
Cours de Probabilités pour Ingénieurs en Génie des
Matériaux

Chapitre 1 : Analyse Combinatoire

Les espaces échantillonnaux finis et leur dénombrement
Cette section porte uniquement sur les résultats équiprobables. Pour être en mesure

d’établir une probabilité selon P (A) = n(A)/n, il faut pouvoir déterminer la valeur de n,
soit le nombre de résultats possibles, et celle de n(A), soit le nombre de résultats favorables
à l’événement A.

Lorsque l’expérience est très simple, comme le lancer de dés ou d’une pièce de monnaie,
il est aisé d’établir le nombre de résultats possibles ou favorables. Par contre, si l’on
s’intéresse à la probabilité d’obtenir au moins deux as lorsqu’on pige cinq cartes d’un jeu
de cinquante-deux cartes, le contexte est beaucoup plus difficile à cerner. Il en va de même
si on choisit au hasard des pièces d’une chaîne de production et qu’on souhaite quantifier
la probabilité de non-obtention d’une pièce défectueuse.

Il faudra dans toutes ces situations faire appel à différentes techniques de dénom-
brement pour évaluer n et n(A). Nous étudierons ici des diagrammes en arbre, du principe
de multiplication, de permutations d’objets semblables et de combinaisons.

Les diagrammes en arbre

Dans le cas d’une expérience simple, la construction d’un diagramme en arbre peut
s’avérer utile pour le dénombrement des résultats possibles ou favorables. Dans l’exemple
1.9, dans lequel on lance à trois reprises une pièce de monnaie, la figure 6 montre le dia-
gramme en arbre représentant les huit résultats possibles. On y observe les huit résultats
de l’espace échantillonnal S que sont PPP, PPF, PFP et FFP sont considérés.

On a donc un total de 23 = 8 résultats {PPP, PPF, PFP, PFF, FPP, FPF, FFP,
FFF}.
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Figure 1 – Le diagramme en arbre d’une expérience dans laquelle on lance à trois reprises
une pièce équilibrée

Le principe de multiplication

Si les ensembles A1, A2, . . . , Ak comptent respectivement n1, n2, . . . , nk éléments, il
existe n1 · n2 · · ·nk façons de choisir un élément de A1, puis un élément de A2, ..., et ainsi
de suite jusqu’à un élément de Ak.

Principe de multiplication
Supposons une expérience E composée de k étapes, et que :

— Il y a n1 façons de réaliser l’étape 1 :
— Il y a n2 façons de réaliser l’étape 2 (pour chaque issue de l’étape 1) ;
— etc. ;
— Il y a nk façons de réaliser l’étape k (pour toutes les issues des étapes précédentes).

Alors, l’espace échantillonnal de E contiendra n1 × n2 × · · · × nk résultats possibles.
Si à chaque étape de l’expérience les ni issues sont équiprobables, alors les n1 × n2 ×
· · · × nk résultats ont la même probabilité.

Dans le cas particulier où n1 = n2 = · · · = nk = n, il y a nk choix possibles. Cette
situation a été observée à la figure 1.8.

Exemple 1.27

Imaginons qu’une pièce et un dé équilibrés. Les deux résultats possibles de l’étape
1, soit {P, F}, sont indépendants des six résultats possibles de l’étape 2, soit
{1, 2, 3, 4, 5, 6}, d’où n1 = 2, n2 = 6, et l’ensemble des résultats possibles est consti-
tué de 2 × 6 = 12 résultats. On peut dresser à l’annexe un diagramme en arbre
semblable à la figure 7 pour l’énumération.

2



Figure 2 – Le diagramme en arbre associé à l’expérience en deux étapes de l’exemple
1.27

Exemple 1.28

Soit un processus de production où l’inspection en cours de fabrication est très li-
mitée. Une fois les produits finis, on les achemine à une aire d’examen où quatre
personnes en vérifient chacune une caractéristique différente. La première de ces per-
sonnes attribue aux unités produites l’une ou l’autre de quatre cotes ; la deuxième,
l’une ou l’autre de trois cotes ; et les deux autres, l’une ou l’autre de deux cotes
chacune. Chaque personne inscrit sur l’étiquette d’identification du produit la cote
attribuée selon la caractéristique examinée.
Il y a un total de 4 · 3 · 2 · 2 = 48 inscriptions possibles pour une unité donnée.

Les permutations

Permutation
Une permutation de n éléments distincts consiste en une liste ordonné de tous les n
éléments.

Considérons l’exemple de trois jetons se distinguant chacun par une lettre différente,
a, b, c.Voici toutes les permutations possibles de ces jetons :

abc acb bac bca cab cba
Puisqu’il y a trois lettres possibles à la première position, puis deux lettres restantes

pour la deuxième position, et enfin une seule lettre pour la troisième position, le principe
de multiplication nous permet de vérifier qu’il y a 3×2×1 = 3! = 6 permutations possibles
au total.

Dans le cas de n objets distincts, on aura n! permutations possibles.

Permutations de n objets distincts Le nombre de permutations possibles de n
objets distincts correspond à :

P n = n(n− 1)(n− 2) · · · 2× 1 = n!

Prenos le cas où on cherche le nombre de permutations des lettres A, A, B. On a 3
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lettres à permuter mais 2 de ces lettres sont A. On peut pas distinguer entre elles, alors
les permutations sont :

AAB ABA BAA
donc le nombre de permutations est 3.

Permutations de n objets pas tous distincts Dans le cas où n1 des objets sont
indiscernables parmi les n objets à permuter, le nombre de permutations possibles est

P n
n1

=
n!

n1!

S’il y a encore n1 objets indiscernables, et n1 objets indiscernables, . . ., nk objets
indiscernables, alors le nombre de permutations possibles correspond à :

P n
n1,n2,...,nk

=
n!

n1!n2! · · ·nk!

Par exemple, le nombre de permutations possibles pour les lettres du mot TENESSEE
est P n

nE ,nS
= P 8

4,2 = 8!
4!2!

= 840. C’est-à-dire qu’on peut former 840 mots distincts de 8
lettres en changeant l’ordre des lettres.

Les arrangements

Dans le premier exemple du lancer d’une pièce de monnaie trois fois, on a obtenu le
nombre de possibilités par 23. Ceci se généralise pour une expérience à n résultats répétée
p fois : np.

Arrangement avec répétition
Le nombre d’arrangements avec répétition de p éléments parmi n objets est donné par
la formule :

An
p = np

On a un autre cas d’arrangement :

Arrangement sans répétition
Un arrangement sans répétition consiste en une liste ordonné d’objets distincts. Deux
arrangements diffèrent l’une de l’autre si leur contenu n’est pas le même ou si leurs
éléments sont ordonnés différemment.

Considérons l’exemple de quatre jetons se distinguant chacun par une lettre différente,
a, b, c ou d.Voici tous les arrangements de ces jetons pris un à la fois :

a
b
c
d.

Voici tous les arrangements de ces jetons pris deux à la fois :
Puisqu’il y a quatre lettres possibles à la première position, puis trois lettres restantes

pour la deuxième position, le principe de multiplication nous aurait permis de vérifier que
le nombre d’arrangements possibles est 4× 3 = 12. Notons que les arrangements ab et ba
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diffèrent l’une de l’autre parce que leurs éléments ne sont pas dans le même ordre, tandis
que les arrangements ac et ab diffèrent l’une de l’autre parce que leur contenu n’est pas
le même.

Prenons le cas de n objets distincts à partir desquels on veut obtenir des arrangements
de r objets (r ≤ n). Le choix du premier objet a n résultats possibles, le choix du deuxième,
(n− 1) résultats possibles, et ainsi de suite jusqu’au choix du r-ième, qui a [n− (r − 1)]
résultats possibles. L’application du principe de multiplication nous permet d’établir la
formule générale suivante.

Arrangements de r objets choisis parmi n objets
Le nombre d’arrangements (sans répétition) possibles de r objets distincts choisis parmi
n objets distincts correspond à :

A
r

n = n(n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!

Soulignons que A
n

n = P n = n! et que 0! = 1.

Exemple 1.29

Une équipe de baseball des ligues majeures compte en général 25 joueurs. La for-
mation à l’attaque se compose de 9 de ces joueurs dans un ordre donné. Il y a donc
A25

9 = 7, 41 · 1011 formations possibles.

Les combinaisons
Combinaison
Une combinaison consiste en un arrangement d’objets distincts et ne diffère d’une autre
que si son contenu n’est pas le même. L’ordre n’a ici aucune importance.

Voici toutes les combinaisons possibles de deux jetons pris parmi quatre jetons qui
portent chacun une lettre différente, a, b, c ou d :

— ab
— ac
— ad
— bc
— bd
— cd

Puisqu’il y a 2! = 2 façons de permuter deux objets, la liste des combinaisons est deux
fois plus courte que la liste des permutations de deux objets choisis parmi quatre.
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Combinaisons de r objets choisis parmi n objets
Le nombre de combinaisons de r objets distincts choisis parmi n objets distincts est
défini par

Cr
n =

(
n

r

)
=

A
r

n

r!
=

n!

r!(n− r)!
(1.3)

Pour nos besoins actuels, on a défini le terme
(
n
r

)
dans les cas où n et r sont des

nombres entiers tels que 0 ≤ r ≤ n. Ce terme peut toutefois être défini de façon générale
pour un nombre réel n et tout nombre entier non négatif r. On peut aussi écrire(

n

r

)
=

n(n− 1)(n− 2) . . . (n− r + 1)

r!

Le terme
(
n
r

)
porte le nom de « coefficient binomial » en raison de son utilisation dans

le théorème du binôme :

(a+ b)n =
n∑

r=0

(
n

r

)
arbn−r. (1.4)

Exemple 1.30

Une équipe de l’Association nationale de basketball (NBA) compte habituellement
12 joueurs. La formation partante se compose de 5 de ces joueurs dont l’ordre n’a
pas d’importance. Il y a, par conséquent,(

12

5

)
=

12!

5!7!
= 792

formations partantes possibles.

Voici deux identités utiles pour la résolution de problèmes :(
n

r

)
=

(
n

n− r

)
(1.5)

et (
n

r

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
(1.6)

On peut expliquer le résultat de l’équation 1.5 en posant(
n

r

)
=

n!

r!(n− r)!
=

n!

(n− r)!(n− (n− r))!
=

(
n

n− r

)
ou en remarquant que le nombre de façons de « choisir » r objets parmi n est équivalent

au nombre de façons d’« exclure » n − r objets parmi n. Le résultat de l’équation 1.6
se justifie mathématiquement en développant le membre de droite et en regroupant les
termes semblables.
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Le nombre de sous-ensembles possibles

Un ensemble fini de n éléments comprend 2n sous-ensembles. On peut le vérifier à
l’aide du principe de multiplication en considérant que chaque élément peut être présent ou
absent d’un sous-ensemble donné (2 possibilités). On a donc un total de 2×2×· · ·×2 = 2n

sous-ensembles possibles. On peut aussi le vérifier à partir du théorème du binôme (voir
l’équation 1.4 ) en utilisant a = b = 1, comme suit :

2n = (1 + 1)n =
n∑

r=0

(
n

r

)
=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
Le membre de droite de cette relation indique le nombre total de sous-ensembles,

puisque
(
n
0

)
représente le nombre de sous-ensembles vides,

(
n
1

)
le nombre de sous-ensembles

formés d’un élément, et ainsi de suite jusqu’à
(
n
n

)
, qui représente le nombre de sous-

ensembles formés de n éléments. On appelle parfois « ensemble-puissance » l’ensemble
contenant tous les sous-ensembles possibles d’un ensemble d’éléments.
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Cours de Probabilités pour Ingénieurs en Génie des
Matériaux

Chapitre 2 : Algèbre des évènements

Un retour sur les ensembles
Nous allons recourir à quelques éléments de la théorie des ensembles pour présenter

les concepts de base du calcul des probabilités. Un ensemble est une collection ou un
groupe d’objets. On le désigne habituellement par une lettre majuscule, telle que A ou
B. On appelle « éléments de A » les objets qui forment l’ensemble A. En règle générale,
on écrit « x ∈ A » si x appartient à l’ensemble A, et « x /∈ A » si tel n’est pas le cas.
Il arrive qu’on utilise un ensemble pour représenter les éléments et qu’on indique une
propriété caractéristique. Illustrons ces notions à l’aide de quelques exemples. Lors de la
description d’un ensemble, seuls deux points d’intérêt à une énoncée doivent être pris en
ligne « tels que ».

Exemple 1.1

L’ensemble formé des nombres entiers 5, 6, 7 et 8 est fini et compte quatre éléments.
On peut le noter

A = {5, 6, 7, 8}.

Les énoncés « 5 ∈ A » et « 9 /∈ A » sont ici tous deux vrais.

Exemple 1.2

On peut définir l’ensemble des voyelles de l’alphabet français en écrivant V =
{a, e, i, o, u, y}. Une autre façon de procéder consiste à indiquer une caractéristique
propre à cet ensemble, en utilisant un symbole, d’où

V = {∗ : ∗ est une voyelle de l’alphabet français}.

Exemple 1.3

Soit A l’ensemble de tous les nombres réels compris entre 0 et 1 inclusivement. On
pourrait définir cet ensemble par une caractéristique propre et écrire

A = {x : x ∈ R, 0 ≤ x ≤ 1},

où R représente l’ensemble de tous les nombres réels.
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Exemple 1.4

L’ensemble B = {−3,+3} est identique à l’ensemble

B = {x : x ∈ R, x2 = 9}.

Vous représentez encore une fois l’ensemble des nombres réels.

Exemple 1.5

Soit les points (x, y) qui appartiennent à une droite donnée A dans le plan réel. Les
points (x, y) tels que ax+ by = c sont des éléments de A. On a ainsi

A = {(x, y) : x ∈ R, y ∈ R, ax+ by = c},

où R représente l’ensemble des nombres réels.

L’ensemble vide et l’ensemble universel

L’ensemble de tous les objets considérés porte le nom d’« ensemble universel » ou
« ensemble référentiel ». On le désigne en général par Ω.

L’ensemble vide est un autre ensemble particulier, le plus souvent noté ∅. Illustrons
ces deux concepts.

Soit l’ensemble
A = {x : x ∈ R, x2 = −1}.

On a ici l’ensemble des nombres réels R comme ensemble universel. L’ensemble A est
manifestement vide, puisqu’il n’existe aucun nombre réel tel que x2 = −1. Soulignons que
l’ensemble {0} ̸= ∅.

Le cardinal

Le nombre d’éléments d’un ensemble (son cardinal) a souvent de l’importance. Dans le
cas d’un ensemble A, on le note n(A). S’il s’agit d’un nombre fini, on est en présence d’un
ensemble fini. Un ensemble infini tel qu’on peut établir une correspondance biunivoque
entre ses éléments et les nombres naturels porte le nom d’ensemble infini dénombrable.
On appelle « ensemble non dénombrable » un ensemble constitué d’un nombre infini
d’éléments impossibles à compter. Ainsi, si a < b, alors A = {x ∈ R, a ≤ x ≤ b} définit
un ensemble non dénombrable.

Les sous-ensembles

Soit deux ensembles, A et B. L’ensemble A est un sous-ensemble de l’ensemble B ou
A est inclus dans l’ensemble B (A ⊆ B) si chacun de ses éléments appartient aussi à
l’ensemble B. Les ensembles A et B sont dits « égaux » (A = B) seulement si A ⊆ B et
B ⊆ A. On peut démontrer qu’il en résulte ce qui suit :

— L’ensemble vide est inclus dans tout ensemble A.
— Dans un ensemble A, on retrouve un autre ensemble A satisfaisant à la relation

A ⊆ Ω.
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— La relation « inclus » est réflexive dans lui-même (une relation réflexive), A ⊆ A.
Fait intéressant, il se dégage de l’idée d’égalités d’ensembles qu’ordres dans lequel on
énumère les éléments n’a pas d’importance. Soit A = {a, b, c} et B = {c, a, b}. Selon cette
définition, A = B.

On peut aussi définir un ensemble de parties, soit l’ensemble de tous les sous-ensembles
d’un ensemble donné. Si A = {x, y}, les sous-ensembles de A sont : ∅, {x}, {y}, {x, y}.
On note ce nouvel ensemble P(A). Si B = {x, y, z}, l’ensemble des parties de B est
constitué des sous-ensembles ∅, {x}, {y}, {z}, {x, y}, {x, z}, {y, z} et {x, y, z}. Puisque le
nombre de parties de l’ensemble à n éléments est 2n, l’ensemble à deux éléments possède
4 sous-ensembles et celui à trois éléments, 8.

Les opérations sur les ensembles

Voyons maintenant quelques opérations sur les ensembles. Si A et B sont des sous-
ensembles quelconques de l’ensemble universel Ω, les énoncés suivants s’appliquent :

1. Le complémentaire de l’ensemble A (dans Ω) est l’ensemble de tous les éléments
de Ω qui n’appartiennent pas à A. On le note A. Autrement dit,

A = {x : x ∈ Ω, x /∈ A}.

2. L’intersection des ensembles A et B est l’ensemble des éléments qui appartiennent
à la fois à A et à B. On la note A ∩B. En d’autres termes,

A ∩B = {x : x ∈ A et x ∈ B}.

Soulignons que A ∩ B forme un ensemble qu’on pourrait désigner par une lettre
quelconque telle C.

3. L’union des ensembles A et B est l’ensemble des éléments qui appartiennent à A
ou à B, sinon deux à la fois. On la note A ∪B :

A ∪B = {x : x ∈ A ou x ∈ B (ou les deux)}.

Les opérations décrites ci-dessus sont illustrées dans les exemples qui suivent.

Exemple 1.6

Soit Ω l’ensemble des lettres de l’alphabet, d’où

Ω = {∗ : ∗ est une lettre de l’alphabet français},

ainsi que
A = {∗ : ∗ est une voyelle}

et
B = {∗ : ∗ est l’une des lettres a, b ou c}.

À partir des définitions précédemment fournies, il s’ensuit que

A = l’ensemble des consonnes
B = {a, b, c}

A ∪B = {a, b, c, e, i, o, u, y}
A ∩B = {a}.
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Exemple 1.7

Supposons l’ensemble universel Ω = {1, 2, 3, 4, 5, 6, 7} et les trois sous-ensembles
A = {1, 2, 3}, B = {2, 4, 6} et C = {1, 3, 5, 7}. Il ressort directement des défini-
tions citées précédemment que

A = {4, 5, 6, 7}
A ∪B = {1, 2, 3, 4, 6}
A ∩B = {2}

B = {1, 3, 5, 7} = C

C = {2, 4, 6} = B

B ∪ C = U

B ∩ C = ∅.

On peut représenter certaines opérations sur les ensembles par un diagramme de Venn.
Pour ce faire, on trace un rectangle figurant l’ensemble universel Ω. On dessine ensuite
dans ce rectangle un cercle qui délimite la région correspondant à un sous-ensemble A de
Ω. La portion du rectangle située à l’extérieur du cercle représente alors le complémentaire
A, comme le montre la figure 1.

Ω

A

A

Figure 1 – Un ensemble dans un diagramme de Venn
La figure 2 montre l’intersection et l’union à l’aide d’un diagramme de Venn.

A B
Ω

a) A ∩B

A B
Ω

b) A ∪B

Figure 2 – a) L’intersection entre A et B est ombrée ; b) l’union de A et B est ombrée.
On peut facilement étendre les opérations d’intersection et d’union à tout nombre fini

d’ensembles. Supposons qu’on a trois ensembles : A,B et C. Dans ce cas, A ∪ B ∪ C a
comme propriété que A ∪ (B ∪ C) = (A ∪ B) ∪ C, ce qui ne fait aucun doute puisque
les deux membres de l’équation sont identiques. On constate aussi que A ∩ B ∩ C =
(A ∩B) ∩ C = A ∩ (B ∩ C).
Le tableau 1 présente quelques lois auxquelles obéissent les ensembles en ce qui a trait
aux opérations définies précédemment.
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Tableau 1 : Les propriétés des opérations

Lois Opérations

Les lois d’identité A ∪∅ = A

A ∩ U = A

A ∪ U = U

A ∩∅ = ∅
Les lois associatives A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

Les lois commutatives A ∪B = B ∪ A

A ∩B = B ∩ A

Les lois de De Morgan A ∪B = A ∩B

A ∩B = A ∪B

On peut illustrer certains de ces énoncés par un diagramme de Venn. Une démonstra-
tion formelle s’avère en général plus longue.

Lorsqu’il y a plus de trois ensembles, on généralise en recourant à des indices. Sup-
posons donc n ensembles, notés par exemple B1, B2, ..., Bn, sont des ensembles donnés.
L’intersection du deuxième tableau à l’ensemble des éléments qui appartiennent à tous,
se note alors B1 ∩B2 ∩ . . . ∩Bn.
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1 Les expériences aléatoires et les espaces échantillon-
naux

La théorie des probabilités découle de situations concrètes où l’on réalise une expé-
rience pour en observer le résultat, ce dernier étant impossible à prédire avec certitude.

On peut décrire l’ensemble des résultats possibles même si l’on ne peut prédire avec
certitude l’un ou l’autre de ces résultats. En second lieu, d’un point de vue conceptuel,
on pourrait répéter une telle expérience dans des conditions identiques et obtenir ainsi
une suite de résultats déterminés par le hasard ; mais lorsque le nombre de répétitions
augmente, on commence à observer certaines régularités en ce qui a trait à la fréquence
des divers résultats.

Expérience aléatoire et espace échantillonnal

Une expérience aléatoire est une expérience dont le résultat dépend du hasard.
Elle peut mener à des résultats différents même si elle est conduite dans les mêmes
conditions chaque fois. L’ensemble des résultats possibles à l’issue d’une expérience
aléatoire s’appelle « espace échantillonnal ».

On désigne habituellement les espaces échantillonnaux par la lettre E ou la lettre
Ω. Une expérience dont l’ensemble des résultats possibles est fini s’appelle une
expérience à espace échantillonnal fini.

Classons maintenant les espaces échantillonnaux (et de ce fait les expériences aléa-
toires) en reprenant la terminologie utilisée pour l’étude des ensembles et des opérations
sur les ensembles.

Espaces échantillonnaux discret et continu

Un espace échantillonnal discret consiste en un ensemble fini ou en un ensemble
infini dénombrable de résultats. Par opposition, un espace échantillonnal continu
consiste en un ensemble non dénombrable de résultats.

Ces derniers peuvent être des nombres réels compris dans un intervalle, ou des couples
de nombres réels à l’intérieur du produit d’intervalles, là où l’on détermine la valeur de
deux variables dans une expérience.

Voici quelques exemples présentant des expériences aléatoires et leur espace échan-
tillonnal.

Exemple 1.8

E1 : On lance une pièce de monnaie et on note sur quel côté elle tombe.
S1 : {F, P}
On a ici un ensemble fini, car n(S1) = 2.
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Exemple 1.9

E2 : On lance à trois reprises une pièce de monnaie et on note chaque fois sur quel
côté elle tombe.
S2 : {PPP, PPF, PFP, PFF, FPP, FPF, FFP, FFF}.

Exemple 1.10

E3 : On lance à trois reprises une pièce de monnaie et on note le nombre de fois où
elle tombe sur le côté pile.
S3 : {0, 1, 2, 3}.

Exemple 1.11

E4 : On lance deux dés réguliers et on note le chiffre sur la face du dessus de chacun.
S4 : {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}.

On a ici n(S4) = 36. On aurait pu choisir de représenter l’espace échantillonnal
sans tenir compte de l’ordre des résultats ; on aurait alors n(S4) = 21. Dans une
telle représentation, les éléments de S4 n’auraient pas tous les mêmes chances de
survenir.

Exemple 1.12

E5 : On assemble une portière de véhicule automobile en réalisant de nombreuses
soudures. On inspecte ensuite ces soudures et on note le nombre total de soudures
qui sont défectueuses.
S5 : {0, 1, 2, . . . , K}, où K = le nombre total de soudures de la portière.

Exemple 1.13

E6 : On fabrique un tube cathodique, puis on lui fait subir un essai de durée. On
note le temps écoulé (en heures) au moment où le tube connaît une défaillance.
S6 : {t : t ∈ R, t ≥ 0}.
On a ici un ensemble non dénombrable, car les résultats possibles sont des valeurs
comprises dans un intervalle de la droite réelle.
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Exemple 1.14

E7 : Un gestionnaire compte le nombre d’appels reçus au service à la clientèle en
une heure.
S7 : {0, 1, 2, . . .}.
On a ici un ensemble infini dénombrable, car les valeurs possibles sont constituées
de l’ensemble des nombres entiers.

Exemple 1.15

E8 : On inspecte visuellement deux des principaux joints de brasure d’un circuit
imprimé ; on les vérifie à l’aide d’une sonde. Ensuite, chacun des joints est coté A
(acceptable) ou D (défectueux, ce qui entraîne une reprise ou une mise au rebut).
S8 : {AA, AD, DA, DD}.

Exemple 1.16

E9 : Soit une usine de produits chimiques où l’on fabrique chaque jour entre 400 et
600 tonnes métriques d’acide chlorhydrique. On choisit une journée au hasard et on
note la quantité produite.
S9 : {x : x ∈ R, 400 ≤ x ≤ 600}.
On a ici un espace infini et non dénombrable.

Exemple 1.17

E10 : Soit une usine d’extrusion où l’on fabrique des pièces métalliques profilées
longues de 6 m. Comme on enlève les bavures des barres à chaque extrémité, elles
doivent initialement avoir plus de 6 m. Après avoir fabriqué et fini une barre profilée,
on mesure la longueur totale des matières de rebut.
S10 : {x : x ∈ R, x > 0}.
On a ici un espace infini et non dénombrable.

Exemple 1.18

E11 : À l’occasion du lancement d’un satellite, on mesure les trois composantes de sa
vitesse à partir du sol (c’est-à-dire dans les trois directions de l’espace), en fonction
du temps écoulé. Une minute après le lancement, on enregistre ces données pour les
transmettre à un appareil de commande.
S11 : {(vx, vy, vz) : vx, vy, vz sont des nombres réels}.
On a ici un espace à trois dimensions, théoriquement infini dans toutes les directions.
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Exemple 1.19

E12 : Reprenons l’exemple précédent, en mesurant cette fois continuellement les trois
composantes de la vitesse du satellite pendant cinq minutes.
S12 : On a ici un espace complexe, car il faut tenir compte de toutes les valeurs
possibles des fonctions vx(t), vy(t) et vz(t) lorsque 0 ≤ t ≤ 5.

Tous ces exemples présentent les caractéristiques requises d’une expérience aléatoire.
La description de l’espace échantillonnai est relativement simple, sauf pour l’exemple
1.19, et même si on ne l’envisage pas ici, on pourrait idéalement répéter ces expériences.
Reprenons l’exemple 1.8 pour mieux voir le phénomène des manifestations aléatoires.
Si l’on répète E1, à l’infini, on obtiendra de toute évidence une suite de «piles» et de
«faces». Une régularité dans les fréquences finira par apparaître. Comme la pièce utilisée
est équilibrée, elle devrait tomber sur le côté pile environ une fois sur deux. En faisant en
sorte qu’un modèle soit idéal, on se limite à convenir d’un ensemble théorique possible de
résultats. Dans le cas de E1 on a éliminé la possibilité que la pièce tombe autrement qu’à
plat.

2 Les événements
Envisageons l’espace échantillonnal S comme l’ensemble universel Ω, c’est-à-dire l’en-

semble des résultats possibles d’une expérience aléatoire, ce qui fait de l’événement A,
par exemple, un sous-ensemble de S . Il faut noter que ∅ et S sont tous deux des sous-
ensembles de S .

Événement
Un événement est un sous-ensemble de l’espace échantillonnal d’une expérience aléa-
toire. On le désigne par une lettre majuscule.

Les événements énumérés ci-dessous se rattachent aux expériences E1,E2, . . . ,E10 dé-
crites à la section 1.2. Ce ne sont que des exemples parmi tous les événements qu’on
pourrait définir dans chaque cas.

Dans l’expérience E1, soit A :
La pièce tombe sur le côté pile.
A = {P}.
Dans l’expérience E2, soit B :
La pièce tombe chaque fois sur le même côté.
B = {PPP, FFF}.
Dans l’expérience E3, soit C :
La pièce tombe deux fois sur le côté pile.
C = {2}.
Dans l’expérience E4, soit D :
La somme des chiffres sur les faces du dessus est sept.
D = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}.
Dans l’expérience E5, soit E :
Il n’y a pas plus de cinq soudures défectueuses.
E = {0, 1, 2, 3, 4, 5}.
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Dans l’expérience E6, soit F :
Il s’écoule plus de 1000 heures avant la défaillance.
F = {t : t > 1000}.
Dans l’expérience E7, soit G :
Le nombre d’appels est compris entre 3 et 6 inclusivement.
G = {3, 4, 5, 6}.
Dans l’expérience E8, soit H :
Aucun des joints n’est défectueux.
H = {AA}.
Dans l’expérience E9, soit J :
La quantité d’acide produite est supérieure à 550 tonnes métriques.
J = {x : x ∈ R, 550 < x < 600}.
Dans l’expérience E10, soit K :
La longueur totale des matières de rebut ne dépasse pas 1 m.
K = {x : x ∈ R, 0 < x ≤ 1}.

Comme un événement est un ensemble, les opérations, les lois et les propriétés étudiées
à la section 1.1 s’y appliquent.

Événements mutuellement exclusifs
Deux événements A1 et A2 sont mutuellement exclusifs si A1 ∩ A2 = ∅. Les termes
« incompatibles » et « disjoints » sont des synonymes de « mutuellement exclusifs ».

Pour que trois événements A1, A2 et A3 soient mutuellement exclusifs, il faut que
A1 ∩ A2 = ∅, A1 ∩ A3 = ∅, A2 ∩ A3 = ∅ et que A1 ∩ A2 ∩ A3 = ∅. La figure 1.3
illustre ce cas. De façon générale, lorsque l’intersection de chacune des combinaisons de
deux ou plusieurs événements pris parmi k événements considérés est vide, on qualifie ces
k événements de « mutuellement exclusifs ».

S

A1

A2

A3

Figure 1.3 Trois événements mutuellement exclusifs
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Cours de Probabilités pour Ingénieurs en Génie des
Matériaux

Séance 3 : Calcul de probabilités

Les probabilités et leur détermination
Une approche axiomatique permet de définir toute probabilité comme une fonction

dont le domaine est constitué d’ensembles, et l’image, de nombres réels compris entre
0 et 1. Si l’événement A est un élément du domaine de cette fonction, on peut utiliser
la notation fonctionnelle P (A) pour désigner l’élément correspondant de l’image, soit la
probabilité que A se réalise.

Probabilité
Soit une expérience E et son espace échantillonnal S . Une probabilité P (·) définie sur
S est une fonction qui, à tout événement A dans S , associe un nombre réel P (A)
appelé « probabilité de l’événement A » (ou probabilité de A), vérifiant les propriétés
(axiomes) suivantes :

1. 0 ≤ P (A) ≤ 1 pour tout événement A de S .
2. P (S ) = 1.
3. Pour tout nombre fini k d’événements mutuellement exclusifs définis dans S ,

P (A1 ∪ A2 ∪ . . . ∪ Ak) = P (A1) + P (A2) + . . .+ P (Ak).

4. Si A1, A2, A3, . . . représentent une suite dénombrable d’événements mutuellement
exclusifs définis dans S , alors

P

(
∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

Ces propriétés n’indiquent pas comment déterminer les probabilités, mais elles im-
posent des restrictions à cet égard.

Concrètement, on établit une probabilité en s’appuyant sur :
1. des estimations fondées sur la pratique ou sur des observations antérieures ;
2. une analyse des conditions expérimentales ;
3. une hypothèse.
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L’estimation d’une probabilité fondée sur la pratique

Une approche pratique basée sur les fréquences relatives
Afin d’illustrer la détermination de probabilités fondées sur la pratique, on peut penser

à la répétition d’une expérience et à la fréquence relative de l’événement d’intérêt.
La notion de fréquence relative possède un attrait intuitif. Elle fait intervenir la répéti-

tion conceptuelle d’une expérience et l’observation du nombre de répétitions ainsi que du
nombre de fois où l’événement souhaité se produit. Soit plus précisément une expérience
E répétée m fois et deux événements notés A et B. Représentons par mA et mB le nombre
de fois où A et B se produisent lors des m répétitions.

Fréquence relative
La valeur fA = mA/m se définit comme la fréquence relative de l’événement A. Elle
présente les propriétés suivantes :

1. 0 ≤ fA ≤ 1 ;
2. fA = 0 si et seulement si l’événement A ne se produit jamais, et fA = 1 si et
seulement si l’événement A se produit à chaque répétition ;
3. Si les événements A et B sont mutuellement exclusifs, alors fA∪B = fA + fB.

Lorsque la valeur de m devient élevée, la valeur de fA tend à se stabiliser. Autrement
dit, plus on répète l’expérience, moins la fréquence relative de l’événement A varie (d’une
répétition à l’autre). La notion de fréquence relative et la tendance de cette fréquence
à se stabiliser sont à l’origine d’une méthode servant à attribuer une probabilité à un
événement. En effet, dans le cas d’une expérience E d’espace échantillonnal S , si la
fréquence relative fA d’un événement A tend vers un nombre quelconque pA à mesure que
le nombre de répétitions augmente, on peut faire du nombre pA la probabilité de A. En
d’autres termes, lorsque m → ∞,

P (A) =
mA

m
= pA. (1.1)

En pratique, on doit évidemment se satisfaire d’un nombre de répétitions plus limité.
Prenons l’exemple d’une expérience simple E6, où l’on lance une pièce pour noter à chaque
répétition si elle tombe du côté pile (P ) ou face (F ). Puisque l’espace échantillonnal est
S = {P, F}, on peut s’intéresser à l’événement A « la pièce tombe sur le côté pile ».
Supposons que l’expérience est répétée m = 87 fois, et que le côté pile sort mA = 43,
où une fréquence relative de fA = 43/87 ≃ 0, 494. On obtiendrait certes une valeur
plus convaincante en répétant l’expérience m = 10 000 fois, ce qui : fA = 0, 4924, ou
fA = 0, 4920, ou toute autre valeur très proche de 0,5. La probabilité de l’événement
A serait alors définie comme la valeur vers laquelle fA converge au fur et à mesure de
l’augmentation du nombre de répétitions. Ce concept de probabilité fondée sur la fréquence
relative sera précisé ultérieurement.

La détermination d’une probabilité

Si l’espace échantillonnal contient une quantité dénombrable de résultats (e1, e2, . . .)
dont les probabilités respectives sont p1, p2, . . ., alors la probabilité d’un événement A est
la somme des probabilités des résultats qui le composent. Plus précisément, on doit avoir
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pi ≥ 0, pour i = 1, 2, . . ., et p1 + p2 + · · · = 1, donc

P (A) =
∑

{i:ei∈A}

pi.

Par exemple, si A = {e1, e3, e6}, alors P (A) = p1 + p3 + p6. Nous étudierons plus
loin, particulièrement au chapitre 4, différents modèles permettant d’établir les valeurs de
p1, p2, . . ..

Résultats équiprobables
Si l’espace échantillonnal est fini et renferme n résultats ayant tous la même probabilité
de survenir, alors on dit que ces résultats sont équiprobables. La probabilité associée à
chacun est

p1 = p2 = · · · = pn =
1

n

Si l’espace échantillonnal renferme n résultats tous équiprobables, alors

P (A) =
n(A)

n

et l’événement A englobe n(A) résultats possibles. Des méthodes de dénombrement
utiles pour déterminer la valeur de n et de n(A) seront étudiées à la section 1.5.

Exemple 1.20

Supposons que la pièce de monnaie de l’exemple 1.9 est biaisée et qu’elle
a deux fois plus de chances de tomber du côté « face » que du côté
« pile », de sorte que les résultats de l’espace échantillonnal S =
{PPP, PPF, PFP, PFF, FPP, FPF, FFP, FFF} ont respectivement une probabi-
lité de p1 =

2
27

, p2 = 2
27

, p3 = 2
27

, p4 = 4
27

, p5 = 2
27

, p6 = 4
27

, p7 = 4
27

, p8 = 7
27

.
Soit l’événement « la pièce de monnaie tombe chaque fois sur le même côté ». On
a alors P (A) = 2

27
+ 7

27
= 9

27
.

Exemple 1.21

Reprenons l’exemple 1.14 et supposons qu’un modèle probabiliste a permis d’établir
que

pi =
e−20 · 20i

i!

si i = 0, 1, 2, . . .
sinon,
où pi représente la probabilité de recevoir exactement i appels dans une heure. Soit
A l’événement « recevoir un nombre de clients compris entre 15 et 16 » (soit les
valeurs 15, 16), et

P (A) = p15 + p16 =
e−20 · 2015

15!
+

e−20 · 2016

16!
≈ 0.116.
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Exemple 1.22

Reprenons l’exemple 1.9, dans lequel on lance à trois reprises une pièce de monnaie.
Comme on suppose ici que la pièce est équilibrée, les huit résultats possibles sont
équiprobables. Soit A l’événement « la pièce tombe chaque fois sur le même côté ».
Selon l’équation 1.2,

P (A) =
n(A)

n
=

2

8
,

puisqu’il y a huit résultats possibles au total dont deux sont favorables à l’événement
A.

Exemple 1.23

On tient pour acquis que les dés à l’exemple 1.11 sont équilibrés. Soit A l’événement
« la somme des chiffres sur les faces du dessus est sept ». Selon l’équation 1.2, il y a
36 résultats possibles, tous équiprobables, dont 6 sont favorables à l’événement A,

d’où P (A) =
6

36
=

1

6
.

Théorèmes sur le calcul de probabilité

Voici quelques théorèmes importants en ce qui concerne les probabilités.

THÉORÈME 1.1

Si ∅ représente l’ensemble vide, alors P (∅) = 0.

Démonstration
On sait que S = S ∪ ∅ et que S et ∅ sont mutuellement exclusifs. Il résulte ainsi

de la propriété n°3 (voir à la page 10) que P (S ) = P (S ) + P (∅), d’où P (∅) = 0.

THÉORÈME 1.2

P (A) = 1− P (A)

Démonstration
On sait que S = A ∪A et que A et A sont mutuellement exclusifs. Il résulte ainsi de

la propriété n°3 que P (S ) = P (A) + P (A), et comme P (S ) = 1 selon la propriété n°2,
il s’ensuit que P (A) = 1− P (A).

THÉORÈME 1.3

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Démonstration
Le diagramme de Venn à la figure 1.4 (voir à la page suivante) aide à suivre la dé-

monstration du théorème 1.3. On peut voir qu’il faut soustraire P (A∩B) de l’expression
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P (A)+P (B) afin d’éviter de compter deux fois la probabilité associée à la région hachurée.
Sachant que A ∪B = (A \B) ∪ (B \A) ∪ (A ∩B) et que (A \B), (B \A) et (A ∩B)

sont mutuellement exclusifs, et que A = (A \B)∪ (A∩B) et B = (B \A)∪ (A∩B) sont
mutuellement exclusifs, il s’ensuit que P (A∪B) = P (A \B) + P (B \A) + P (A∩B). En
effectuant la soustraction, on obtient : P (A ∪B) = P (A) + P (B)− P (A ∩B).

Figure 1 – Un diagramme de Venn représentant l’intersection de deux événements non
disjoints

THÉORÈME 1.4

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C)

Démonstration
On peut écrire A∪B ∪C = (A∪B)∪C et recourir au théorème 1.3 étant donné que

A ∪B représente un événement.

THÉORÈME 1.5

P (A1 ∪ A2 ∪ · · · ∪ Ak) =
∑k

i=1 P (Ai)−
∑

1≤i<j≤k P (Ai ∩ Aj) +
∑

1≤i<j<r≤k P (Ai ∩
Aj ∩ Ar) + . . .+ (−1)k−1P (A1 ∩ A2 ∩ · · · ∩ Ak)

THÉORÈME 1.6

Si A ⊆ B, alors P (A) ≤ P (B).

Démonstration
Si A ⊆ B, alors B = A ∪ (A ∩ B) et P (B) = P (A) + P (A ∩ B) ≥ P (A) puisque

P (A ∩B) ≥ 0.
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Exemples

Exemple 1.24

Soit A et B des événements mutuellement exclusifs (A∩B = ∅), tels que représentés
à la figure 1.5. S’il est établi que P (A) = 0, 20 et que P (B) = 0, 30, on peut ici
évaluer plusieurs probabilités :

1. P (A) = 1− P (A) = 0, 80

2. P (B) = 1− P (B) = 0,70

3. P (A ∪B) = P (A) + P (B) = 0, 20 + 0, 30 = 0, 50

4. P (A ∩B) = 0

5. P (A ∪B) = P (A ∩B), selon la loi de De Morgan, d’où

= 1− P (A ∩B) = 1− P (∅) = 1− 0 = 1

6. P (A ∩B) = 1− P (A ∪B) = 1− 0, 50 = 0,5

Figure 2 – Les événements A et B associés à l’exemple 1.24

Exemple 1.25

Supposons que les événements A et B ne sont pas mutuellement exclusifs. Si l’on
sait que P (A) = 0,20, que P (B) = 0,30 et que P (A ∩ B) = 0,10, on obtient ce qui
suit :

1. P (A) = 1− P (A) = 0, 80

2. P (B) = 1− P (B) = 0, 70

3. P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0, 2 + 0, 3− 0, 1 = 0, 4

4. P (A ∩B) = 0, 1

5. P (A ∩B) = P (A ∪B) = 1− [P (A) + P (B)− P (A ∩B)] = 0, 6

La figure 4 illustre les probabilités associées à chacune des régions.
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Figure 3 – Les événements A et B associés à l’exemple 1.25

Exemple 1.26

Imaginons une ville où 75 % des gens lisent le journal (J), 20% aiment l’art (A) et
40% sont musiciens (M). Du nombre, 15% lisent le journal et aiment l’art, 30%
lisent le journal et sont musiciens, 10 % aiment l’art et sont musiciens, et 5% lisent
le journal, aiment l’art et sont musiciens.
On peut réunir tous ces renseignements à l’intérieur d’un simple diagramme de Venn
(voir la figure 1.7, à la page suivante), en y inscrivant d’abord la dernière donnée
fournie, soit P (J ∩ A ∩M) = 0,05, pour ensuite procéder à partir du centre.

Figure 4 – Un diagramme de Venn associé à l’exemple 1.26

1. Déterminons la probabilité qu’un habitant de cette ville, choisi au hasard, présente
au moins une des trois caractéristiques à l’étude. Selon le théorème 1.4,

P (J∪A∪M) = P (J)+P (A)+P (M)−P (J∩A)−P (J∩M)−P (A∩M)+P (J∩A∩M)

= 0, 75 + 0, 20 + 0, 40− 0, 15− 0, 30− 0, 10 + 0, 05 = 0, 85.

On peut aussi additionner les valeurs du diagramme de Venn pour arriver à cette
réponse.

2. Déterminons la probabilité de l’évènement E : "un habitant de cette ville ne présente
qu’une seule des trois caractéristiques". Alors on peut écrire

E = (J ∩ A ∩M) ∪ (J ∩ A ∩M) ∪ (J ∩ I ∩M)

Le diagramme de Venn révèle que cette probabilité correspond à

P (E) = P (J ∩A∩M) + P (J ∩A∩M) + P (J ∩A∩M) = 0, 35 + 0+ 0, 05 = 0, 40.
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Résumé
Propriétés d’une probabilité

— 0 ≤ P (A) ≤ 1

— P (∅) = 0 et P (S ) = 1

— Si A1, A2, A3, . . . sont mutuellement exclusifs, alors P (A1∪A2∪A3∪. . .) =
∑

P (Ai)

— P (A) = 1− P (A)

— Si A ⊆ B, alors P (A) ≤ P (B)

— P (A ∪B) = P (A) + P (B)− P (A ∩B)

— P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (B∩C)−P (A∩C)+P (A∩B∩C)

— Si les n résultats de Ω sont équiprobables, alors P (A) = n(A)
n(Ω)

Techniques de dénombrement

1. Permutations et Arrangements : Il existe P n = n! permutations de n éléments
distincts.
Il existe An

r = n!
(n−r)!

façons de choisir r objets parmi n objets distincts en tenant
compte de l’ordre de pioche.

Il existe P n
n1,n2,...,nk

=
n!

n1!n2! · · ·nk!
façons de permuter n objets séparés en k groupes

formés respectivement de n1, n2, . . . , nk objets indiscernables.
2. Combinaisons :

Il existe Cn
r =

(
n

r

)
=

n!

r! (n− r)!
façons de choisir r objets parmi n objets distincts

sans tenir compte de l’ordre de pige.
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