REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

HARMONISATION OFFRE DE FORMATION MASTER

ACADEMIQUE

Etablissement	Faculté	Département
Université des sciences	Sciences de la nature et	Biotechnologie
et de la technologie	de la vie	
Mohamed Boudiaf (USTO-MB)	(SNV)	
(00.0)		

Domaine: SNV

Filière: Biotechnologie

Spécialité: Biotechnologie et génomique végétales

Année universitaire : 2016-2017

Etablissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 1 Année universitaire : 2016-2017

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التعليم العالي والبحث العلمي

مواءمة عرض تكوين ماستر أكاديمي

القسم	الكلية	المؤسسة
البيوتكنو لوجيا	علوم الطبيعة و الحياة	جامعة و هران للعلوم والتكنولوجيا محمد بوضياف

الميدان: علوم الطبيعة و الحياة

الشعبة: البيوتكنولوجيا

التخصص: البيوتكنولوجيا و الجينوم النباتي

السنة الجامعية: 2017-2016

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 2 Année universitaire : 2016-2017

SOMMAIRE

1 - Fiche d'identité du Master
1 - Localisation de la formation
2 - Partenaires de la formation
3 - Contexte et objectifs de la formation
A - Conditions d'accès
B - Objectifs de la formation
C - Profils et compétences visées
D - Potentialités régionales et nationales d'employabilité
E - Passerelles vers les autres spécialités
F - Indicateurs de suivi de la formation
G – Capacités d'encadrement
4 - Moyens humains disponibles
A - Enseignants intervenant dans la spécialité
B - Encadrement Externe
5 - Moyens matériels spécifiques disponibles
A - Laboratoires Pédagogiques et Equipements
B- Terrains de stage et formations en entreprise
C - Laboratoires de recherche de soutien au master
D - Projets de recherche de soutien au master
E - Espaces de travaux personnels et TIC
II - Fiche d'organisation semestrielle des enseignement
1- Semestre 1
2- Semestre 2
3- Semestre 3
4- Semestre 4
5- Récapitulatif global de la formation
III - Programme détaillé par matière
IV – Accords / conventions

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 3

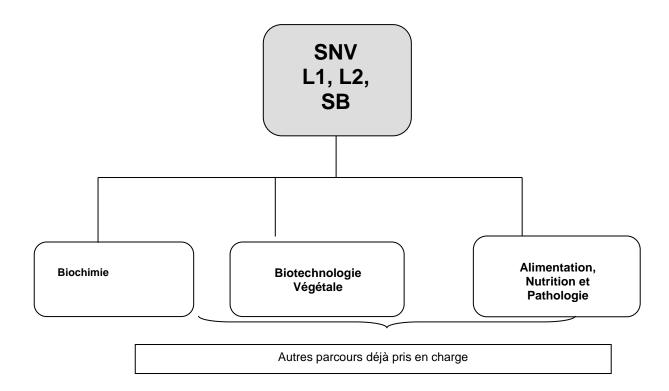
I – Fiche d'identité du Master (Tous les champs doivent être obligatoirement remplis)

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 4

1 - Localisation de la formation :

Faculté (ou Institut) : Sciences de la Nature et de la Vie

Département : Biotechnologie


2- Partenaires de la formation *:

- autres établissements universitaires :

Université d'Oran Es-sénia, jardin d'essai d'El Hamma d'Alger

- -coopération internationale :
- entreprises et autres partenaires socio économiques :
- Partenaires internationaux :
- * = Présenter les conventions en annexe de la formation

3 – Contexte et objectifs de la formation

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 5

A - Conditions d'accès

Acquisition de la licence en :

- Biotechnologie et génomique végétale
- Biotechnologie végétale
- Biotechnologie Microbienne

B - Objectifs de la formation

Les objectifs de ce Master sont :

- * Acquérir une solide formation dans les champs disciplinaires de la biologie moderne, de la biochimie, de la biologie moléculaire et des biotechnologies végétales.
- * Permettre aux diplômés de trouver leur place dans le marché de l'emploi (environnement, université, lycée, laboratoire de recherche universitaire et privée, recherche appliquée, etc.)

C – Profils et compétences métiers visés

Spécialisation en biotechnologie et génomique végétale

Préparation à la formation de formateurs et de chercheurs universitaires et de chef de projet dans des entreprises de production végétale.

D- Potentialités régionales et nationales d'employabilité des diplômés

- Education nationale (moyen et secondaire)
- Pépinières et entreprises d'horticulture
- Conservation des forêts
- Institut national de protection des végétaux
- Laboratoire d'analyses et de contrôle aux frontières (Port)
- Laboratoire de recherches (INRA, INA, CRBT, CRSTRA)

E – Passerelles vers d'autres spécialités

Tous les parcours de biologie végétale, physiologie végétale, microbiologie végétale, biochimie végétale, génétique et amélioration des plantes, rhizobiologie et biologie moléculaire.

F – Indicateurs de suivi de la formation

Le suivi de la formation se fera par des examens, comptes rendus, rapports, exposés, etc. Nous évaluerons la pertinence de ce programme au nombre de candidats qui se présenteront à l'admission de ce master pour ce qui concerne l'input. Pour les résultats, nous examinerons le nombre de projets de S4 susceptibles de donner lieu soit à des publications soit à une prolongation en doctorat.

G – Capacité d'encadrement

Pour des raisons d'infrastructures, d'équipements et de moyens humains, le département ne peut accueillir que 50 étudiants par promotion.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 6

4 – Moyens humains disponibles

oyens humains disponibles A: Enseignants de l'é Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Laboratoire de recherche de rattachement	Type d'intervention *	Emargemen
Kaid-Harche Meriem	Licence Biologie végétale	Dr. Etat Biologie végétale	Prof.	Dpt biotechnologie	Cours/encadrement de stage et de mémoire	1 au
Djabeur Abderrezak	DES Biologie végétale	Dr. Es-science Biotechnologie	Prof.	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	(· m/9
Bouhafsoun Aïcha	DES Biochimie	HDR Biologie	M.CA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Dov
Cheba Benamar	DES microbiologie	HDR Biotechnologie	M.CA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Chelo
Abdeddaim Katia	DES biologie végétale	Doctorat Biotechnologie végétale	мсв.	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	K
Chaa Lahouari	Ingéniorat Biotechnologie végétale	Doctorat en science Physiologie végétale	МСВ	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	-F
Gharbi Samia	DES microbiologie	Doctorat phytopathologie	МСВ	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	2.5
Selami Nawel	Ingéniorat Biotechnologie végétale	Doctorat Biotechnologie	м.св	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	2'3
Zemouri Zohra	DES biologie végétale	Magister	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Le
Diabi-Meguedad Sihem	Licence sociologie industrielle	Magister sociologie de développement	MAA	Dpt biotechnologie	Cours/TD	
Taieb Brahim-Bokhari Hassiba	Ingéniorat Biotechnologie végétale	Magister Biotechnologie	M.AA.	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Brita

Etablissement : USTOMB Année universitaire : 2016-2017

Intitulé du master : Biotechnologie et génomique végétales

Kalafat Djamel	DES biologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Kit
Mehtougui Amel	Ingéniorat Biotechnologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	TP/TD/encadrement de stage et de mémoire	- Jehl
Aibèche Chahrazed	Ingéniorat Biotechnologie	Magister biotechnologie microbienne	MAA	Dpt biotechnologie	Cours/TP/TD encadrement de stage et de mémoire	
Sebaâ Hanane	DES biologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Sapac
Salah Ibrahim	Ingéniorat Biotechnologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	A
Cherifi Fadéla	Ingéniorat Biotechnologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Cm
Sahouli Salima	Ingéniorat Biotechnologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	4
Baghdadi Halima	Ingéniorat Biotechnologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	Busholo
Errouane Kheira	Ingéniorat Biotechnologie végétale	Magister biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	76
Lazreg Louiza	Ingéniorat Biotechnologie	Magister Biotechnologie intérêt microorganismes	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	3
Kellal Hassiba	DES Biochimie	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	1 00
Draou Nassima	Ingéniorat Biotechnologie végétale	Magister Biotechnologie	MAA	Dpt biotechnologie	Cours/TP/TD/encadrement de stage et de mémoire	DB.AT

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

Etablissement : USTOMB Année universitaire : 2016-2017

B: Encadrement Externe:

Etablissement de rattachement :

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement

Etablissement de rattachement :

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement

Etablissement de rattachement :

Nom, prénom	Diplôme graduation + Spécialité	Diplôme Post graduation + Spécialité	Grade	Type d'intervention *	Emargement

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales

^{* =} Cours, TD, TP, Encadrement de stage, Encadrement de mémoire, autre (à préciser)

5 – Moyens matériels spécifiques disponibles

A- Laboratoires Pédagogiques et Equipements : Fiche des équipements pédagogiques existants pour les TP de la formation envisagée (1 fiche par laboratoire)

Intitulé du laboratoire :

Nº	Intitulé de l'équipement	Nombre	observations
1	Laboratoire de cytologie	1	Microscopie, cytogénétique
2	Laboratoire de biochimie	1	Extraction et analyses
3	Laboratoire de microbiologie	1	Isolement et identification de souches
4	Laboratoire de biotechnologie	1	Culture in vitro

B- Terrains de stage et formation en entreprise :

Lieu du stage	Nombre d'étudiants	Durée du stage
pépinières	10	07-15 jours
Jardins botaniques	10	07-15 jours
INPV	10	07-15 jours
Jardin méditerranéen	10	07-15 jours
CFPA Misserghin	10	07-15 jours

C- Laboratoire(s) de recherche de soutien au master : Productions valorisations végétales et microbiennes

Chef du laboratoire Mme Kaid-Harche Meriem	
N° Agrément du laboratoire : 399	

Date de création: 13-04-2011

Avis du chef de laboratoire : Intitulé du laboratoire : Productions et valorisations végétales et

microbiennes LPVVM

Etablissement: USTOMB

Année universitaire : 2016-2017

(agrée par le CSP en 13-04-2011)

Pr. KAID HARCHE Merieni DIRECTRICE DU LABORATOIRE

Intitulé du master : Biotechnologie et génomique végétales Page 10

D- Projet(s) de recherche de soutien au master :

Intitulé du projet de recherche	Code du projet	Date du début du projet	Date de fin du projet
Etude du	projet	2015	2018
compartiment	D01N01UN310220140022		
pariétal : histologie,	F01920140111		
biochimie, structure.			
Valorisation			
. Biodiversité de	F01920130065	2014	2017
quelques espèces			
spontanées et			
cultivées approches			
morphologique			
biochimique et			
cytogénétique			
Valorisation des	F01920130025	2014	2017
métabolites			
secondaires			

E- Espaces de travaux personnels et TIC :

- Bibliothèque
- Salle d'informatique
- Serres
- Pépinières
- Terrain
- -Entreprises agro-alimentaires

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 11 Année universitaire : 2016-2017

 $\boldsymbol{II-Fiche\ d'organisation\ semestrielle\ des\ enseignements}$

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 12 Année universitaire : 2016-2017

1- Semestre 1:

Unité d'Ensoignement	VHS		V.H hebd	omadaire		Coeff	Crédits	Mode d'évaluation	
Unité d'Enseignement	14-16 sem	C	TD	TP	Autres	Coen		Continu	Examen
UE fondamentales			-			9	18	50 %	50 %
UEF1 (O/P) Biologie et									
physiologie moléculaire									
végétale									
Matière1: Biologie moléculaire	67h30	1h30	1h30	1h30	82h30	3	6	X	X
Matière2: Biologie et physiologie	67h30	1h30	1h30	1h30	82h30	3	6	X	X
moléculaire de la reproduction	071130	11150	11150	11130	621130	3	U		
Matière3 : Aspect cellulaire et								X	X
moléculaire de la différenciation	67h30	1h30	1h30	1h30	82h30	3	6		
Végétale									
UE méthodologie						5	9		
UEM1 (O/P) Méthodes									
d'analyse									
Matière1: Méthodes d'analyse	60h00	1h30	1h00	1h30	65h00	3	5	X	X
modernes 1	001100	11130	11100	11130	031100	3	3		
Matière2: Biostatistique	45h00	1h30	1h30		55h00	2	4	X	X
UE découverte						2	2		
UED1 (O/P) Langues									
Matière1 : Anglais Scientifique	45h00	1h30	1h30		5h00	2	2		X
UED2(O/P)									
UE transversales						1	1		
UET1 (O/P) Communication									
Matière1 : Communication	22h30	1h30			2h30	1	1		X
Total Semestre 1	375				375	17	30		

Etablissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 13 Année universitaire : 2016-2017

2- Semestre 2 :

Unité d'Engaignament	VHS		V.H hebd	omadaire	!	Ctt	Crédits	Mode d'évaluation	
Unité d'Enseignement	14-16 sem	C	TD	TP	Autres	Coeff		Continu	Examen
UE fondamentales						9	18	50 %	50 %
UEF1 (O/P) biochimie et									
génomique végétale									
Matière1: Génomique structurale,	67h30	1h30	1h30	1h30	82h30	3	6	v	v
fonctionnelle et protéomique.	071130	11150	11130	11150	821130	3	U	X	X
Matière2: Valorisation des	45h00	1h30		1h30	55h00	2	4	X	X
molécules à intérêt industriel	431100	11130		11130	331100	<u> </u>	4		
UEF2 (O/P) Physiologie									
végétale									
Matière1: Transport chez les	45h00	1h30		1h30	55h00	2	4	X	X
plantes	451100	11130		11130	331100	2	7		
Matière2: Physiologie et								X	X
biochimie des fruits et des	45h00	1h30		1h30	55h00	2	4		
semences									
UE méthodologie						5	9		
UEM1 (O/P) Méthodes									
d'analyses									
Matière1: Méthodes d'analyses	60h00	1h30	1h00	1h30	65h00	3	5	X	X
modernes 2	OOHOO	11130	11100	11130	031100	3	3		
Matière2: Bioinformatique	45h00	1h30	1h30		55h00	2	4	X	X
UE découverte						2	2		
UED1 (O/P) Langues									
Matière1: Anglais scientifique	45h00	1h30	1h30		5h00	2	2		X
UE transversales						1	1		
UET1 (O/P) Législation									
Matière1: Législation	22h30	1h30			2h30	1	1		X
Total Semestre 2	375				375	17	30		

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 14

3- Semestre 3:

Unité d'Engaignement	VHS		V.H hebd	omadaire		Coeff	Crédits	Mode d'évaluation	
Unité d'Enseignement	14-16 sem	С	TD	TP	Autres	Coem	Creatts	Continu	Examen
UE fondamentales				-		9	18	50 %	50 %
UEF1(O/P)Biotechnologie									
Matière1: Multiplication in vitro	67h30	1h30	1h30	1h30	82h30	3	6	X	X
des plantes	071150		11120	11100	021100		Ü		
Matière2: Biotechnologie et	45h00	1h30		1h30	55h00	2	4	X	X
génie génétique									
UEF2 (O/P) santé du végétal								X	X
Matière1 : Association	45h00	1h30		1h30	55h00	2	4	X	X
symbiotique									
Matière2 : Biotechnologie des	45h00	1h30		1h30	55h00	2	4	X	X
microorganismes						F	0		
UE méthodologie						5	9		
UEM1 (O/P) Environnement et									
écodéveloppement durable									
Matière1: Gestion préservation	60h00	1h30	1h00	1h30	65h00	3	5	X	X
et application									
Matière2: Biogéographie et	45h30	1h30	1h30		55h00	2	4	X	X
formation végétale en Algérie						2	2		
UE découverte			<u> </u>	T		2	2		
UED1 (O/P) Phytopathologie et métabolisme secondaire									
Matière1: Phytopathologie	22h30	1h30			2h30	1	1	X	X
Matière2: Composés					2h30	1		A	X
phénoliques	22h30	1h30					1		A
UE transversales						1	1		
UET1 (O/P) Entrepreneuriat									
Matière1: Entreprenariat	22h30	1h30			2h30	1	1		X
Total Semestre 3	375				375	17	30		

Page 15

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales

4- Semestre 4:

Domaine: Sciences biologiques

Filière: Biotechnologie

Spécialité : Biotechnologie et génomique végétale

Stage en entreprise sanctionné par un mémoire et une soutenance.

	VHS	Coeff	Crédits
Travail Personnel			
Stage en entreprise ou en	500h	10	20
laboratoire (UEF)			
Séminaires			
Autres (mémoire) (UEM)	250h	5	10
Total Semestre 4	750h	15	30

5- Récapitulatif global de la formation : (indiquer le VH global séparé en cours, TD, pour les 04 semestres d'enseignement, pour les différents types d'UE)

VH UE	UEF	UEM	UED	UET	Total
Cours	247h30	135h00	90h	67h30	540h
TD	112h30	112h30	45h	00h	270h
TP	247h30	67h30	00h	00h	315h00
Travail personnel	742h30	360h00	15h00	112h30	1230h00
Autre (stage/mémoire)	500h00	250h00	ı	-	750h00
Total	1850h00	925h00	150h00	180h00	3000h00
Crédits	74	37	6	3	120
% en crédits pour chaque UE	61,67%	30,83%	5%	2.5%	100%

Etablissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 16

III - Programme détaillé par matière

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 17 Année universitaire : 2016-2017

Intitulé du Master: Biotechnologie et génomique végétales

Semestre: 1

UE fondamentales:

UEF1(O/P) Biologie et physiologie moléculaire végétale

Intitulé de la matière1: Biologie moléculaire

Crédits: 6 Coefficients: 3

Objectifs de l'enseignement : Initiation théorique et pratique aux techniques de la biologie moléculaire.

Connaissances préalables recommandées : Biologie moléculaire

Contenu de la matière

- 1. Définition : DNA recombinant, clonage, Expression, Banques Génomique
- 2. Les outils de la biologie moléculaire : Enzymes de restriction, Les ligases, Phosphatases, Kinases, Les vecteurs, Les clonages, Les plasmides, Phagemides, Les cosmides, Les cellules hôtes, Les sondes nucléotidiques.
- 3. Techniques de biologie moléculaire : Criblage de banques cDNA, Purification des AN, analyse quantitative séquençage, Technique de Southern blot et Northern blot, PCR
- 4. Applications : recherche d'un gène, transfert de gène

Autres:

Analyse d'articles, visite aux laboratoires privés

Mode d'évaluation : Contrôle continu + examen final

Références

D. Freifelder. Biologie moléculaire. Ed.Masson

R.F.Weaver. MolecularBiology. Ed. WCB,McGraw-Hill

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 18

Intitulé de la matière2 : Biologie et Physiologie moléculaire de la reproduction

Crédits : 6 Coefficients:3

Objectifs de l'enseignement : L'objectif du module vise à expliquer les mécanismes de la floraison et les facteurs environnementaux qui contrôlent le phénomène : aspect moléculaire, biochimique et morphologique.

Connaissances préalables recommandées: Biologie végétale, Génétique, Taxonomie, Biochimie

Contenu de la matière

- 1-La programmation du développement floral
 - Facteurs externes :
 - -Photopériodisme
 - -Thermopériodisme
 - -Vernalisation
 - Facteurs internes :
 - -Phytochromes
 - -Phytohormones
 - -Rythmes endogènes
 - -Florigène
- 2-Contrôles génétiques et épi génétiques de la Floraison
 - -Fonctionnement des gènes impliqués dans le virage floral
 - -Réception du stimulus floral
 - -Les groupes de gènes impliqués dans la floraison
 - -Gènes de chronologie
 - -Gènes d'identités
 - -Gènes de la morphologie florale
- 3-Formation des organes floraux
 - -Organes mâles
 - -Organes femelles
- 4-Pollinisation et fécondation

Autres:

Visite de jardin botanique Visite de pépinière Exposés

Mode d'évaluation : Contrôle continu + examen final

Références:

- -Paul Mazliak (2013). Le déterminisme de la floraison. Contrôles génétiques et épigénétiques .De Boeck Superieur s.a.
- -Jean-François Morot-Gaudry et Roger Prat (2012). Biologie Végétales : croissance et développement. 2eme édition Dunod, Paris, 2009 .
- -René Heller (2002) Physiologie Végétale (2 Tomes), Dunod, Paris.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 19 Année universitaire : 2016-2017

Intitulé de la matière3 : Aspect cellulaire et moléculaire de la différenciation végétale

Crédits : 6 Coefficients :3

Objectifs de l'enseignement Comprendre au niveau cellulaire et moléculaire le passage d'une cellule méristématique à une cellule adulte différenciée.

Connaissances préalables recommandées Biologie cellulaire, Physiologie végétale

Contenu de la matière

- I. Introduction aux bases cellulaires et génétiques de la construction d'une plante A-Processus Biologiques impliqués dans le développement
- I-1-Mitose et cycle cellulaire
- I-1-1-Mitose ou division cellulaire
- I-1-2-Cycle cellulaire
- I-1-3-Kinase cycline- dépendante et cycline
- I-2-Elongation cellulaire
- I-3-Différenciation cellulaire
- I-3-1-Différenciation des poils absorbants racinaires
- I-3-2-Différenciation des tissus conducteurs
- I-3-2-1-Différenciation des éléments de vaisseaux
- I-3-2-2-Différenciation d'un élément criblé et d'une cellule campagne
- II-Méristèmes apicaux: de la cellule apicale aux méristèmes pluricellulaires
- II-1-Organisation fonctionnelle des méristèmes
- II-1-1-Les méristèmes apicaux
- II-1-1-Le méristème apical racinaire (MAR)
- II-1-1-2-Le méristème apical caulinaire (MAC)
- II-1-1-3-Comparaison des méristèmes apicaux caulinaire et racinaire
- II-1-2 Phyllotaxie et Développement foliaire
- II-1-3-Les méristèmes secondaires et croissance radiale
- II-1-4- Les ramifications latérales
- II-1-2-1-Les ramifications du système aérien
- II-1-2-2-Les ramifications du système racinaire

Travaux pratique:

Tp1: Expérience de Sachs

Tp2 : Les mitoses au niveau des méristèmes racinaires

Tp3: Mise en évidence de l'évolution vacuolaire

Td : Action des hormones et de l'environnement sur la morphogenèse végétale

Autres:

Analyse d'article

Mode d'évaluation : Contrôle continu + examen final

Références

Annes Marie Catesson (1996). Morphologie végétale. Dunod, Paris.

Paul Mazliak (1998) tome 2. Croissance développement. Ed Hermain, Paris.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 20 Année universitaire : 2016-2017

UE méthodologie

UEM1(O/P) Méthodes d'analyses

Intitulé de la matière1: Méthodes d'analyses modernes 1

Crédits: 5
Coefficients:3

Objectif de l'enseignement : Actualiser les connaissances de l'étudiant en matière de nouvelles techniques d'analyse en biologie.

Connaissances préalables recommandées : connaissance des techniques de base utilisées au laboratoire.

Contenu de la matière

Chapitre I : pH mettre

- 1. Principe
- 2. Appareillage
- 3. Utilisation
- 4. Entretien

Chapitre II: Balance

- 1. Principe
- 2. Appareillage
- 3. Utilisation
- 4. Entretien

Chapitre III : Méthodes de fractionnement

I/ Filtration : Principe, Utilisations II/ Dialyse: Principe, Utilisations

III/ Centrifugation

- 1. Principe
- 2. Utilisation
- 3. Entretien

Chapitre IV : Spectrophotométrie d'absorption moléculaire

- 1. Principe
- 2. Appareillage
- 3. Utilisation
- 4. Entretien

Chapitre V : Méthodes chromatographiques

1. Chromatographie d'exclusion moléculaire

a/Principe b/Utilisation

2. Chromatographie d'affinité

a/Principe b/Utilisation

Autres: visite des laboratoires, analyse d'article, exposés

Références

-Appareils et méthodes de biochimie Broché, 1974, Kamoun P. Éd. Flammarion, 373 p.-Principes d'analyse instrumentale, 2003, Timothy-A Nieman, James-F Holler, Douglas-A Skoog Ed. De Boeck, 956 pages

- Chimie analytique, Collectif De Boeck, 1997, Ed. De Boeck, 870 pages

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 21 Année universitaire : 2016-2017

Intitulé de la matière 2: Biostatistique

Crédits : 4 Coefficients:2

Objectifs de l'enseignement Utiliser des statistiques et leur application à la biologie

Connaissances préalables recommandées : Maths, Statistiques

Contenu de la matière

- Rappels sur les tests paramétriques
- Analyse factorielle des correspondances AFC
- Analyse des composantes principales ACP
- Initiation sur logiciels : **SPSS**, **XLSTAT**

Autres:

Application de logiciel, Série d'exercices

Mode d'évaluation: Contrôle continu + examen final

Références

- Pierre Dagnelie Statistique théorique et appliquée 1. Statistique descriptive et base de l'inférence statistique Edition De Boeck (2007)
- Pierre Dagnelie Statistique théorique et appliquée 2. Inférence statistique à une et deux dimensions Edition de boeck (2011)
- Raluca Balan et Gilles Lamothe Prévoir l'imprévisible Une introduction à la Biostatistique presse universitaire du Québec (2012)
- Motulsky Bio statistique une approche intuitive Edition De Boeck (2013)
- Michel Huguier et Antoine Flahault Biostatistique au quotidien Edition elsevrier (2003)
- Mariette Mercier Biostatistique et Probabilités Edition ellipses (1996)
- Le cours du Pr Petit université de Renne (support vidéo en ligne)

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 22

UE découverte UED1(O/P) Langues

Intitulé de la matière 1: Anglais scientifique

Crédits: 2 Coefficients:2

Objectifs de l'enseignement avoir les capacités de lire, rédiger et traduire des textes scientifiques en anglais.

Connaissances préalables recommandées Anglais Scientifique

Contenu de la matière

Rappel Bases de la grammaire Analyse d'articles Traduction d'articles.

Autres:

Projection de film. Conversation, audiovisuel

Mode d'évaluation: Examen

Références

Dictionnaire anglais-français

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 23 Année universitaire : 2016-2017

UE transversale

UET1 (O/P) Communication

Intitulé de la matière1: Communication

Crédits: 1 Coefficients: 1

Objectifs de l'enseignement :

Analyser les objectifs de la communication interne et externe et présenter les méthodologies nécessaires pour conduire les principales actions de communication.

Connaissances préalables recommandées : Les bases linguistiques

Contenu de la matière

- 1- Renforcement des compétences linguistiques
- 2- Les méthodes de la Communication
- 3- Communication interne et externe
- 4- Techniques de réunion
- 5- Communication orale et écrite

Autres: exposé ou travail de recherche sur un aspect des TIC

Mode d'évaluation: Examen

Références

Ambrosi Alain, Valérie Peugeot et Daniel Pimienta (dir.), 2005, Enjeux de mots, regards multiculturels sur les sociétés de l'information, Paris : C&F éditions

Appel Violaine, Hélène Boulanger et Luc Massou (dir.), 2010, Les dispositifs d'information et de communication. Concept, usages et objets, coll. Culture & Communication, Bruxelles : De Boeck Supérieur

Jones Steve (éd.), 1998, Cyber society 2.0 : Revisiting Computer-Mediated Communication and Community, Thousand Oaks : Sage

Smith Mark et Peter Kollock (dir.), 1999, Communities in Cyberspace, Londres: Routledge.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 24

Semestre 2

UE fondamentales

UEF1(O/P) Biotechnologie et génomique végétales

Intitulé de la matière1: Génomique structurale, fonctionnelle et protéomique.

Crédits: 6 Coefficients:3

Objectifs de l'enseignement : Comprendre le fonctionnement au niveau moléculaire des organites possédant un matériel génomique et les inter relations au niveau de l'expression, existant entre ses organites

Connaissances préalables recommandées Biologie cellulaire, Physiologie végétale, Biochimie, Génétique, Biologie moléculaire.

Contenu de la matière

- 1. Organisation du génome nucléaire
- 2. Organisation du génome plastidial .carte génomique
- 3. Organisation du génome mitochondrial
- 4. Synthèse des protéines codées par le génome nucléaire
- 5. Synthèse des protéines codées par le génome mitochondrial et plastidial
- 6. Synthèses des protéines codées par le génome nucléaire et plastidial (cas de la RUBISCO)
- 7. Précurseur des protéines chloroplastiques
- 8. Structure et spécificité des transporteurs

Autres:

Analyse d'articles, exposés

Mode d'évaluation : Contrôle continu + examen final

Références

- -Tourte Y., 2002. Génie génétique et biotechnologies : concepts, méthodes et applications agronomiques. 240P.
- -Demarly Y. et SIBI M., 1996. Amélioration des plantes et biotechnologies. 2è éd., John Libbey, France, 151 p.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 25

Intitulé de la Matière2 : Valorisation des molécules à intérêt industriel

Crédits: 4 Coefficients: 2

Objectifs de l'enseignement : Découvrir l'intérêt des substances végétales dans le domaine industriel

Connaissances préalables recommandées: Biochimie, Biologie cellulaire, Biologie végétale, Taxonomie végétale

Contenu de la matière :

- I. Saccharose
 - 1. Localisation végétale
 - 2. Méthodes d'extraction
 - 3. Structure chimique
 - 4. Biosynthèse
 - 5. Biodégradation
 - 6. Applications biotechnologiques

II. Amidon

- 1. Localisation végétale
- 2. Méthodes d'extraction
- 3. Structure chimique

a/Amylose

b/Amylopectine

- 4. Biosynthèse
- 5. Biodégradation
- 6. Applications biotechnologiques

III. Cellulose

- 1. Introduction sur la paroi
- 2. Localisation végétale
- 3. Structure chimique
- 4. Biosynthèse
- 5. Dégradations enzymatiques
- 6. Applications biotechnologiques

IV. Hémicelluloses

- 1. Localisation végétale
- 2. Méthodes d'extraction
- 3. Structure chimique

a/ Xyloglucanes

b/ Xylanes

c/ Mannanes

- 4. Biosynthèse
- 5. Biodégradation
- 6. Applications biotechnologiques

V. Substances pectiques

1. Localisation végétale

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 26 Année universitaire : 2016-2017

- 2. Extraction
- 3. Rôles des pectines
- 4. Structure chimique

a/ Homogalacturonanes

b/Rhamnogalacturonanes I

c/Rhamnogalacturonanes II

d/xylogalacturonanes

- 5. Biosynthèse
- 6. Dégradations chimiques
- 7. Dégradations enzymatiques
- 8. Applications biotechnologiques

Autres: Synthèse d'articles

Mode d'évaluation : Contrôle continu+ examen

Références

- -Biochimie, 2005, Donald Voet, Judith G. Voet, Guy Rousseau, éd. De Boeck, 1600 P
- -Biochimie structurale, 1991, Claude Audigié, François Zouszain, éd. Doin, 266 P
- -Biochimie, 2000, Reginald H. Garrett, Charles M. Grisham B. Lubochinsky, éd. De Boeck université, 1254 P
- -Toute la biochimie, 2004, S. Werman, P.Mehul, éd. Dunod, 439p.
- -Biochimie générale, 2005, 10eme éd. J.H.Weil, éd.Dunod, 691p.
- Les polymères végétaux, 1980, B. Monties, éd. Gauthier-Villars, 319p.
- -Abrégé de biochimie appliquée, 2009, Marouf A., Tremblin G., éd. EDP sciences, 485p.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 27

UEF2(O/P) Physiologie végétale

Intitulé de la matière1: Transport chez les plantes.

Crédits: 4 Coefficients: 2

Objectifs de l'enseignement : Maitriser les processus de transport des ions et des assimilats chez les plantes.

Connaissances préalables recommandées : Biologie cellulaire, Biologie et Physiologie végétale, Biologie moléculaire

Contenu de la matière :

- I- Organisation générale des tissus conducteurs
- 1. Structure générale du xylème
- 2. Structure générale du phloème

II- Différenciation des cellules conductrices

- 1. Différenciation du vaisseau : lignification de la paroi. Cas des Angiospermes et des Gymnospermes.
- 2. Différenciation de la cellule criblée
- 3. Détermination cellulaire et rythmes de différenciation
 - Détermination des méristèmes pro conducteurs
 - Production de xylème ou de phloème
- 4. Rythmes de production des tissus et facteurs du milieu
- 5. Modification liées à l'environnement

III-Conduction des sèves

- 1. Conduction de la sève brute
 - Absorption de l'eau et des éléments minéraux
 - La poussée racinaire
 - Conductivité de la sève (et loi de poiseuille)
- 2. Conduction de la sève élaborée
 - -Hypothèse de Munch
 - -Exportation active des assimilats par les feuilles : acquisition de la capacité exportatrice ; structure de l'appareil de drainage
 - -Chargement du complexe conducteur
 - -Distribution des assimilats dans les organes
- 3. Transport moléculaire
 - Identification des gènes impliqués dans le transport des sucres
 - Localisation, expression.
 - Exemples

Autres: Exposés, Analyse d'article

Mode d'évaluation: Contrôle continu+ examen

Références

- Robert D. et Catesson AM. (1990). Organisation végétative. Ed. Doin, Paris.256p.

- Trüernit E, Sauer N. (1995). The promoter of the Arabidopsis thaliana Suc2 sucrose-H+

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 28 Année universitaire : 2016-2017

- symporter gene directs expression of beta-glucuronidase to the phloem Evidence for phloem loading and unloading by Suc2. Planta 196: 564-570.
- -Trüernit E, Schmid J, Epple P, Illig J, Sauer N. (1996). The Sink-specific and stressregulated Arabidopsis STP4 gene: Enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell 8: 2169-2182.
- Weber H, Borisjuk L, Sauer N, Wobus U. (1997). A Role for sugar transporters during seed development: molecular characterization of a Hexose and a Sucrose carrier in fava bean seeds. Plant Cell 9: 895-908.
- -Dinant S (2008) Phloème, transport interorgane et signalisation à longue distance. C. R. Biologies 331 (2008) 334–346
- Timothy J. Tranbarger, Stephane Dussert, Thierry Joe t, Xavier Argout, Marilyne Summo, Antony Champion, David Cros, Alphonse Omore, Bruno Nouy, and Fabienne Morcillo (2011). Regulatory Mechanisms Underlying Oil Palm Fruit Mesocarp Maturation, Ripening, and Functional Specialization in Lipid and Carotenoid Metabolism. Plant Physiology_, June 2011, Vol. 156, pp. 564-584.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 29 Intitulé de la Matière2: Physiologie et biochimie des fruits et des semences

Crédits: 4 **Coefficients:2**

Objectifs de l'enseignement: Le domaine de la biologie des semences, est un domaine d'importance fondamentale pour la compréhension de l'ensemble des processus qui affectent la qualité d'une graine, son aptitude à la conservation et à la germination ou encore son aptitude à la consommation tant par les animaux que par l'homme. Ce module fournir des outils pour l'amélioration de la qualité des fruits et des graines. L'analyse des mécanismes contrôlant le métabolisme des flavonoïdes et la formation des téguments de la graine constitue un projet de recherche fondamentale avec de nombreuses applications potentielles.

Connaissances préalables recommandées: Biologie végétale, systématique végétale, Biochimie, techniques d'analyse

Contenu de la matière

- -Double fécondation et formation des graines
- -Les différents types des graines
- -Développement et évolution des graines
- -Graines orthodoxes et graines récalcitrantes
- -Les différents types de dormance
- -Dormance embryonnaire
- -Dormance tégumentaire
- -Dormance complexe
- -Physiologie de la germination
- -Les phases de la germination
- -Amélioration de la qualité des semences
- -Technologie des semences

Autres: exposés, analyse d'articles, Sortie, projection des vidéos avec rapports

Références:

- -Dniel Côme et Francoise Corbineau (1998) : Germination et Dormance des Semences, Ed. Paul Mazliak, Paris.
- -René Heller (2002) Physiologie Végétale (2 Tomes), Dunod, Paris
- -Dniel Côme et Françoise Corbineau (2006), Dictionnaire des semences et des plantules, Tech. Et Doc., Paris
- -Jean-François Morot-Gaudry et Roger Prat. Biologie Végétales : croissance et développement. 2eme édition Dunod, Paris, 2009; 2012

Établissement : USTOMB Page 30 Intitulé du master : Biotechnologie et génomique végétales

UE méthodologie

UEM1(O/P) Méthodes d'analyse

Intitulé de la matière1: Méthodes d'analyse modernes 2

Crédits: 5 Coefficients:3

Objectifs de l'enseignement Actualiser les connaissances de l'étudiant en matière de nouvelles techniques d'analyse en biologie.

Connaissances préalables recommandées : Biologie

Contenu de la matière

- 1-méthodes de microscopie photonique
- 2- méthodes de microscopie électronique :
- a- à transmission, b- à balyage, c-microscopie confocale
- 3-Techniques d'immunocytochimie
- 4-Techniques de cytogénétique

Autres:

Analyse d'article et de thèses réalisées au laboratoire, exposés

Mode d'évaluation: Contrôle continu + examen final

Références

- -Biochimie, 2000, Reginald H. Garrett, Charles M. Grisham B. Lubochinsky, éd. De Boeck université, 1254 P
- -Toute la biochimie, 2004, S. Werman, P.Mehul, éd. Dunod, 439p.
- -Biochimie structurale et métabolique, 2004, 2eme éd. C. Moussard, éd. De Boeck université, 326p.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 31 Année universitaire : 2016-2017

Intitulé de la matière2: Bioinformatique

Crédits: 4 Coefficients:2

Objectifs de l'enseignement Initiation à l'utilisation des logiciels bidimensionnel et tridimensionnel concernant les acides nucléiques et protéines.

Connaissances préalables recommandées Génétique, Biologie cellulaire, Biologie végétale, Microbiologie, Taxonomie végétale

Contenu de la matière

- Les banques de gènes exemple **NCBI**
- **BLAST** définition et interprétation des résultats obtenus
- **PSI-BLAST** définition et interprétation des résultats obtenus introduction à la modélisation moléculaire
- **Méga 5** et la phyllogénétique
- Les récentes avancés en séquençage et marquage de gènes
- Les profiles protéiques et les persistances de motifs protéiques
- Les interactions Protéines/Protéines exemples les interactions enzymatiques
- Protéomique structurale /Les méthodes d'analyse : RMN, cristallographie par rayon x

Autres:

Utilisation de logiciels de modélisations : Pymol, BLAST, PSI-BLAST, MEGA 5

Mode d'évaluation : Contrôle continu + examen final

Références

-Les cours du Pr Nicolas Provart université de Toronto (support vidéo en ligne) 2009

-Les cours du Pr Guttmanuniversité de Québec UQAM (support vidéo en ligne) 2011

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 32

UE découverte :

UED1(O/P) Langues

Intitulé de la matière1: Anglais scientifique

Crédits: 2 Coefficients:2

Objectifs de l'enseignement : Etre capable de rédiger et traduire des textes scientifiques en anglais **Connaissances préalables recommandées** Anglais Scientifique

Contenu de la matière

- -Analyser et synthétiser des articles scientifiques en rapport avec les enseignements du Master proposé
- -S'initier à la rédaction de textes scientifiques en Anglais.

Autres:

Analyse d'article en Anglais, conversation

Mode d'évaluation: Examen.

Références

Dictionnaire anglais-français

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 33

UE transversales UET1 Législation

Intitulé de la matière1: Législation

Crédits: 1 Coefficients:1

Objectifs de l'enseignement : Initier l'apprenant aux notions réglementaire, les définitions et origines des textes de loi et les connaissances des conséquences pénales.

Connaissances préalables recommandées : Ensembles des contenus de la formation

Contenu de la matière

- Notions générales sur le droit (introduction au droit, droit pénal).
- Présentation de législation algérienne (<u>www.joradp.dz</u>, références des textes).
- Règlementation générale (loi sur la protection du consommateur, hygiène, étiquetage et information, additifs alimentaires, emballage, marque, innocuité, conservation).
- Règlementation spécifique (travail personnel, exposés).
- Organismes de contrôle (DCP, CACQUE, bureau d'hygienne, ONML).
- Normalisation et accréditation (IANOR, ALGERAC).
- Normes internationales (ISO, codex alimentarius, NA, AFNOR)

Autres: Exposés

Mode d'évaluation: Examen.

Références

Journal officiel de la république algérienne

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 34

Intitulé du master : Biotechnologie et génomique végétales

Semestre: 3

UE fondamentales

UEF1(O/P) Biotechnologie

Intitulé de la matière1 : Multiplication in vitro des plantes

Crédits: 6 Coefficients:3

Objectifs de l'enseignement: Maîtriser les techniques de la multiplication in-vitro

Connaissances préalables recommandées: Biologie cellulaire, Biologie végétale, Taxonomie

végétale

Contenu de la matière:

- -Rappel sur la notion de cellule totipotente, dédifférenciation cellulaire
- -Techniques de culture in vitro
- -Culture de méristème
- -Culture d'explants
- -Obtention de cal
- -Embryogenèse somatique
- -Embryogenèse zygotique
- -Culture de protoplaste
- -Fusion de protoplastes (hybride ,cybrides ,)
- -Culture d'anthères, pollen, d'ovule. Intérêt des techniques de CIV en agriculture
- -Problèmes particuliers liés à la multiplication in vitro
- -Transgénèse végétales
- -Etat actuel de la CIV en Algérie.

Autres:

Analyses d'articles, Exposés en compléments des chapitres de cours , Visite de pépinière , de culture sous serre et de laboratoire privés de culture in vitro, Micropropagation –acclimation et transfert en champs

Mode d'évaluation : Contrôle continu + examen final

Références

- -Pieril RLM -In vitro culture of higher plant ,1987,ed Martinus Nijhoff publishers
- -Shaw Plant molecular biology ed Shaw IRL Press,1988
- -Haicour R Biotechnologies végétales .Tec Doc ed 2000
- -Boutherin D et Bron multiplication des plantes horticole 2002
- -Franche Cl Duhoux E -La transgénèse végétale biocampus 2001

-Kahn A Plantes transgénique en agriculture John Libbey 1996

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 35 Année universitaire : 2016-2017

Intitulé de la matière2 : Biotechnologie et génie génétique

Crédits: 4 Coefficients:2

Objectifs de l'enseignement: Apprécier les progrès de la production agricole grâce à l'application des biotechnologies végétales

Connaissances préalables recommandées: Biologie végétale, génétique, taxonomie, biochimie

Contenu de la matière:

- Chap.1. Isolement et culture des protoplastes et ses produits
- Chap.2. Recherche d'une nouvelle variabilité
- Chap.3. Amélioration d'une espèce polyploide
- Chap.4. Les haplométhodes
- Chap.5. la variation somaclonale et causes génétiques de la variation somaclonale
- Chap. 6 Ethique et bioéthique

Intitulés des TD/TP:

- TD1- Applications de la biotechnologie : obtention de protoplastes (techniques d'isolement mécanique et chimique.).
- TD2-Espèces capables de régénérer une plantes à partir d une cellule.
- TD3-Obtention et caractérisation des hybrides somatiques.
- TP1-Isolement mécanique de protoplastes
- TP2-Isolement enzymatique de protoplastes : Première partie préparation des solutions et milieu de culture.
- TP3-Deuxième partie : isolement et culture de protoplastes (ex :Arum ,Géranium)
- TP4-Culture des anthères

Autres:

- -Exposés
- -Analyses d'articles

Références

- -Demarly y. et sibi m., 1996. amélioration des plantes et biotechnologies. 2è éd., john libbey, france, 151 p.
- -Gallais a. et bannerot h., 1992. Amélioration des espèces végétales cultivées. INRA éd., Paris, 759p.
- Gallais A., 2015. Comprendre l'amélioration des plantes. Enjeux, méthodes, objectifs et critères de sélection. 240P.
- -Tourte Y., 2002. Génie génétique et biotechnologies : concepts, méthodes et applications agronomiques. 240P.
- -www.biotech-ecolo.net

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 36 Année universitaire : 2016-2017

UEF2(O/P) Santé du végétal

Intitulé de la matière1 : Association symbiotique

Crédits: 4 Coefficients:2

Objectifs de l'enseignement: Ce module consiste à la connaissance des différents types d'interaction plante-microorganisme, et à la compréhension des mécanismes de la mise en place de ces symbioses.

Connaissances préalables recommandées: Biologie végétale, Botanique, Microbiologie

Contenu de la matière:

Chapitre I : La symbiose fixatrice d'azote légumineuse/Rhizobium

- I.1. Principales symbioses fixatrices d'azote
- I.2. Présentation du partenaire microbien et classification
- I. 3. Présentation du partenaire végétale et classification
- I.4. La spécificité d'hôte
- I.5. Les étapes de mise en place de la nodulation
- I.5.1.L'étape de pré-infection : reconnaissance des partenaires et réponses biologiques induites chez la plante hôte
- I.5.2.Le processus d'infection de la racine (L'initiation de l'infection et la formation du cordon d'infection)
- I.5.3.L'organogenèse du nodule indéterminé
- a. L'induction du primordium et la formation du méristème
- b. L'invasion cellulaire et la différenciation du nodule structure du nodule
- I.6.La formation des nodules caulinaires
- I.6.1.La nodulation aérienne chez Sesbania rostrata

Chapitre II: La symbiose fixatrice d'azote avec Frankia

- II .1. Présentation des plantes actinorhiziennes et classification
- II .2. Présentation des actinomycètes
- II .3.Infection intracellulaire (Myrica, Comptonia, Alnus et Casuarina)
- II .4.Infection intercellulaire (Elaeagnus, Ceanothus et Cercocarpus)
- II .5.Organogenèse du nodule chez les plantes actinorhiziennes.
- II.5 .1.Structure du nodule actinorhizien
- II .6.Comment Produire soi-même son azote pour les grandes cultures

Chapitre III: La symbiose mycorhizienne

- III.1.Les différents types de symbiose mycorhizienne
- III.2. Présentation de quelques exemples de mycorhizes
- III.3.La spécificité d'hôte
- III.4.Mise en place de l'interaction symbiotique
- III.5.Description du mécanisme de pénétration du champignon Mycorhizien
- III.6. Impact écologique de la symbiose mycorhizienne
- III.7.Intérêts socioéconomiques

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 37 Année universitaire : 2016-2017

Travaux pratique

Tp1: Etude morphologique et anatomique des nodules de vicia faba

Tp2 : Isolement des Rhizobia à partir de nodules de vicia faba

Tp3: Réalisation de la technique de coloration de Gram

Tp4: Réalisation d'antibiogramme

Tp5 : Sortie sur foret, prospection, prélèvement et description des mycorhizes

Autres:

Exposés, Analyse d'article (4h)

Mode d'évaluation : Contrôle continu + Examen final

Références

-J.J. Drevon, 2003. Fixation symbiotique de l'azote et développement durable dans le bassin méditerranéen

-A. Schneider, 2015. Fixation symbiotique de l'azote et développement durable dans le bassin méditerranéen

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 38

Intitulé de la matière 2 : Biotechnologie des microorganismes

Crédits: 4 Coefficients:2

Objectifs de l'enseignement: connaitre les applications biotechnologiques des micro-organismes et leur usage dans l'industrie agro-alimentaire.

Connaissances préalables recommandées: Biologie végétale, biologie cellulaire, microbiologie Taxonomie

Contenu de la matière:

Micro-organismes cellulolytiques
Micro-organismes pectinolytiques
Micro-organismes lignolytiques
Lactiques intervenant dans la fermentation des produits végétaux
Bio-engrais
Mosissures et levures

Autres: Exposés

Mode d'évaluation : Contrôle continu + examen final

Références

-Les Biotechnologies 2001 de Pierre Douzou et Gilbert Durand

- Biotechnologies de la pratique à la théorie 2007 Carinne Biagioni et Jean-Yves Gola

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 39

UE méthodologie

UEM1(O/P) Environnement et écodéveloppement durable

Intitulé de la matière1 : Gestion préservation et application.

Crédits: 5
Coefficients:3

Objectifs de l'enseignement: Faire l'inventaire du couvert végétal, parcs jardins et airs de loisirs nationaux Apprendre à sauvegarder ce patrimoine.

Connaissances préalables recommandées: Biologie végétale, Génétique, Taxonomie, Biochimie

Contenu de la matière:

- 1. Classification des Angiospermes selon l'approche moléculaire en insistant sur quelques angiospermes d'intérêt environnementales.
- 2. Apport de la bio systématique moléculaire
- 3. Etat actuel de la biodiversité en Algérie
- 4. Réglementation sur les ressources de la diversité biologique traité international sur les ressources phytogénétiques d'intérêt agricole et alimentaire loi africaine sur l'accès aux ressources la protection des obtentions végétales convention internationale sur la biodiversité
- 5. Evaluation et risque liés aux OGM loi et réglementation sur les OGM
- 6- Intérêts multiples de la biodiversité
- 7- Biodiversité de quelques espèces étudiées par notre laboratoire.
- 8. Définition d'un Parc, d'un Jardin, d'un Parc loisir, Espèces à cultiver

Autres: visite des sites

Mode d'évaluation : Contrôle continu + examen final

Références

Convention sur la biodiversité
Protocole de cartagene
Protocole de kyoto

Flore d'Afrique du Nord (Quézel et Santa) 1962 ed.CNRS

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 40 Année universitaire : 2016-2017

Intitulé de la Matière 2 : Biogéographie et formation végétale en Algérie

Crédits: 4 Coefficients:2

Objectifs de l'enseignement: Connaitre les formations végétales dominantes en Algérie

Connaissances préalables recommandées: Biologie végétale, Génétique, Taxonomie, Biochimie

Contenu de la matière:

- I. Principales aires de distribution des taxons
- II. Territoires biogéographiques
- III. Les groupements végétaux et la notion de biocénose
- IV. Dynamique des biocénoses
- V. Influence des facteurs écologiques sur le déterminisme des biocénoses
- VI. Influence des facteurs climatiques
- VII. les formations végétales : cas des formations végétales en Algérie.

Autres: Sorties

Mode d'évaluation : Contrôle continu, examen

Références

René et Heller (2002) Physiologie végétale (2 Tomes), Dunod, Paris

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 41

UE découverte

UED1(O/P) Phytopatologie et métabolisme secondaire

Intitulé de la Matière 1: Phytopathologie

Crédits: 1 Coefficients:1

Objectifs de l'enseignement: Connaître les maladies chez les plantes

Connaissances préalables recommandées: Biologie cellulaire, Biologie végétale, Microbiologie, Taxonomie végétale

Contenu de la matière:

1 - Introduction

Terminologie, historique, principaux symptômes, étiologie, dégâts et pertes

- 2 Les maladies non parasitaires
- 3- Les virus et viroïdes phytopathogènes
- 4-Les procaryotes phytopathogènes
- 5- Les protozoaires phytopathogènes
- 6- Les champignons phytopathogènes
- 7- Méthodes de lutte en phytopathologie

Autres: synthèse d'article, sortie sur terrain, exposés

Mode d'évaluation : Contrôle continu, examen

Références

Lepoivre P. 2003. Phytopathologie. De Boeck, Bruxelles, 427 pp.

Agrios, G.N. 1997. Plant pathology. Academic Press, San Diego, 635 p.

Corbaz, R., 1990. Principes de Phytopathologie, Presses polytechniques et universitaires romandes, Lausanne, 286 p.

Semal, Jean (direction), 1989. Traité de pathologie végétale. Les Presses agronomiques de Gembloux (Belgique). 621 p.

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 42

Intitulé de la matière2: Composés phénoliques

Crédits: 1 Coefficients:1

Objectifs de l'enseignement : Etude biochimique des substances végétales et leur valorisation dans le domaine pharmaceutique et phytothérapie

Connaissances préalables recommandées : Biologie cellulaire, Biochimie, Biologie et Physiologie végétale

Contenu de la matière:

Chapitre 1: Les lignines

- 1. Introduction
- 2. Localisation chez les végétaux
- 3. Composition chimique
- 4. Propriétés physico-chimiques
- 5. Biosynthèse des lignines
- 6. Hétérogénéité des lignines
- 7. Rôle des lignines
- 8. Dégradations
- 9. Applications biotechnologiques

Chapitre 2: Quinones

- 1. Définition
- 2. Localisation végétale
- 3. Structure chimique
- 4. Propriétés physico-chimiques
- 5. Biosynthèse

a/Voie de l'acétate/malonate

b/Voie des acides mévaloniques et chorismique

c/Voie de l'acide 4-hydroxybenzoïque

6. Utilisations thérapeutiques

Chapitre 3 : Alcaloïdes

- 1. Introduction
- 2. Localisation
- 3. Structure chimique

a/Exemples d'alcaloïdes

- 4. Propriétés physico-chimiques
- 5. Biosynthèse
- 6. Utilisations thérapeutiques

Chapitre 4: Coumarines

- 1. Introduction
- 2. Répartition et localisation
- 3. Classification
- 4. Biosynthèse
- 5. Propriétés physico-chimiques
- 6. Utilisations thérapeutiques

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 43 Année universitaire : 2016-2017

Chapitre 5: Flavonoïdes

- 1. Introduction
- 2. Localisation
- 3. Structure chimique
- 4. Propriétés physico-chimiques
- 5. Biosynthèse
- 6. Utilisations thérapeutiques

Chapitre 6: Tanins

- 1. Introduction
- 2. Localisation végétale
- 3. Structure chimique et classification

a/Tanins hydrolysables

b/Tanins condensés

- 4. Propriétés physico-chimiques
- 5. Extraction
- 6. Utilisations thérapeutiques

Autres: Projection de vidéo

Mode d'évaluation: Examen 100%

Références

- -Biochimie générale et médicale 1, 1980, 4eme éd, P.Louisot, éd. Simep, 180p.
- -Toute la biochimie, 2004, S. Werman, P.Mehul, éd. Dunod, 439p.
- -Biochimie végétale, 1996, J.L. Guignard, éd. Masson, 245p.
- -Biochimie agro-industielles, 1994, LindenG. ,Lorient,D.,éd. Masson, 359p.
- -Pharmacognosie Phytochimie Plantes médicinales, Bruneton J.2009 éd. Lavoisier 1243P

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 44

UE transversales

UET1 Entrepreneuriat

Intitulé de la matière1 : Entreprenariat

Crédits: 1 Coefficients:1

Objectifs de l'enseignement: Initier l'apprenant au montage de projet, son lancement, son suivi et sa réalisation.

Connaissances préalables recommandées: Ensembles des contenus de la formation

Contenu de la matière:

- 1. L'entreprise et gestion d'entreprise
- o Définition de l'entreprise
- o L'organisation d'entreprise
- o Gestion des approvisionnements :
 - Gestion des achats,
 - Gestion des stocks
 - Organisation des magasins
- o Gestion de la production :
 - Mode de production,
 - Politique de production
- Gestion commerciale et Marketing :
 - Politique de produits,
 - Politique de prix,
 - Publicité,
 - Techniques et équipe de vente
- 2. Montage de projet de création d'entreprise
 - o Définition d'un projet
 - o Cahier des charges de projet
 - o Les modes de financement de projet
 - o Les différentes phases de réalisation de projet
 - o Le pilotage de projet
 - o La gestion des délais
 - o La gestion de la qualité
 - o La gestion des coûts
 - La gestion des tâches

Autres : Visite des entreprises **Mode d'évaluation:** Examen

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 45 Année universitaire : 2016-2017

V- Accords ou conventions

Oui

NON

(Si oui, transmettre les accords et/ou les conventions dans le dossier papier de la formation)

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 46

LETTRE D'INTENTION TYPE

(En cas de master coparrainé par un autre établissement universitaire)

(Papier officiel à l'entête de l'établissement universitaire concerné)

Objet : Approbation du coparrainage du master intitulé : Biotechnologie et génomique végétales

Par la présente, l'université (ou le centre universitaire) master ci-dessus mentionné durant toute la période d'habilitation de ce master	déclare coparrainer le r.
A cet effet, l'université (ou le centre universitaire) assistera ce projet en :	
 Donnant son point de vue dans l'élaboration et à la mise à jour des programs Participant à des séminaires organisés à cet effet, En participant aux jurys de soutenance, En œuvrant à la mutualisation des moyens humains et matériels. 	mes d'enseignement,
SIGNATURE de la personne légalement autorisée :	
FONCTION:	
Date:	

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 47 Année universitaire : 2016-2017

LETTRE D'INTENTION TYPE

(En cas de master en collaboration avec une entreprise du secteur utilisateur)

(Papier officiel à l'entête de l'entreprise)

OBJET : Approbation du projet de lancement d'une formation de master intitulé : **Biotechnologie et génomique végétales**

Dispensé à :

Par la présente, l'entreprise déclare sa volonté de manifester son accompagnement à cette formation en qualité d'utilisateur potentiel du produit.

A cet effet, nous confirmons notre adhésion à ce projet et notre rôle consistera à :

- Donner notre point de vue dans l'élaboration et à la mise à jour des programmes d'enseignement,
- Participer à des séminaires organisés à cet effet,
- Participer aux jurys de soutenance,
- Faciliter autant que possible l'accueil de stagiaires soit dans le cadre de mémoires de fin d'études, soit dans le cadre de projets tuteurés.

Les moyens nécessaires à l'exécution des tâches qui nous incombent pour la réalisation de ces objectifs seront mis en œuvre sur le plan matériel et humain.

Monsieur (ou Madame).....est désigné(e) comme coordonateur externe de ce projet.

SIGNATURE de la personne légalement autorisée :

FONCTION:

Date:

CACHET OFFICIEL ou SCEAU DE L'ENTREPRISE

Établissement : USTOMB Intitulé du master : Biotechnologie et génomique végétales Page 48 Année universitaire : 2016-2017