés (9.1%). C'est donc le traitement qui **minimise les défauts sévères**.

Exercice 2 : Mesures sur un gaz parfait (linéarité parfaite)

On étudie la relation entre la température T (en K) et la pression P (en bar) d'un gaz parfait à volume constant, suivant la loi :

$$P = kT$$
 avec $k \approx 0.08314$.

Échantillon	1	2	3	4	5	6	7	8	9	10
T(K)	300	310	320	330	340	350	360	370	380	390
P (bar)	24.94	25.77	26.60	27.44	28.27	29.10	29.93	30.76	31.60	32.42

1. Covariance entre T et P

$$Cov(T, P) = \frac{1}{n} \sum_{i=1}^{n} (T_i - \bar{T})(P_i - \bar{P})$$

Avec:

$$\bar{T} = 345 \text{ K}, \qquad \bar{P} = 28.683 \text{ bar}$$

Alors:

$$Cov(T, P) = 67.3461 \text{ K} \cdot \text{bar}$$

2. Regroupement en classes

 $T:[300,330[,[330,360[,[360,390[\quad {\rm et} \quad P:[24,27[,[27,30[,[30,33[$

	[24, 27[[27, 30[[30, 33[Total
[300, 330[3	0	0	3
[330, 360[0	3	0	3
[360, 390[0	1	3	4
Total	3	4	3	10

Les fréquences marginales sont

$$f_T = (0.3, 0.3, 0.4), f_P = (0.3, 0.4, 0.3)$$

3. Régression linéaire

On cherche P = aT + b.

Pente a:

$$a = \frac{\operatorname{Cov}(T, P)}{\operatorname{V}(T)}, \quad b = \bar{P} - a\bar{T}$$

Pour faire les calculs avec la calculatrice, on fait le tableau des valeurs centrées :

Table 1 – Calcul détaillé des variances et de la covariance

i	$T_i - \bar{T}$	$(T_i - \bar{T})^2$	$P_i - \bar{P}$	$(T_i - \bar{T})(P_i - \bar{P})$
1	-45	2025,0	-3,743	168,435
2	-35	1225,0	-2,913	101,955
3	-25	625,0	-2,083	52,075
4	-15	225,0	-1,243	18,645
5	-5	25,0	-0,413	2,065
6	+5	25,0	+0,417	2,085
7	+15	225,0	+1,247	18,705
8	+25	625,0	+2,077	51,925
9	+35	1225,0	+2,917	102,095
10	+45	2025,0	+3,737	168,165
\$	Somme	7425,0		$673,\!461$

Covariance

$$Cov(T, P) = \frac{1}{10} \sum_{i=1}^{10} (T_i - \bar{T})(P_i - \bar{P}) = \frac{673,461}{10} = 67,3461 \text{ K} \cdot \text{bar}$$

$$V(T) = \frac{7425.0}{10} = 742.5 \implies a = \frac{Cov(T, P)}{V(T)} = \frac{67.3461}{742.5} = 0.09070$$

Ordonnée à l'origine b:

$$b = \bar{P} - a\bar{T} = 28.683 - 0.09070 \times 345 = -2.60865$$
 bar

$$P = 0.09T - 2.6$$

4. Interprétation

Coefficient de corrélation :

$$r = \frac{s_{T,P}}{s_T \cdot s_P} = \frac{67.3461}{27.25 \times 2.4865} \approx 0.993$$

 $r \approx 1$, donc la pression est proportionnelle à la température, comme prédit par l'équation des gaz parfait P = kT.

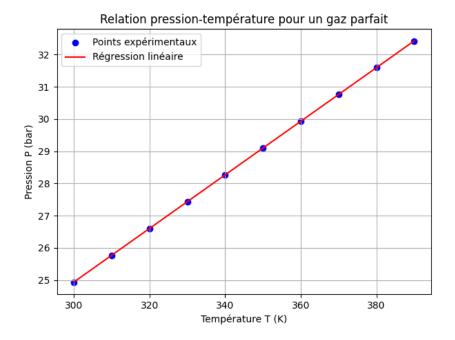


FIGURE 1 - Tracé Ex. 2

Exercice 3 : Porosité et Densité

On étudie 12 échantillons de céramique poreuse :

Porosité ϕ (%)	Densité ρ (g/cm ³)
2.0	3.80
2.5	3.75
3.0	3.70
3.0	3.70
3.5	3.65
4.0	3.60
4.5	3.55
5.0	3.50
2.0	3.82
2.5	3.78
3.5	3.62
4.0	3.58

1. Calcul des moyennes et covariance

Soient:

$$\bar{\phi} = \frac{1}{n} \sum x_i, \quad \bar{\rho} = \frac{1}{n} \sum y_i, \quad \operatorname{Cov}(X, Y) = \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})$$

Calculs:

$$\bar{\phi} = 3.2083 \text{ \%}, \qquad \bar{\rho} = 3.6708 \text{g/cm}^3$$

$$\text{Cov}(\phi, \rho) = -0.09764 \text{ \%} \cdot \text{g/cm}^3$$

2. Droite de régression $\hat{\rho} = a\phi + b$

$$a = \frac{\operatorname{Cov}(\phi, \rho)}{\operatorname{V}(\phi)}, \qquad b = \bar{\rho} - a\bar{\phi}$$

avec

$$Var(\phi) = 0.875$$

D'où:

$$a = -0.096, \qquad b = 3.98$$

$$\hat{\rho} = -0.096\phi + 3.98$$

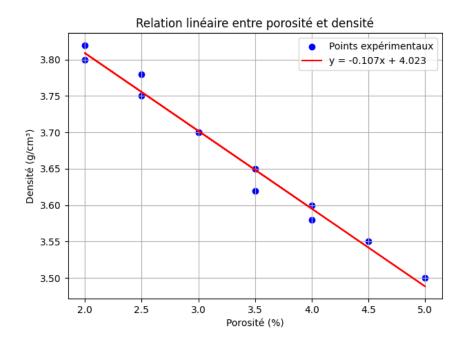


FIGURE 2 – Tracé Ex.3

3. Prédiction pour 3,2 % de porosité :

$$\rho = -0.096 \times 3.2 + 3.98 = 3.67 \text{ g/cm}^3$$
 Densité prédite : 3.67 g/cm³

4. Interprétation : Coefficient de corrélation

$$r = \frac{-0.09764}{1.0112 \times 0.0966} \approx -0.9990$$

(relation extrêmement linéaire, mais négative)

La relation est linéaire décroissante : plus la porosité augmente, plus la densité diminue.

Exercice 4 : Régression et Prédiction

On mesure la dureté Brinell (HB) et la résistance à la fatigue (MPa) de 8 échantillons d'acier trempé :

нв	Fatigue (MPa)
180	420
190	440
200	460
210	475
220	490
230	505
240	515
250	530

1. Covariance et droite de régression On note x al "dureté" et y la "fatigue".

Les moyennes sont :

$$\bar{x} = 220, \quad \bar{y} = 491.875$$

$$Cov(X, Y) = \frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y}) = 916.6$$

$$Var(X) = \frac{1}{n} \sum (x_i - \bar{x})^2 = 583$$

Ainsi:

$$a = \frac{\text{Cov}(X, Y)}{\text{Var}(X)} = \frac{916}{500} = 1.5714$$

$$b = \bar{y} - a\bar{x} = 491.875 - 1.5714 \times 220 = 146.1$$

$$\hat{y} = 1.57x + 146$$

2. Prédiction pour HB = 215

$$y = 1.9 \times 215 + 70.9 = 479.4 \text{ MPa}$$

3. Coefficient de corrélation linéaire

$$r = \frac{\text{Cov}(X, Y)}{\sqrt{\text{V}(X)\text{V}(Y)}} \approx 0.999$$

La corrélation est donc quasi parfaite.

4. Interprétation

On observe une relation linéaire très forte et positive : quand la dureté HB augmente, la résistance à la fatigue augmente presque proportionnellement.

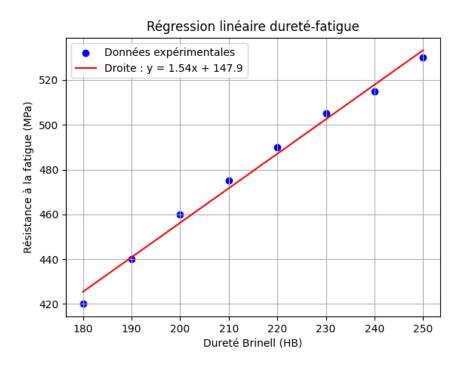


Figure 3 – Tracé Ex.4