Cours de Probabilités pour Ingénieurs en Génie des
Matériaux
Chapitre 1 : Analyse Combinatoire

Les espaces échantillonnaux finis et leur dénombrement

Cette section porte uniquement sur les résultats équiprobables. Pour étre en mesure
d’établir une probabilité selon P(A) = n(A)/n, il faut pouvoir déterminer la valeur de n,
soit le nombre de résultats possibles, et celle de n(A), soit le nombre de résultats favorables
a I’événement A.

Lorsque I'expérience est trés simple, comme le lancer de dés ou d’une piéce de monnaie,
il est aisé d’établir le nombre de résultats possibles ou favorables. Par contre, si 'on
s'intéresse a la probabilité d’obtenir au moins deux as lorsqu’on pige cinq cartes d'un jeu
de cinquante-deux cartes, le contexte est beaucoup plus difficile & cerner. Il en va de méme
si on choisit au hasard des piéces d’'une chaine de production et qu’on souhaite quantifier
la probabilité de non-obtention d’une piéce défectueuse.

Il faudra dans toutes ces situations faire appel a différentes techniques de dénom-
brement pour évaluer n et n(A). Nous étudierons ici des diagrammes en arbre, du principe
de multiplication, de permutations d’objets semblables et de combinaisons.

Les diagrammes en arbre

Dans le cas d'une expérience simple, la construction d’un diagramme en arbre peut
s’avérer utile pour le dénombrement des résultats possibles ou favorables. Dans 1’exemple
1.9, dans lequel on lance a trois reprises une piéce de monnaie, la figure 6 montre le dia-
gramme en arbre représentant les huit résultats possibles. On y observe les huit résultats
de I'espace échantillonnal . que sont PPP, PPF, PFP et FFP sont considérés.

On a donc un total de 23 = 8 résultats {PPP, PPF, PFP, PFF, FPP, FPF, FFP,
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FIGURE 1 — Le diagramme en arbre d’une expérience dans laquelle on lance a trois reprises
une piéce équilibrée

Le principe de multiplication

Si les ensembles Aq, As, ..., Ap comptent respectivement ny, no, ..., n; éléments, il
existe ny - ng - - - ny, fagons de choisir un élément de A;, puis un élément de A,, ..., et ainsi

de suite jusqu’a un élément de Ay.

rPrincipe de multiplication
Supposons une expérience & composée de k étapes, et que :

— Il y a n; fagons de réaliser 1’étape 1 :

— Il y a ny fagons de réaliser ’étape 2 (pour chaque issue de I'étape 1) ;

— ete.;

— Ily any fagons de réaliser I'étape k (pour toutes les issues des étapes précédentes).

Alors, I'espace échantillonnal de & contiendra n; X ny X --- X ny résultats possibles.
Si a chaque étape de l'expérience les n; issues sont équiprobables, alors les ny X ng X
-+ X ng résultats ont la méme probabilité.

Dans le cas particulier ot n; = ng = --- = ng = n, il y a n* choix possibles. Cette
situation a été observée a la figure 1.8.

Exemple 1.27

Imaginons qu’une piece et un dé équilibrés. Les deux résultats possibles de I'étape
1, soit {P, F'}, sont indépendants des six résultats possibles de I'étape 2, soit
{1,2,3,4,5,6}, d’ott n; = 2,n5 = 6, et 'ensemble des résultats possibles est consti-
tué de 2 x 6 = 12 résultats. On peut dresser & I’annexe un diagramme en arbre
semblable a la figure 7 pour I’énumération.
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(F, 1), (F, 2), (F, 3), (F, 4), (F, 5), (F, 6)}
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FIGURE 2 - Le diagramme en arbre associé & 'expérience en deux étapes de l'exemple
1.27

Exemple 1.28

Soit un processus de production o I'inspection en cours de fabrication est trés li-
mitée. Une fois les produits finis, on les achemine & une aire d’examen ou quatre
personnes en vérifient chacune une caractéristique différente. La premiére de ces per-
sonnes attribue aux unités produites 'une ou 'autre de quatre cotes ; la deuxiéme,
I'une ou l'autre de trois cotes; et les deux autres, I'une ou 'autre de deux cotes
chacune. Chaque personne inscrit sur I’étiquette d’identification du produit la cote
attribuée selon la caractéristique examinée.

Il y aun total de 4 -3 -2 -2 = 48 inscriptions possibles pour une unité donnée.

Les permutations

Permutation
Une permutation de n éléments distincts consiste en une liste ordonné de tous les n
éléments.

Considérons 'exemple de trois jetons se distinguant chacun par une lettre différente,
a, b, c.Voici toutes les permutations possibles de ces jetons :

abc acb bac bca cab cha

Puisqu’il y a trois lettres possibles a la premiére position, puis deux lettres restantes
pour la deuxiéme position, et enfin une seule lettre pour la troisiéme position, le principe
de multiplication nous permet de vérifier qu’il y a 3x2x1 = 3! = 6 permutations possibles
au total.

Dans le cas de n objets distincts, on aura n! permutations possibles.

Permutations de n objets distincts Le nombre de permutations possibles de n
objets distincts correspond & :

P'=nn—1)(n—-2)---2x1=n!

Prenos le cas ou on cherche le nombre de permutations des lettres A, A, B. On a 3



lettres & permuter mais 2 de ces lettres sont A. On peut pas distinguer entre elles, alors

les permutations sont :
AAB ABA BAA
donc le nombre de permutations est 3.

[ Permutations de n objets pas tous distincts Dans le cas ou n; des objets sont ]
indiscernables parmi les n objets a permuter, le nombre de permutations possibles est

n!

n1!

n
ni

S’il y a encore n; objets indiscernables, et m; objets indiscernables, ..., n; objets
indiscernables, alors le nombre de permutations possibles correspond a :

" n!

n1,Mn2,...,Nk

n n1!n2! 00 nk'

Par exemple, le nombre de permutations possibles pour les lettres du mot TENESSEE
est Py = P, = %! = 840. C’est-a-dire qu’on peut former 840 mots distincts de 8
lettres en changeant 1’ordre des lettres.

Les arrangements

Dans le premier exemple du lancer d’une piéce de monnaie trois fois, on a obtenu le
nombre de possibilités par 23. Ceci se généralise pour une expérience a n résultats répétée
p fois : nP.

Arrangement avec répétition
Le nombre d’arrangements avec répétition de p éléments parmi n objets est donné par
la formule :

n_ p
Ap—n

On a un autre cas d’arrangement :

' Arrangement sans répétition

Un arrangement sans répétition consiste en une liste ordonné d’objets distincts. Deux
arrangements difféerent 1'une de 'autre si leur contenu n’est pas le méme ou si leurs
éléments sont ordonnés différemment.

Considérons 'exemple de quatre jetons se distinguant chacun par une lettre différente,
a, b, c ou d.Voici tous les arrangements de ces jetons pris un a la fois :

o S Q

d.

Voici tous les arrangements de ces jetons pris deux a la fois :

Puisqu’il y a quatre lettres possibles a la premiére position, puis trois lettres restantes
pour la deuxiéme position, le principe de multiplication nous aurait permis de vérifier que
le nombre d’arrangements possibles est 4 x 3 = 12. Notons que les arrangements ab et ba



ab  bc

ba «cb
ac bd
ca db
ad cd
da dc.

différent I'une de I'autre parce que leurs éléments ne sont pas dans le méme ordre, tandis
que les arrangements ac et ab différent 'une de 'autre parce que leur contenu n’est pas
le méme.

Prenons le cas de n objets distincts a partir desquels on veut obtenir des arrangements
de r objets (r < n). Le choix du premier objet a n résultats possibles, le choix du deuxiéme,
(n — 1) résultats possibles, et ainsi de suite jusqu’au choix du r-iéme, qui a [n — (r — 1)]
résultats possibles. L’application du principe de multiplication nous permet d’établir la
formule générale suivante.

' Arrangements de r objets choisis parmi n objets
Le nombre d’arrangements (sans répétition) possibles de r objets distincts choisis parmi
n objets distincts correspond a :

n!

A :n(n—1)(n—2)---(n—7~+1):m

n

Soulignons que ZZ = P"=nlet que 0! = 1.

Une équipe de baseball des ligues majeures compte en général 25 joueurs. La for-
mation a 'attaque se compose de 9 de ces joueurs dans un ordre donné. Il y a donc
A% =741 - 10" formations possibles.

Les combinaisons

Combinaison
Une combinaison consiste en un arrangement d’objets distincts et ne différe d’une autre
que si son contenu n’est pas le méme. L’ordre n’a ici aucune importance.

Voici toutes les combinaisons possibles de deux jetons pris parmi quatre jetons qui
portent chacun une lettre différente, a, b, c ou d :

— ab
— ac
— ad
— be
— bd
— cd

Puisqu’il y a 2! = 2 fagons de permuter deux objets, la liste des combinaisons est deux
fois plus courte que la liste des permutations de deux objets choisis parmi quatre.



[ Combinaisons de objets choisis parmi n objets
Le nombre de combinaisons de r objets distincts choisis parmi n objets distincts est

défini par
n A n!
o= — ="
" (7") d ri(n —r)! (1.3)

Pour nos besoins actuels, on a défini le terme (:) dans les cas ol n et r sont des
nombres entiers tels que 0 < r < n. Ce terme peut toutefois étre défini de fagon générale
pour un nombre réel n et tout nombre entier non négatif r. On peut aussi écrire

<n) nn—1)(n—-2)...(n—r+1)

r rl

Le terme (Z) porte le nom de « coefficient binomial » en raison de son utilisation dans
le théoréme du binéme :

(a+b)" = zn: <Z> AT (L4)

r=0

Exemple 1.30

Une équipe de ’Association nationale de basketball (NBA) compte habituellement
12 joueurs. La formation partante se compose de 5 de ces joueurs dont 'ordre n’a
pas d’importance. Il y a, par conséquent,

12\ 12!
== =792
(5) 5171

formations partantes possibles.

Voici deux identités utiles pour la résolution de problémes :

(Z> - (nl) (1.5)
(Z) - (Z:D - (n;l) (1.6)

On peut expliquer le résultat de I’équation 1.5 en posant

(Z) h r!(nni )l (n—r)!(nni (n—r) (nir)

ou en remarquant que le nombre de fagons de « choisir » r objets parmi n est équivalent
au nombre de fagons d’« exclure » n — r objets parmi n. Le résultat de I’équation 1.6
se justifie mathématiquement en développant le membre de droite et en regroupant les
termes semblables.




Le nombre de sous-ensembles possibles

Un ensemble fini de n éléments comprend 2" sous-ensembles. On peut le vérifier a
I’aide du principe de multiplication en considérant que chaque élément peut étre présent ou
absent d’un sous-ensemble donné (2 possibilités). On a donc un total de 2x2x---x2 = 2"
sous-ensembles possibles. On peut aussi le vérifier a partir du théoréme du binéme (voir
I’équation 1.4) en utilisant @ = b = 1, comme suit :

roasr =3 ()= (5) () ()

Le membre de droite de cette relation indique le nombre total de sous-ensembles,
puisque (8) représente le nombre de sous-ensembles vides, (’11) le nombre de sous-ensembles
formés d’un élément, et ainsi de suite jusqu’a (2), qui représente le nombre de sous-
ensembles formés de n éléments. On appelle parfois « ensemble-puissance » ’ensemble

contenant tous les sous-ensembles possibles d'un ensemble d’éléments.



Cours de Probabilités pour Ingénieurs en Génie des
Matériaux
Chapitre 2 : Algébre des événements

Un retour sur les ensembles

Nous allons recourir a quelques éléments de la théorie des ensembles pour présenter
les concepts de base du calcul des probabilités. Un ensemble est une collection ou un
groupe d’objets. On le désigne habituellement par une lettre majuscule, telle que A ou
B. On appelle « éléments de A » les objets qui forment 'ensemble A. En régle générale,
on écrit « © € A » si x appartient a l'ensemble A, et « x ¢ A » si tel n’est pas le cas.
Il arrive qu’on utilise un ensemble pour représenter les éléments et qu’on indique une
propriété caractéristique. Illustrons ces notions a l'aide de quelques exemples. Lors de la
description d’un ensemble, seuls deux points d’intérét a une énoncée doivent étre pris en
ligne « tels que ».

Exemple 1.1

L’ensemble formé des nombres entiers 5, 6, 7 et 8 est fini et compte quatre éléments.

On peut le noter
A=1{5,6,7,8}.

Les énoncés « 5 € A » et « 9 ¢ A » sont ici tous deux vrais.

Exemple 1.2

| r

On peut définir 'ensemble des voyelles de 'alphabet frangais en écrivant V' =
{a,e,i,0,u,y}. Une autre facon de procéder consiste a indiquer une caractéristique
propre a cet ensemble, en utilisant un symbole, d’ot

V = {* : * est une voyelle de I'alphabet francais}.

| V

Exemple 1.3

Soit A I'ensemble de tous les nombres réels compris entre 0 et 1 inclusivement. On
pourrait définir cet ensemble par une caractéristique propre et écrire

A={z:2eR, 0<z <1},

ou R représente I’ensemble de tous les nombres réels.




Exemple 1.4

L’ensemble B = {—3,+3} est identique a I'ensemble
B={r:1r€R, z*=09}.

Vous représentez encore une fois I’ensemble des nombres réels.

Exemple 1.5

| r

Soit les points (z,y) qui appartiennent a une droite donnée A dans le plan réel. Les
points (z,y) tels que ax + by = ¢ sont des éléments de A. On a ainsi

A={(z,y):x e Ry € R, ax + by = ¢},

ol R représente ’ensemble des nombres réels.

L’ensemble vide et I’ensemble universel

L’ensemble de tous les objets considérés porte le nom d’« ensemble universel » ou
« ensemble référentiel ». On le désigne en général par (2.
L’ensemble vide est un autre ensemble particulier, le plus souvent noté @. Illustrons
ces deux concepts.
Soit I’ensemble
A={z:z€R, 2= -1}

On a ici 'ensemble des nombres réels R comme ensemble universel. L’ensemble A est
manifestement vide, puisqu’il n’existe aucun nombre réel tel que 22 = —1. Soulignons que
I'ensemble {0} # @.

Le cardinal

Le nombre d’éléments d'un ensemble (son cardinal) a souvent de 'importance. Dans le
cas d’un ensemble A, on le note n(A). S’il s’agit d’un nombre fini, on est en présence d’un
ensemble fini. Un ensemble infini tel qu’on peut établir une correspondance biunivoque
entre ses éléments et les nombres naturels porte le nom d’ensemble infini dénombrable.
On appelle « ensemble non dénombrable » un ensemble constitué d’un nombre infini
d’éléments impossibles a compter. Ainsi, si a < b, alors A = {x € R, a < z < b} définit
un ensemble non dénombrable.

Les sous-ensembles

Soit deux ensembles, A et B. L’ensemble A est un sous-ensemble de I’ensemble B ou
A est inclus dans ’ensemble B (A C B) si chacun de ses éléments appartient aussi a
I'ensemble B. Les ensembles A et B sont dits « égaux » (A = B) seulement si A C B et
B C A. On peut démontrer qu’il en résulte ce qui suit :

— L’ensemble vide est inclus dans tout ensemble A.

— Dans un ensemble A, on retrouve un autre ensemble A satisfaisant & la relation
ACQ.



— La relation « inclus » est réflexive dans lui-méme (une relation réflexive), A C A.

Fait intéressant, il se dégage de l'idée d’égalités d’ensembles qu’ordres dans lequel on
énumere les éléments n’a pas d'importance. Soit A = {a,b,c} et B = {c,a, b}. Selon cette
définition, A = B.

On peut aussi définir un ensemble de parties, soit ’ensemble de tous les sous-ensembles
d’un ensemble donné. Si A = {z,y}, les sous-ensembles de A sont : &, {z}, {y}, {=, vy}
On note ce nouvel ensemble PB(A). Si B = {x,y, z}, 'ensemble des parties de B est
constitué des sous-ensembles @, {z}, {y},{z},{z, v}, {z, 2}, {y, 2} et {z,y, z}. Puisque le
nombre de parties de I’ensemble a n éléments est 2", I’ensemble a deux éléments posséde
4 sous-ensembles et celui a trois éléments, 8.

Les opérations sur les ensembles

Voyons maintenant quelques opérations sur les ensembles. Si A et B sont des sous-
ensembles quelconques de 'ensemble universel €2, les énoncés suivants s’appliquent :

1. Le complémentaire de I'ensemble A (dans ) est 'ensemble de tous les éléments
de 2 qui n’appartiennent pas & A. On le note A. Autrement dit,

A={r:2€Q,z¢ A}.
2. L’intersection des ensembles A et B est ’ensemble des éléments qui appartiennent
ala fois a A et & B. On la note AN B. En d’autres termes,
ANB={x:x € Aetz € B}.

Soulignons que A N B forme un ensemble qu’on pourrait désigner par une lettre
quelconque telle C'.

3. L’union des ensembles A et B est I’ensemble des éléments qui appartiennent a A
ou & B, sinon deux & la fois. On la note AU B :

AUB={z:x € Aoux € B (ou les deux)}.

Les opérations décrites ci-dessus sont illustrées dans les exemples qui suivent.

Exemple 1.6

Soit 2 'ensemble des lettres de ’alphabet, d’ou
) = {x : % est une lettre de l'alphabet frangais},
ainsi que
A = {x : x est une voyelle}

et
B = {x: * est 'une des lettres a,b ou c}.

A partir des définitions précédemment fournies, il s’ensuit que

A = l'ensemble des consonnes

B ={a,b,c}
AUB ={a,b,c,e,i,0,u,y}
AN B ={a}.




Exemple 1.7

Supposons I'ensemble universel Q = {1, 2, 3, 4, 5, 6, 7} et les trois sous-ensembles
A={1,2,3}, B={2,4,6} et C ={1, 3,5, 7}. 1l ressort directement des défini-

tions citées précédemment que

A=1{4,5,6,7}
AUB={1,2,3,4,6)}
ANB=1{2}

B={1,3,5"17=C
C=1{2,4,6}=08
BUuC=U
BNC=g.

On peut représenter certaines opérations sur les ensembles par un diagramme de Venn.
Pour ce faire, on trace un rectangle figurant ’ensemble universel 2. On dessine ensuite
dans ce rectangle un cercle qui délimite la région correspondant a un sous-ensemble A de
Q2. La portion du rectangle située a l’extérieur du cercle représente alors le complémentaire
A, comme le montre la figure 1.

Q

A

FIGURE 1 — Un ensemble dans un diagramme de Venn
La figure 2 montre l'intersection et 'union a ’aide d’un diagramme de Venn.

Y Y
B B

a) ANB b) AUB

FIGURE 2 — a) L'intersection entre A et B est ombrée; b) 'union de A et B est ombrée.
On peut facilement étendre les opérations d’intersection et d’union & tout nombre fini
d’ensembles. Supposons qu’on a trois ensembles : A, B et C. Dans ce cas, AUBUC a
comme propriété que AU (BUC) = (AU B)UC, ce qui ne fait aucun doute puisque
les deux membres de I'équation sont identiques. On constate aussi que AN BNC =
(ANB)NC=AnNn(BNCQC).
Le tableau 1 présente quelques lois auxquelles obéissent les ensembles en ce qui a trait
aux opérations définies précédemment.



Tableau 1 : Les propriétés des opérations

Lois Opérations

Les lois d’identité AUg =A
ANU=A
AuU=U
AN =0

Les lois associatives

AU(BUC)=(AuB)UC
ANn(BNnC)=(AnB)NnC

Les lois commutatives | AUB=BUA
ANB=BnNA
Les lois de De Morgan | AUB=ANDB
ANB=AUB

On peut illustrer certains de ces énoncés par un diagramme de Venn. Une démonstra-

tion formelle s’avére en général plus longue.

Lorsqu’il y a plus de trois ensembles, on généralise en recourant a des indices. Sup-
posons donc n ensembles, notés par exemple Bi, Bs, ...
L’intersection du deuxiéme tableau a I’ensemble des éléments qui appartiennent a tous

Y

se note alors BiN By N...NB,.

, B,,, sont des ensembles donnés.



1 Les expériences aléatoires et les espaces échantillon-
naux

La théorie des probabilités découle de situations concrétes ou 'on réalise une expé-
rience pour en observer le résultat, ce dernier étant impossible & prédire avec certitude.

On peut décrire I’ensemble des résultats possibles méme si ’on ne peut prédire avec
certitude I'un ou l'autre de ces résultats. En second lieu, d’un point de vue conceptuel,
on pourrait répéter une telle expérience dans des conditions identiques et obtenir ainsi
une suite de résultats déterminés par le hasard; mais lorsque le nombre de répétitions
augmente, on commence & observer certaines régularités en ce qui a trait a la fréquence
des divers résultats.

Expérience aléatoire et espace échantillonnal

Une expérience aléatoire est une expérience dont le résultat dépend du hasard.
Elle peut mener a des résultats différents méme si elle est conduite dans les mémes
conditions chaque fois. L’ensemble des résultats possibles a l'issue d'une expérience
aléatoire s’appelle « espace échantillonnal ».

On désigne habituellement les espaces échantillonnaux par la lettre £ ou la lettre
). Une expérience dont l'ensemble des résultats possibles est fini s’appelle une
expérience a espace échantillonnal fini.

Classons maintenant les espaces échantillonnaux (et de ce fait les expériences aléa-
toires) en reprenant la terminologie utilisée pour I’étude des ensembles et des opérations
sur les ensembles.

Espaces échantillonnaux discret et continu

Un espace échantillonnal discret consiste en un ensemble fini ou en un ensemble
infini dénombrable de résultats. Par opposition, un espace échantillonnal continu
consiste en un ensemble non dénombrable de résultats.

Ces derniers peuvent étre des nombres réels compris dans un intervalle, ou des couples
de nombres réels a I'intérieur du produit d’intervalles, 1a ot 'on détermine la valeur de
deux variables dans une expérience.

Voici quelques exemples présentant des expériences aléatoires et leur espace échan-
tillonnal.

&1 : On lance une piéce de monnaie et on note sur quel coté elle tombe.
5% i e {F 5 P }
On a ici un ensemble fini, car n(.%) = 2.




&5 : On lance & trois reprises une piéce de monnaie et on note chaque fois sur quel
coté elle tombe.
“ : {PPP, PPF, PFP, PFF, FPP, FPF, FFP, FFF}.

Exemple 1.10

&3 : On lance a trois reprises une piéce de monnaie et on note le nombre de fois ou
elle tombe sur le coté pile.
S :4{0,1,2,3}.

Exemple 1.11

&4 : On lance deux dés réguliers et on note le chiffre sur la face du dessus de chacun.

y4 : {(17 1)7 (172)7 (173)7 (174>7 (175)7 (176)7

On a ici n(#) = 36. On aurait pu choisir de représenter 1’espace échantillonnal
sans tenir compte de l'ordre des résultats; on aurait alors n(.#;) = 21. Dans une
telle représentation, les éléments de ., n’auraient pas tous les mémes chances de
survenir.

Exemple 1.12

&5 : On assemble une portiére de véhicule automobile en réalisant de nombreuses
soudures. On inspecte ensuite ces soudures et on note le nombre total de soudures
qui sont défectueuses.

S5 :4{0,1,2,..., K}, ou K = le nombre total de soudures de la portiére.

Exemple 1.13

&5 : On fabrique un tube cathodique, puis on lui fait subir un essai de durée. On
note le temps écoulé (en heures) au moment ou le tube connait une défaillance.
S {t:teR, t>0}.

On a ici un ensemble non dénombrable, car les résultats possibles sont des valeurs
comprises dans un intervalle de la droite réelle.




Exemple 1.14

&7+ Un gestionnaire compte le nombre d’appels regus au service a la clientéle en
une heure.

{0,1,2,...).

On a ici un ensemble infini dénombrable, car les valeurs possibles sont constituées
de I’ensemble des nombres entiers.

\.

Exemple 1.15

&3 : On inspecte visuellement deux des principaux joints de brasure d’un circuit
imprimé ; on les vérifie a I’aide d’une sonde. Ensuite, chacun des joints est coté A
(acceptable) ou D (défectueux, ce qui entraine une reprise ou une mise au rebut).

Z + {AA, AD, DA, DD}.

Exemple 1.16

&y : Soit une usine de produits chimiques ou I'on fabrique chaque jour entre 400 et
600 tonnes métriques d’acide chlorhydrique. On choisit une journée au hasard et on
note la quantité produite.

Sy {x:x €R, 400 <z < 600}.

On a ici un espace infini et non dénombrable.

Exemple 1.17

&0 : Soit une usine d’extrusion ou 'on fabrique des piéces métalliques profilées
longues de 6 m. Comme on enléve les bavures des barres a chaque extrémité, elles
doivent initialement avoir plus de 6 m. Aprés avoir fabriqué et fini une barre profilée,
on mesure la longueur totale des matiéres de rebut.

o0 {x:zeR, x>0}

On a ici un espace infini et non dénombrable.

Exemple 1.18

&1 - A Toccasion du lancement d’un satellite, on mesure les trois composantes de sa
vitesse a partir du sol (c’est-a-dire dans les trois directions de 'espace), en fonction
du temps écoulé. Une minute apres le lancement, on enregistre ces données pour les
transmettre & un appareil de commande.

A1 {(vg, vy, 0,) 1 Uy, vy, v, sont des nombres réels}.

On a ici un espace a trois dimensions, théoriquement infini dans toutes les directions.




Exemple 1.19

&12 : Reprenons l'exemple précédent, en mesurant cette fois continuellement les trois
composantes de la vitesse du satellite pendant cinq minutes.
Y12 : On a ici un espace complexe, car il faut tenir compte de toutes les valeurs
possibles des fonctions v, (t), v,(t) et v,(t) lorsque 0 < ¢ < 5.

Tous ces exemples présentent les caractéristiques requises d’une expérience aléatoire.
La description de l'espace échantillonnai est relativement simple, sauf pour l'exemple
1.19, et méme si on ne ’envisage pas ici, on pourrait idéalement répéter ces expériences.
Reprenons 'exemple 1.8 pour mieux voir le phénoméne des manifestations aléatoires.
Si 'on répéte Eq, a l'infini, on obtiendra de toute évidence une suite de «pilesy et de
«faces». Une régularité dans les fréquences finira par apparaitre. Comme la piéce utilisée
est équilibrée, elle devrait tomber sur le c6té pile environ une fois sur deux. En faisant en
sorte qu'un modéle soit idéal, on se limite & convenir d’un ensemble théorique possible de
résultats. Dans le cas de F; on a éliminé la possibilité que la piéce tombe autrement qu’a
plat.

2 Les événements

Envisageons 'espace échantillonnal .#” comme 1’ensemble universel €2, ¢’est-a-dire I’en-
semble des résultats possibles d’'une expérience aléatoire, ce qui fait de I’événement A,

par exemple, un sous-ensemble de .. Il faut noter que @ et .¥ sont tous deux des sous-
ensembles de ..

Evénement
Un événement est un sous-ensemble de ’espace échantillonnal d’une expérience aléa-
toire. On le désigne par une lettre majuscule.

Les événements énumérés ci-dessous se rattachent aux expériences &1, &5, ..., &9 dé-
crites a la section 1.2. Ce ne sont que des exemples parmi tous les événements qu’on
pourrait définir dans chaque cas.

Dans I’expérience &}, soit A :

La piéce tombe sur le coté pile.

A={P}.

Dans I’expérience &5, soit B :

La piéce tombe chaque fois sur le méme coté.
B = {PPP, FFF}.

Dans I’expérience &3, soit C :

La piéce tombe deux fois sur le coté pile.

C ={2}.

Dans I’expérience &, soit D :

La somme des chiffres sur les faces du dessus est sept.
D ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}.
Dans I’expérience &5, soit E :

Il n’y a pas plus de cinq soudures défectueuses.
E={0,1,2,3,4,5}.



Dans I’expérience &, soit F' :

Il s’écoule plus de 1000 heures avant la défaillance.
F={t:t>1000}.

Dans ’expérience &7, soit G :

Le nombre d’appels est compris entre 3 et 6 inclusivement.
G ={3,4,5,6}.

Dans I’expérience &, soit H :

Aucun des joints n’est défectueux.

H = {AA}.

Dans I’expérience &, soit J :

La quantité d’acide produite est supérieure a 550 tonnes métriques.
J={z:x R, 550 <z <600}

Dans l’expérience &, soit K :
La longueur totale des matieres de rebut ne dépasse pas 1 m.
K={z:2eR, 0<z<1}.

Comme un événement est un ensemble, les opérations, les lois et les propriétés étudiées
a la section 1.1 s’y appliquent.

Evénements mutuellement exclusifs
Deux événements A; et A, sont mutuellement exclusifs si Ay N Ay = &. Les termes
« incompatibles » et « disjoints » sont des synonymes de « mutuellement exclusifs ».

Pour que trois événements A;, As et Az soient mutuellement exclusifs, il faut que
AlNA =0, AiNA; = @, Ab,N A3 = O et que Ay N Ay, N A3 = &. La figure 1.3
illustre ce cas. De fagon générale, lorsque l'intersection de chacune des combinaisons de
deux ou plusieurs événements pris parmi k événements considérés est vide, on qualifie ces
k événements de « mutuellement exclusifs ».

5%

Figure 1.3 Trois événements mutuellement exclusifs
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Cours de Probabilités pour Ingénieurs en Génie des
Matériaux
Séance 3 : Calcul de probabilités

Les probabilités et leur détermination

Une approche axiomatique permet de définir toute probabilité comme une fonction
dont le domaine est constitué d’ensembles, et I'image, de nombres réels compris entre
0 et 1. Si 'événement A est un élément du domaine de cette fonction, on peut utiliser
la notation fonctionnelle P(A) pour désigner 1’élément correspondant de l'image, soit la
probabilité que A se réalise.

[ Probabilité
Soit une expérience & et son espace échantillonnal .. Une probabilité P(-) définie sur
& est une fonction qui, & tout événement A dans .7, associe un nombre réel P(A)
appelé « probabilité de I’événement A » (ou probabilité de A), vérifiant les propriétés
(axiomes) suivantes :

1. 0 < P(A) <1 pour tout événement A de .&.
2. P() = 1.

3. Pour tout nombre fini £ d’événements mutuellement exclusifs définis dans .,
P(AJUAyU...UA;) = P(A;) + P(A2) + ...+ P(4).

4. Si Ay, As, Az, ... représentent une suite dénombrable d’événements mutuellement
exclusifs définis dans .#, alors

Ces propriétés n’indiquent pas comment déterminer les probabilités, mais elles im-
posent des restrictions a cet égard.
Concrétement, on établit une probabilité en s’appuyant sur :

1. des estimations fondées sur la pratique ou sur des observations antérieures ;
2. une analyse des conditions expérimentales ;

3. une hypothése.



L’estimation d’une probabilité fondée sur la pratique

Une approche pratique basée sur les fréquences relatives

Afin d’illustrer la détermination de probabilités fondées sur la pratique, on peut penser
a la répétition d’une expérience et a la fréquence relative de 1’événement d’intérét.

La notion de fréquence relative posséde un attrait intuitif. Elle fait intervenir la répéti-
tion conceptuelle d’une expérience et ’observation du nombre de répétitions ainsi que du
nombre de fois ol I’événement souhaité se produit. Soit plus précisément une expérience
& répétée m fois et deux événements notés A et B. Représentons par m 4 et mpg le nombre
de fois ot A et B se produisent lors des m répétitions.

[ Fréquence relative
La valeur f4 = ma/m se définit comme la fréquence relative de I’événement A. Elle
présente les propriétés suivantes :

LO<S fas1;

2. fa = 0 si et seulement si 'événement A ne se produit jamais, et f4 = 1 si et
seulement si I’événement A se produit a chaque répétition ;

3. Si les événements A et B sont mutuellement exclusifs, alors faug = fa + fB.

Lorsque la valeur de m devient élevée, la valeur de f4 tend a se stabiliser. Autrement
dit, plus on répéte 'expérience, moins la fréquence relative de I’événement A varie (d’une
répétition a l'autre). La notion de fréquence relative et la tendance de cette fréquence
a se stabiliser sont & l'origine d’une méthode servant a attribuer une probabilité & un
événement. En effet, dans le cas d’une expérience & d’espace échantillonnal ., si la
fréquence relative f4 d'un événement A tend vers un nombre quelconque p4 & mesure que
le nombre de répétitions augmente, on peut faire du nombre p,4 la probabilité de A. En
d’autres termes, lorsque m — oo,
ma

P(A) = = pa- (1.1)

m

En pratique, on doit évidemment se satisfaire d’'un nombre de répétitions plus limité.
Prenons 'exemple d’une expérience simple &g, ott ’on lance une piéce pour noter a chaque
répétition si elle tombe du coté pile (P) ou face (F'). Puisque I'espace échantillonnal est
& = {P, F}, on peut s’intéresser a I’événement A « la piéce tombe sur le coté pile ».
Supposons que 'expérience est répétée m = 87 fois, et que le coté pile sort my = 43,
ot une fréquence relative de f4 = 43/87 ~ 0,494. On obtiendrait certes une valeur
plus convaincante en répétant l’expérience m = 10000 fois, ce qui : fa = 0,4924, ou
fa = 0,4920, ou toute autre valeur trés proche de 0,5. La probabilité de 1’événement
A serait alors définie comme la valeur vers laquelle f4 converge au fur et & mesure de
I’augmentation du nombre de répétitions. Ce concept de probabilité fondée sur la fréquence
relative sera précisé ultérieurement.

La détermination d’une probabilité

Si I'espace échantillonnal contient une quantité dénombrable de résultats (ej, ea, .. .)
dont les probabilités respectives sont pq, po, .. ., alors la probabilité d’'un événement A est
la somme des probabilités des résultats qui le composent. Plus précisément, on doit avoir



pi >0, pourt=1,2,...,et py +po+--- =1, donc

P(A): Z Di-

{i:e;€ A}

Par exemple, si A = {ej,e3, e}, alors P(A) = p; + ps + ps. Nous étudierons plus

loin, particuliérement au chapitre 4, différents modéles permettant d’établir les valeurs de
P1,P2, .- .-

-

Résultats équiprobables

Si 'espace échantillonnal est fini et renferme n résultats ayant tous la méme probabilité
de survenir, alors on dit que ces résultats sont équiprobables. La probabilité associée a
chacun est

Si 'espace échantillonnal renferme n résultats tous équiprobables, alors

et I’événement A englobe n(A) résultats possibles. Des méthodes de dénombrement
utiles pour déterminer la valeur de n et de n(A) seront étudiées a la section 1.5.

1

Pr=p2=- " =pDPn=—
n

Exemple 1.20

Supposons que la piéce de monnaie de l'exemple 1.9 est biaisée et qu’elle
a deux fois plus de chances de tomber du coté « face » que du coté
« pile » de sorte que les résultats de l'espace échantillonnal . =

{PPP, PPF, PFP, PFF, FPP, FPF, FFP, FFF} ont respectivement une probabi-

"y _ 2 _ 2 _ 2 _ 4 _ 2 _ 4 _ 4 _
lité de pr = 57, P2 = 57, P3 = 37, Pa = 35> D5 = 37> P6 = 375 P71 = 37, P8 = 37-

Soit I’événement « la piéce de monnaie tombe chaque fois sur le méme coté ». On

aalors P(A) = 2 + & = 5=

Exemple 1.21

Reprenons I'exemple 1.14 et supposons qu’un modéle probabiliste a permis d’établir
que

e=20. 20
Pi=——7
o!

sit=0,1,2,...

sinon,

ol p; représente la probabilité de recevoir exactement ¢ appels dans une heure. Soit
A Tévénement « recevoir un nombre de clients compris entre 15 et 16 » (soit les

valeurs 15, 16), et

6_20 . 2015 6_20 . 2016
P(A) = = ~ 0.116.
(4) = P15 + pro 5 T 16l




Exemple 1.22

Reprenons 'exemple 1.9, dans lequel on lance a trois reprises une piéce de monnaie.
Comme on suppose ici que la piéce est équilibrée, les huit résultats possibles sont
équiprobables. Soit A ’événement « la piéce tombe chaque fois sur le méme coté ».
Selon I'équation 1.2,

puisqu’il y a huit résultats possibles au total dont deux sont favorables a I’événement

A.

Exemple 1.23

On tient pour acquis que les dés a ’exemple 1.11 sont équilibrés. Soit A I’événement
« la somme des chiffres sur les faces du dessus est sept ». Selon 1’équation 1.2, il y a

36 résultats possibles, tous équiprobables, dont 6 sont favorables & 1’événement A,

1

Théorémes sur le calcul de probabilité

Voici quelques théorémes importants en ce qui concerne les probabilités.

Si @ représente ’ensemble vide, alors P(&) = 0.

Démonstration
On sait que ¥ = .Y U @ et que . et & sont mutuellement exclusifs. Il résulte ainsi
de la propriété n°3 (voir a la page 10) que P(.¥) = P(.¥) + P(©), d’ou P(@) = 0.

P(A) = 1— P(A)

Démonstration
On sait que ./ = AU A et que A et A sont mutuellement exclusifs. Il résulte ainsi de

la propriété n°3 que P(.) = P(A) + P(A), et comme P(.¥) = 1 selon la propriété n°2,

il s’ensuit que P(A) =1 — P(A).

P(AUB)=P(A)+ P(B) - P(ANnB)

Démonstration
Le diagramme de Venn & la figure 1.4 (voir & la page suivante) aide a suivre la dé-
monstration du théoréme 1.3. On peut voir qu'il faut soustraire P(AN B) de 'expression



P(A)+ P(B) afin d’éviter de compter deux fois la probabilité associée a la région hachurée.
Sachant que AUB = (A\ B)U(B\ A)U(ANB) et que (A\ B),(B\ A) et (AN B)
sont mutuellement exclusifs, et que A = (A\ B)U(ANB)et B=(B\A)U(ANB) sont
mutuellement exclusifs, il s’ensuit que P(AU B) = P(A\ B)+ P(B\ A)+ P(AN B). En
effectuant la soustraction, on obtient : P(AU B) = P(A) + P(B) — P(AN B).

54
A B

J

FIGURE 1 — Un diagramme de Venn représentant l'intersection de deux événements non
disjoints

THEOREME 1.4
P(AUBUC) = P(A)+P(B)+P(C)—P(ANB)—P(ANC)—P(BNC)+P(ANBNC)

Démonstration
On peut écrire AUBUC = (AU B)UC et recourir au théoréme 1.3 étant donné que
AU B représente un événement.

THEOREME 1.5

P(Al UAU---U Ak) = Zf:l P(Ai) - Z1gz’<jgk P(Ai n Aj) + 21§i<j<r§k P<Ai 8

THEOREME 1.6
Si A C B, alors P(A) < P(B).

| '

Démonstration
Si A C B,alors B=AU(ANB) et P(B) = P(A) + P(AN B) > P(A) puisque
P(ANB) > 0.



Exemples

Exemple 1.24

Soit A et B des événements mutuellement exclusifs (ANB = &), tels que représentés
a la figure 1.5. S’il est établi que P(A) = 0,20 et que P(B) = 0,30, on peut ici
évaluer plusieurs probabilités :

1. P(A)=1- P(A) =0,80

2. P(B)=1— P(B) = 0,70

3. P(AUB) = P(A) + P(B) = 0,20 + 0,30 = 0,50

4. P(ANB)=0

5. P(AUB) = P(AN B), selon la loi de De Morgan, d’ott

=1-P(ANB)=1-P(@)=1-0=1

6. P(ANB)=1—-P(AUB)=1-0,50=0,5

P(A)=0,20 P(B)=0,30

FIGURE 2 — Les événements A et B associés a 'exemple 1.24

Exemple 1.25

Supposons que les événements A et B ne sont pas mutuellement exclusifs. Si l'on
sait que P(A) = 0,20, que P(B) = 0,30 et que P(AN B) = 0,10, on obtient ce qui
suit :

1. P(A)=1- P(A)=0,80

2. P(B)=1-P(B)=0,70

3. PLAUB) = P(A)+ P(B) - P(ANB)=0,2+0,3—-0,1=0,4
4. P(ANB)=0,1

5. PIANB) = P(AUB)=1-[P(A) + P(B) - P(ANB)] =0,6

La figure 4 illustre les probabilités associées a chacune des régions.




A B
I 0,60

FIGURE 3 — Les événements A et B associés a I'exemple 1.25

Exemple 1.26

Imaginons une ville ou 75 % des gens lisent le journal (J), 20 % aiment 'art (A) et
40 % sont musiciens (M). Du nombre, 15 % lisent le journal et aiment I’art, 30 %
lisent le journal et sont musiciens, 10 % aiment l’art et sont musiciens, et 5 % lisent
le journal, aiment I’art et sont musiciens.

On peut réunir tous ces renseignements a 'intérieur d’'un simple diagramme de Venn
(voir la figure 1.7, a la page suivante), en y inscrivant d’abord la derniére donnée
fournie, soit P(J N AN M) = 0,05, pour ensuite procéder a partir du centre.

FIGURE 4 — Un diagramme de Venn associé¢ a I'exemple 1.26

1. Déterminons la probabilité qu'un habitant de cette ville, choisi au hasard, présente
au moins une des trois caractéristiques a 1’étude. Selon le théoréeme 1.4,

P(JUAUM) = P(J)+P(A)+P(M)—P(JNA)—P(JNM)—P(ANM)+P(JNANM)

=0,754+0,20+0,40 - 0,15-0,30 — 0,10 + 0,05 = 0, 85.

On peut aussi additionner les valeurs du diagramme de Venn pour arriver & cette
réponse.

2. Déterminons la probabilité de I’événement E : "un habitant de cette ville ne présente
qu’une seule des trois caractéristiques". Alors on peut écrire

E=JNANM)U(JNANM)U(JNINM)
Le diagramme de Venn révele que cette probabilité correspond a

PE)=P(JNANM)+P(JNANM)+P(JNANM)=0,35+0+0,05= 0, 40.



Résumé

Propriétés d’une probabilité

0<PA)<1

P(@)=0et P(¥)=1

Si Ay, Aa, As, ... sont mutuellement exclusifs, alors P(A;UA;UA3U...) = > P(A;)
P(A)=1-P(A)

Si A C B, alors P(A) < P(B)

P(AuB)=P(A)+P(B)—P(ANnDB)

P(AUBUC) = P(A)+P(B)+P(C)—P(ANB)—P(BNC)—P(ANC)+P(ANBNC)

Si les n résultats de €2 sont équiprobables, alors P(A) = &t

Techniques de dénombrement

1.

Permutations et Arrangements : Il existe P" = n! permutations de n éléments
distincts.

Il existe A = n%'r), facons de choisir r objets parmi n objets distincts en tenant
compte de l'ordre de pioche.
n!
N existe P ., = ———F facons de permuter n objets séparés en k groupes
M2 nylng! - ny!
formés respectivement de nq,no, ..., n, objets indiscernables.
Combinaisons :
n n!
Il existe C7" = = ﬁ facons de choisir r objets parmi n objets distincts
r rl(n—r)!

sans tenir compte de 'ordre de pige.
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