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Course Overview  

This course on the Finite Element Method (FEM) is primarily designed for third-year 

undergraduate students enrolled in the Naval Engineering program, specializing in 

shipbuilding and naval architecture under the LMD system. The handout aims to facilitate 

students’ understanding the use of FEM to solve problems related to strength of materials 

filed . The course is organized into three comprehensive chapters: The first chapter offers a 

broad overview of FEM, covering its objectives, fundamental concepts, advantages, and areas 

of application. It also introduces the discretization approach used in finite element 

calculations, explaining how continuous domains are subdivided into finite elements for 

analysis. The second chapter focuses on deriving the stiffness matrix for a bar element. It 

extends this study to truss structures, illustrating how these elements combine to form 

complex frameworks. Several solved problems are included to reinforce the theoretical 

concepts. Additionally, three classical methods for calculating deflection and rotation are 

presented: The third chapter develops the application of FEM to beam bending problems. It 

begins with the construction of the stiffness matrix for a beam element and builds upon the 

theoretical foundation to analyze bending behavior. This chapter includes key questions, 

worked examples, and straightforward applications designed to deepen students’ 

comprehension and practical skills. Throughout the document, emphasis is placed on linking 

theory with practice, enabling students to confidently apply FEM techniques to real-world 

naval engineering problems. 

Keywords: Finite element method, bar element, beam , truss, stiffness matrix  
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Introduction  

 

The finite element method FEM is an effective numerical method for solving engineering and 

physical problems. Its application ranges from stress analysis in aircraft or automobile 

structures to calculations of such complex systems as nuclear power plants. It is used to 

consider the movement of liquids through pipes, through dams, in porous media, to study the 

flow of compressed gas, to solve electrostatic and lubrication problems, and to analyze system 

vibrations. FEM is a numerical method for solving differential equations encountered in 

physics and engineering. The origin of this method is connected with the solution of space 

problems (1950). The scope of application of FEM significantly expanded when it was shown 

that the equations describing the elements in problems of structural mechanics, heat 

propagation and hydromechanics are similar. FEM from a numerical procedure for solving 

problems of structural mechanics turned into a general method for the numerical solution of 

differential equations.  

The use of finite element analysis (FEA ) techniques has grown drastically in the last decade. 

Several structural failures have demonstrated that, if not used properly, the FEA may mislead 

the designer with erroneous results. The programs have become so user friendly, that 

engineers with little previous design experience may use them and commit fundamental 

mistakes, which can result in inadequate strength in the structure. 

Finite element analysis (FEA) is the most common structural analysis tool in use today. In 

marine industries, the use of this technique is becoming more widespread in the design, 

reliability analysis and performance evaluation of ship structures. Users of FEA have 

considerable freedom in designing the finite element model, exercising it and interpreting the 

results. Key components of this process include the selection of the computer program, the 

determination of the loads and boundary conditions, development of the engineering model, 

choice of elements and the design of the mesh.  

Specific Objectives 

 Understand the Basic Principles of FEM: 

Students will learn the foundational concepts behind the finite element analysis 

procedure, including the theory and characteristics of finite elements that represent 

engineering structures such as bars and beams 
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 Develop Computational Skills: 

The course aims to develop students' abilities to apply matrix algebra and numerical 

methods for describing and solving mechanical problems, including the formulation 

and assembly of stiffness matrices and the application of boundary conditions 

 Apply FEM to Structural Problems: 

Learners will gain practical experience in modeling and analyzing determinate and 

indeterminate structural problems, including bars, trusses, and beams, both in one and 

two dimensions 

 Interpret and Evaluate Results: 

Students will be trained to interpret the results of finite element analyses, 

understanding the relationship between external loads, displacements, and structural 

stiffness, and to use this understanding to inform engineering decisions2. 

 Bridge Theory and Practice: 

By combining theoretical knowledge with hands-on calculation examples, the course 

ensures that students can both comprehend and apply FEM to real-world structural 

engineering tasks, including the calculation of nodal displacements, reaction forces, 

and stresses 

Learning Outcomes 

By the end of the course, students should be able to: 

 Explain the theory, fundamentals, and applications of FEM for structural engineering 

problems 

 Discretize a structure into finite elements and describe the degrees of freedom for 

structural problems 

 Formulate and assemble stiffness matrices for bar and beam elements, both in local 

and global coordinate systems 

 Apply appropriate boundary conditions and solve the resulting system of equations for 

displacements and stresses 

 

 

 

 

https://www.frederick.ac.cy/fu_documents/cips/5741.pdf
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Chapter 1 An overview of the finite elemnt method  

 

1. What is finite element method (FEM) ? 

 

The finite element method (FEM) is a numerical technique used to model the behavior of 

physical objects under load conditions. FEM is used in many fields of science and technology, 

including construction, aviation, automotive, ship building  and medicine. enbling to solve 

various mathematical problems such as differential equations, equations of motion, heat 

conduction equations, mechanical equations, and many others. The finite element method is 

particularly effective for problems for which an analytical solution is impossible or very 

difficult to obtain. FEM analysis requires determining the geometry, materials, and boundary 

conditions of a structure, then dividing the entire analysis domain into small finite elements, 

which are then analyzed separately. Each finite element consists of nodes for which the 

solution values are calculated. Solving this system of equations allows you to determine the 

displacements, deformations, and stresses throughout the structure. 

 

 

                           Figure 1.1  Modeling of structure using Finite element method  
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1.2 Numerical model sequence 

 

When trying to predict the behavior of reality, we resort to a simplification of it, called a 

model. The model admits a gradation, in the sense of representing better or worse or of 

exposing one or another aspect of reality. For example, when analyzing a solid body 

mechanically, one can leave aside thermal, electrical and magnetic phenomena, assuming that 

they do not interfere in the analysis of the object. Abstracting from these, one can still 

consider, or not, the deformation of the solid body, leading respectively to a model of a 

deformable solid, or to a model of a rigid body. By using one or the other model, more or less 

phenomena are observed. In the case of choosing a rigid body model, it is not possible at all to 

observe the vibration that it actually undergoes, such is the level of simplification of this 

model. There is a chain of models until reaching the model of finite elements of a physical 

phenomenon, as shown in  following figure . At the beginning of it, on the left, is the physical 

model of the phenomenon, which takes into account the geometry, the material constitution 

and the interaction of the body with the surrounding environment. A central part of this 

modeling stage is the identification of the physical laws involved in the phenomenon and the 

relevance of each of them for the intended analysis. This relevance is dictated by the degree of 

complexity 

 
. 
 
 
 
 
 

Sequence of models. 
 
 

The FEM is applicable to a wide range of problems related to various physical phenomena 

subject to a wide variety of interactions with the surroundings in which they occur. 

Furthermore, the stability and accuracy of the method are well studied and solidly supported 

by mathematical theories, which gives it robustness. Hence its wide use as a tool for analysis 

in various fields of science and engineering, Fig1.2. 

 

Real model  Physical model   Mathematical  
model  

Numerical model  
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  Figure 1.2. Analysis of a turbine , an airplane   and an automobile (d) by FEM 

1.3 Fundamental of the finite element method 

In the professional activities of an engineer, there is often a need to solve practical tasks 

related to the mathematical modeling of physical objects, processes, or phenomena. 

Mathematical models for many applied problems are represented by differential equations, 

combined with a set of appropriate boundary and/or initial conditions derived from 

fundamental physical laws applicable to the system in question. 

Typically, the exact solutions to these equations, which express the balance of mass, force, or 

energy, cannot be obtained analytically due to the complexity of the equations and the 

challenges posed by the boundary and initial conditions. This necessitates the use of various 

numerical methods that provide approximate solutions to the problem. Unlike analytical 

methods, which accurately describe the behavior of the system at any pont, numerical 

methods approximate the exact solution only at specific points, known as nodes of the 

calculation grid. 

To simplify the calculation process, the discretization of space is performed using special 

algorithms. Existing numerical methods are generally divided into two main classes: the finite 

difference method and the finite element method. The finite difference method involves 

writing differential equations for each node and replacing derivatives with difference 

schemes, resulting in a system of simple algebraic equations. While this method is relatively 

easy to use for straightforward tasks, it becomes challenging for problems involving complex 

geometries, intricate boundary conditions, and anisotropic materials. 

. 
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Figure 1.3  Application domain of the finite element method  

 

 

1.4 Benefits of Using FEM Analysis in structural design 

 

Ensuring Accuracy. FEM analysis provides highly accurate results, which is crucial in many 

fields such as mechanical, aerospace, and space engineering. 

Saving Time and cost . Using FEM analysis allows for faster and more cost-effective study 

of object behavior by replacing costly and time-consuming experimental studies. 

Improving Product Quality. Using FEM analysis, designers can test different design variants 

and select the most optimal one, leading to better product quality. 

Ability to Simulate Different Conditions. FEM analysis allows for the simulation of various 

conditions, which is difficult, if not impossible, to achieve in experimental studies. 

Design Optimization: Using FEM analysis, designers can optimize designs to meet technical 

and economic requirements. 

Ability to analyze non-standard geometries. FEA analysis allows the analysis of non-

standard geometries that are otherwise difficult to study. 

Allows the analysis of multiple types of loads. FEM analysis can analyze different types of 

loads, including dynamic, static, thermal, and others. 

Effective in solving problems for which an analytical solution is impossible or very difficult 



7/61 
 

to obtain. This method allows the study of complex mathematical models that would be 

virtually impossible to solve analytically. 

The ability to analyze different types of physical phenomena such as heat, electricity, motion, 

stress, and many others. This allows us to study many different aspects of an object's 

behavior, allowing us to obtain a more complete picture of its properties. 

FEM analysis allows for the consideration of different types of boundary conditions, allowing 

for a more accurate representation of the real-world conditions under which a given object 

operates. 

1.5 Disadvantages of using FEM analysis in structural design 

Computational complexity and cost. FEM analysis is a complex and time-consuming 

computational process that requires significant computing resources. For complex models, 

this process can take several hours or days, resulting in high computational costs. 

Risk of numerical errors. If the FEM analysis parameters are poorly defined or if the 

mathematical model is inappropriate, there is a risk of numerical errors that can lead to 

incorrect results. 

Need for calibration and validation. To obtain accurate results, it is necessary to calibrate 

and validate the FEM model. Calibration involves comparing analysis results with actual data 

from experiments or simulations. Validation, in turn, involves comparing simulation results 

with data from other sources or methods. These steps require appropriate knowledge and 

experience. 

Need for adequate model preparation. To obtain accurate results, it is necessary to properly 

prepare the model, including correctly arranging the finite element mesh and appropriately 

determining the model parameters. Improper model preparation may lead to incorrect analysis 

results. 

 

1.6 Step of finite element method  

 

 Model preparation step 

 

The first step in the FEM analysis of a beam is to create its geometric model. A beam is 

described by its dimensions and material properties, such as Young's modulus or Poisson's 

ratio. At this stage, boundary conditions, such as the applied forces and moments that will act 

on the beam, are also determined. 

 



8/61 
 

 Discretization step 

 

The next step is the discretization of the beam, i.e., the division into a finite number of 

elements. Through this stage, the geometric and material properties of the individual elements 

can be precisely determined, enabling an accurate FEM analysis. In the case of a beam, these 

elements will generally be rectangular or triangular, and their number depends on the 

accuracy of the analysis. 

 

 Computational Step 

 

After discretizing the beam, you can move on to the computational stage. This process 

involves solving equations describing the internal reactions of each element, based on input 

data such as boundary conditions and material properties. This stage provides information on 

the stress and strain distribution in the various beam elements, enabling accurate strength 

analysis. 

 

 Validation and Optimization Step 

 

The final stage is the validation and optimization of the FEM model. In this stage, the results 

obtained from the analysis are compared with the results of laboratory or experimental 

measurements to ensure the model's reliability. If errors are detected in the model, they must 

be removed and the analysis repeated. The next step is to optimize the beam shape to reduce 

stresses and production costs. 

 

FEM analysis can determine exactly where the greatest stresses occur in the beam and at what 

stage of production modifications should be made to optimize the shape and reduce stresses. 

FEM analysis also allows for an accurate estimation of the beam's strength, which is crucial in 

structural design. Furthermore, FEM analysis can take into account various types of loads, 

such as external forces, moments, thermal stresses, and many others, allowing for an accurate 

determination of the structure's behavior under various conditions. 

 

In the case of a beam, FEM analysis can also determine the maximum bending moment and 

maximum stresses, which is crucial for ensuring the structure's safety and preventing damage. 

Based on the analysis results, it is also possible to optimize the structure's materials and 
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geometry, thereby reducing production costs and increasing its durability. 

  

 

 Figure 1.4  stress concentration acorss a critical area  

 

 

1.7 Basics of the finite element method  

 

The basic idea of FEM is that any continuous quantity, such as temperature, pressure, and 

displacement, can be approximated by a discrete model, which is built on a set of piecewise 

continuous functions. In the general case, a continuous quantity is known in advance, and it is 

necessary to determine the value of this quantity at some internal points of the region. A 

discrete model is very easy to construct if we first assume that the numerical values of this 

quantity in each internal region are known. After this, we can move on to the general case. 

Thus, when constructing a discrete model of a continuous quantity, we proceed as follows:  

1.In the region under consideration, a finite number of points are fixed. These points are 

called nodal points or nodes.  

2. The value of a continuous quantity at each point is considered a variable to be determined. 

3. The domain of a continuous quantity is divided into a finite number of regions called 

elements. These elements have common nodal points and together approximate the shape of 
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the domain. A continuous quantity is approximated at each element by a polynomial that is 

defined using the nodal values of that quantity. A polynomial is defined for each element, but 

the polynomials are chosen in such a way that the continuity of the quantity is preserved along 

the boundaries of the element (it is called the element function). The choice of the element 

form and functions for specific problems depends on the ingenuity and skill of the engineer, 

and it is quite clear that this determines the accuracy of the approximate solution. 

 

Figure 1.5 Scale level of structure  

 

 

1.8  Constructing a finite element approximation (one-dimensional case) 

 

 Differential and variational equations generally cannot be solved analytically, except for a 

few simple cases. If the geometry of the domain in which the solution is sought is complex, 

then finding an analytical solution to the desired function 𝑢(𝑥) can be difficult. Often, the 

analytical solution is in the form of a series or an infinite sum, but even in this case it is 

difficult to satisfy all the boundary conditions of the problem. In the finite element method, 

instead of looking for an exact solution to a differential or variational equation, we look for an 

approximate solution. Our approximate solution 𝑢(𝑥) is the sum of several functions, which 

are called trial functions: As an example, consider a one-dimensional domain in the form of a 
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straight line. When this domain is divided into finite elements, it becomes possible to 

approximate the solution using continuous piecewise linear polynomials. Within each 

element, the approximate solution is a linear function. Two adjacent elements have the same 

solution at a common node. Obviously, as the number of elements increases, our approximate 

piecewise linear solution will converge to the exact solution. It is also possible to obtain a 

more accurate approximate solution by increasing the order of the polynomial within each 

element (for example, using a quadratic function instead of a linear one). After the domain is 

divided into finite elements, the integration in the variational equation is performed within 

each element. For example, consider a domain on the interval (0,1), which we divide into 10 

elements. Then the integration on the interval (0,1) can be reduced to the sum of 10 integrals 

on each of the 10 elements: 

 

 

After the domain is divided into elements, the solution on each of these elements is sought in 

the form of simple polynomials. As an example, consider a one-dimensional domain that is 

divided into 𝑛 elements (Fig. 1.5). 

 

 

  

Figure 1.6   Detailed discretization of the state. Linear interpolation functions in each element 

 

 

Let's number the nodes 1, 2, …, 𝑛 + 1. Each element has 2 nodes at the ends. Let's say that the 

element with the number 𝑖 has 2 nodes with the numbers 𝑖 and 𝑖 + 1. Let's denote the 𝑥 

coordinate for the node 𝑖 as 𝑥𝑖. In order to find the solution inside each element, we will use 

the solution value at two nodes of the element. If we want to interpolate the solution using 
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only 2 nodes, then we can represent the solution as a linear function, since it has 2 unknown 

coefficients: 

The unknown coefficients 𝑎0 and 𝑎1 can be expressed through the solution at the nodes of the 

element 𝑢(𝑥𝑖) = 𝑢𝑖 and 𝑢(𝑥𝑖+1) = 𝑢𝑖+1. We do not know these values yet, but they will be 

found in the process of solving the problem. Thus, we have 2 equations for finding the 

coefficients 𝑎0 and 𝑎1: 

Expressing the coefficients 𝑎0 and 𝑎1 through 𝑢𝑖 and 𝑢𝑖+1, we can obtain 

 

Now the solution can be represented as 

 

The functions 𝑁1(𝑥) and 𝑁2(𝑥) are called interpolation functions, or shape functions. 

Obviously, if 𝑥 = 𝑥𝑖, then 𝑁1(𝑥) = 1, and 𝑁2(𝑥) = 0. At the right node of the element 𝑥 = 𝑥𝑖+1, 

the conditions 𝑁1(𝑥) = 0, and 𝑁2(𝑥) = 1 are satisfied. Note that the approximate solution (1.3) 

is identical to the representation (1.1).  

 

1.9 Finite element method in solving problems of strength  of materials 

 

The idea of FEM is that any continuous quantity can be approximated by a piecewise 

continuous function, which is constructed on the values of the quantity under study at a finite 

number of points of the elements under consideration. When constructing a discrete model of 

a continuous quantity, the following is done:  

– the domain of definition of the quantity under study is divided into a finite number of 

elements that have common nodal points and, in aggregate, approximate the shape of the 

domain 

– nodes are fixed in the region under consideration;  

– using the values of the continuous quantity under consideration at the nodal points and the 

approximating function, the values of the quantity inside the region are determined. 

Approximating functions are most often selected in the form of linear, quadratic or cubic 

polynomials. A polynomial associated with a given element is called an element function. 

From this point of view, a structure can be considered as a certain set of structural elements 

connected at a finite number of nodal points. If the relationships between forces and 

displacements for each element are known, then the properties can be described and the 

behavior of the structure as a whole can be investigated. Thus, when using FEM, a solution to 

a boundary value problem for a given region is sought in the form of a set of functions 
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defined on finite elements. 

1.10  Types of finite element  

There are a large number of different types of finite elements (FE) .The Finite Element 

Method has developed a series of finite element types that can be initially classified as: 

 one-dimensional finite elements (usually bars); 

 two-dimensional finite elements (plates and the same volumes); 

 three-dimensional finite elements (solid blocks). 

 

Elements linear parabolic (quadratic) cubic 

 

one-dimensional 

 

 

 

  

 

two-dimensional 

 

 

 

 

 

  

 

three-dimensional 

 

 

 

 

 

 

 

  

 

other types 

          

         Mass Spring                                   Contact    
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Chapter  2     Tension-Compression in  a beam  

 

2. Derivation of the Stiffness Matrix  

 

The main characteristics of a finite element are expressed by its stiffness matrix. For a 

structural finite element, the stiffness matrix contains information about the geometry and 

properties of the material, which specifies the element's resistance to deformation under the 

influence of a load. Such deformation may include tension-compression, bending, shear. 

2.1 Spring element  

A linear elastic spring is a mechanical device designed to support only axial loads. Its 

extension or compression is directly proportional to the magnitude of the applied axial force, 

following Hooke’s Law. The constant of proportionality between the applied load and the 

resulting deformation is known as the spring constant, spring stiffness, or simply k . This 

spring constant has the units of force per unit length (for example, newtons per meter), 

reflecting the ratio of force required to produce a unit displacement in the spring. 

  

 

 Figure 2.1  –a linear spring element   

 

In the figure under consideration, these forces are designated by the vectors f1 and f2, also 

directed in opposite directions. Assuming that the displacements of both nodes are zero when 

the spring is not deformed, the resulting deformation of the spring can be expressed by the 

formula: 

2 1u u     (2.1) 

Then, the resulting axial force in the spring will be determined by the following expression: 

 2 1F k k u u     (2.2) 

Therfore,  the equilibrium of the spring will be achieved when the forces at its nodes are 

determined by the following equations: 
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 1 2 1F k u u     (2.3) 

 2 2 1F k u u 
 

(2.4) 

Equations(2.3)And(2.5 5)can be written in matrix form as: 

 

1 1

2 2

u Fk k

u Fk k

        
     
          

  
(2.5) 

 

which in simplified form  

    eK u F   (2.6) 

 

where  eK is the element stiffness matrix in the local coordinate system (element 

coordinate system); 

 u - vector of nodal displacements; 

 F – vector of nodal forces applied to the element. 

Equation(2.5)shows that the stiffness matrix of a linear spring element is a 2×2 matrix, this 

is explained by the fact that the element is characterized by two nodal displacements (or two 

degrees of freedom), which are dependent, since the spring is continuous and elastic. In 

addition, the matrix is symmetrical. Solution of the equation (2.5) for given nodal loads is 

reduced to determining unknown nodal displacements, and can formally be written as: 

 
11 1

2 2

e

u F
K

u F


      

   
      

  
(2.7) 

where  
1

eK


is the inverse matrix of the spring element stiffness. 

The described procedure for deriving the stiffness matrix of a spring element is based on 

determining the conditions of its equilibrium. The same procedure, carried out by using the 

equilibrium equation for each node, can also be used for systems of interconnected spring 

elements. However, instead of compiling calculation schemes for each node and deriving 

equilibrium equations on their basis, these equations can be obtained more efficiently by 

considering the contribution made by the force acting in each element to the equations for 

of each node. This process is called "assembly" because it uses the combination of 

individual rigid components to derive a system of equations. The assembly of the 
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characteristics of individual elements into a system of equations can be shown using the 

simplest example of a system of two linear springs connected as shown in the figure 2.2 . 

 

 Figure 2.2  Loading diagram of a linear spring element 

 

For generalization, assume two springs with different spring constants, k₁ and k₂, connected 

at nodes 1, 2, and 3. Node 2 is common to both springs and represents their physical 

connection point. The displacements of the nodes in the global coordinate system are denoted 

as U₁, U₂, and U₃, where uppercase letters indicate global (system-level) displacements, 

distinguishing them from local displacements of individual elements. Similarly, the applied 

nodal loads are represented as F₁, F₂, and F₃. 

 

 

 

 

1 1

1 1 1 1

1 1
1 1 2 2

k k u F

k k u F

        
     
         

  

(2.8) 

 

 

 

 

22

22 2 1

22
2 2 32

Fk k u

k k Fu

       
     
           

(2.9) 

 

where the superscript denotes the element number. 

 

 

 Figure 2.3  Loading diagram of a linear spring element 

 

To begin assembling the equilibrium equations that describe the behavior of a system of two 

springs, it is necessary to formulate the conditions of compatibility of the displacements that 
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relate the displacements of the elements to the displacements of the system. In this case, 

these conditions have the form: 

       1 1 2 2

1 1 2 2 1 2 2 3      u U u U u U u U      (2.10) 

The compatibility conditions reflect the physical fact that the springs, being connected at 

node 2, remain connected at this node after deformation, from which it follows that the 

displacements of both springs at this node are the same. Thus, continuity of displacements is 

ensured at the nodes when moving from element to element. 

Substituting the conditions from (11) into equations (2.9) and (2.10) yields equations of the 

following form: 

 

 

 

 

1 1

1 1 1 1

1 1
1 1 2 2

k k u F

k k u F

        
     
         

  

(2.11) 

 

 

 

 

22

22 2 1

22
2 2 32

Fk k u

k k Fu

       
     
         

  

(2.12) 

This notation clearly indicates that the elements are physically connected at node 2. To 

proceed, the matrices involved must first be expanded, resulting in equations of the following 

form: 

 

 

1

11 1 1

1

1 1 2 2

0

0

0 0 0 0 0

Fk k U

k k U F

 
    
     
     
    
      

 

  

(2.13) 

 

 

2

2 2 2 2

2
2 2 3 3

00 0 0 0

0

0

k k U F

k k U F

   
      

     
     
         

 

(2.14) 

 

Addition of equations (2.13) And (2.15) leads to the equation: 

 

   

 

1

11 1 1

1 2

1 1 2 2 2 2 2

2
2 2 3 3

0

0

Fk k U

k k k k U F F

k k U F

 
    
     
        
    
       

 

  

(2.15) 

 

Equilibrium conditions are of the following form: 

       1 1 1 2

1 1 2 2 2 3 3      F F F F F F F      (2.16) 
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Substituting these conditions into the equation (2.15) leads to the final equation describing the 

behavior of the spring system: 

1 1 1 1

1 1 2 2 2 2

2 2 3 3

0

0

k k U F

k k k k U F

k k U F

    
       
       
    
         

  

(2.17) 

The first matrix in this equation is the system stiffness matrix [K], which: 

 Is linear, as is typical for all linear systems analyzed within an orthogonal coordinate 

system; 

 Is singular (degenerate) due to the lack of constraints preventing rigid body motion 

within the system; 

 Represents a straightforward superposition of the stiffness matrices of the individual 

elements. 
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2.2 Bar element  

2.2.1 Displacement function  

To facilitate understanding of the general relationships, let us examine the characteristics of a 

finite element using the example of a stepped rod subjected to tension and compression (see 

Fig. 2.4). 

 

                                        Figure 2.4 - Stepped beam 

In this case, a bar is taken as the final element  

 

                                         Figure 2.5   Bar element   

 

The displacement function  N for this case has the form 

  , .
i

j

Ul x x
N

Ul l

   
  

  

                                                                                                                                     
(2.18) 

where iU and 
jU are the displacements of nodes i and j ; functions; they range from 1 to 0. 

1

l x
N

l


  and 2

x
N

l
   shape functions; ranging from 1 to 0. The displacement function    

depends on the shape of the finite element.  

2.2.2  Deformation function 

The deformation function, or deformation vector, is expressed in terms of the displacement 

function. When the bar is stretched, its relative elongation is described by this relationship. 

 
1

1 1 .
i

j

UN

Ux l


     
     
      

 
(2.19) 

The expression 
1

1; 1
l
 is denoted by the matrix B , then 

x
x 
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    ,
e

B   
(2.20) 

 

 
e i

j

U

U


  
  
  

  represents the vector of displacements of elemen's nodes. 

2.2.3 Stress function  

the stress vector is expressed through the strain vector 

      ,
e

D D B     
(2.21) 

where D  is the elasticity matrix (connects stresses and deformations). 

2.2.4  System of FEM equations for the enitre structure  

To  determine the work of external  force (virtual) movements  
e

d   . The work of internal 

forces per unit volume on virtual displacement is equal to    
T

d  
 

where  
T

  is the deformation vector transposed to the vector    

Work of internal forces on the entire finite element 

       . .
T

TT e

V V

d dV d B D B dV   
 

The work of external nodal forces  
e

F  on virtual displacements of the element is equal to 

    
T

e e
d F

 

By equating the work of external and internal forces on possible movements of the element, 

we obtain 

          ,
T T

Te e e e

V

d B D B dV d F  
 

reducing   
T

e
d  , we get 

   
T e e

V

B D B dV F 
 

or  

    ,
e e e

K F   
(2.22) 
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where  

e T

V

K B D B dV
 

 

The stiffness matrix of the finite element. For the entire structure, the finite element 

method equation can be expressed as: 

 

(2.23) 

   ,K R   (2.24) 

 

K  the stiffness matrix of the structure as a whole, it is the sum of the stiffness matrices of 

the finite elements that make up the structure; 

  displacement vector of all nodes; 

 R  vector of nodal loads. 

Any FEM problem is ultimately reduced to the system of equations (2.24). Its order is equal 

to the product of the number of nodes and the number of degrees of freedom of the node. 

Solving the FEM problem, we see that we obtain a system of algebraic equations instead of 

differential equations In conclusion, it should be noted that when obtaining the stiffness 

matrix of the finite element, the initial displacements of the nodes, the effect of temperature 

and the initial stresses are not taken into account. 

,
Te

V

K B D B dV
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2.2. 5  Variable distributed loading   

Consider a bar element of constant cross-section, of length L, subjected to tension-

compression. The element subjeted  a linearly distributed load  q: 

 1 2( ) ( )  ( )
i

j

q
q x N x N x

q

  
  

  
 

(2.25) 

( ) 1- +i j

x x
q x q q

L L

    
     

    
 

(2.26) 

 

 

Concentrated force are applied only at the nodes of the tension bar elements. Regarding the 

presence of distributed loads, the approach used is to replace the distributed load with nodal 

forces and moments so that the mechanical work performed by the nodal load system will be 

equivalent. The mechanical work performed by distributed load can be expressed by the 

following equation: 

0

( ) ( )

L

W q x u x dx 
 

(2.27) 

 

The objective is to determine the equivalent nodal loads so that the work expressed in the 

previous equation is identical to: 

0

( ) ( )

L

eqi i eqj jW q x u x dx F u F u    
(2.28) 

 

 

or eqiF   and 
 eqjF are the equivalent forces at nodes i and j, respectively. Substituting the 

 

 

 

 

 

 

 Figure 2.6    Bar uner distributed load  

qi qj 

L 

q Feqi Feqj 



23/61 
 

discretized displacement function, the work integral becomes. 

0

( ) 1

L

i j

x x
W q x u u dx

L L

    
      

    
  

(2.29) 

 

0 0

( ) 1 ( )

L L

i j

x x
W q x u dx q x u dx

L L

 
   
      
    
 

   
(2.30) 

 

Comparing the equations and we obtain 

0

( ) 1

L

eqi

x
F q x dx

L

 
  

   
(2.31) 

0

( )

L

eqj

x
F q x dx

L

 
  

   
(2.32) 

 

For example for a constant uniform load ( )q x q , the integration of these equations is as 

follows 

0

1
2

L

eqi

x qL
F q dx

L

 
   

   
(2.33) 

0
2

L

eqj

x qL
F q dx

L

 
  

   
(2.34) 

 

the  equivalent forces is written  2

2

eqi

eqj

qL
F

F qL

 
     

   
    

  
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Example  1 

Determine the dispalcements,  internal forces and stress in each element ( Figure 2.6)  

 

 

 

Figure 2.7 - Stepped beam  

 

1 1 1 1
;

1 1 1 1

e

I

EA
K EA

l

    
    
       

 

 

1 1 4 4
;

1 1 4 40.5

e

II

EA
K EA

    
    
       

 

 

1 1 2.5 2.5
.

1 1 2.5 2.50.8

e

III

EA
K EA

    
    
         

Now, we assemble the global stiffness matrix of the structure. Since there are four nodes, each 

with one degree of freedom, the stiffness matrix has dimensions of 4×4. The coefficients 

corresponding to the same position in the matrix are summed algebraically. The right-hand 

column contains the values of the external loads applied at the respective nodes. In this case, a 

force is applied to the third node to the right.  

P=600KN 

A 

2 A 
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1

2

3

4

1 1 0 0 0

1 1 4 4 0 0
.

0 4 4 2.5 2.5 600

0 0 2.5 2.5 0

g

U

U
K EA

U

U

    
    
          

     
       
    

        

 

We take into account the boundary conditions: since the  bar  is clamped at the ends, then 

1 4 0U U 
. Based on this, we delete  the first and fourth columns and rows. After this, we 

obtain 

2

3

5 4 0
,

4 6.5 600

U
EA

U

       
   
        

 

Solving these equation's system, we obtain  

3 2

182 145.6
,   .U U

EA EA
   

We determine the values of longitudinal  forces (axial forces): 

  
1

21

0

1;1 1;1 145.6145.6
1I

UEA EA
N KN

Ul
EA

 
    

       
    

 

 

  

145.6

2
1;1 145.6

1820.5II

E A EA
N KN

EA

 
 
 

   
 
 
 

  

  

182
2

1;1 455
0.8

0
II

E A
N KNEA

 
 

    
 
 

 

Dividing the longitudinal force by the area on each section, we obtain the stress value: 

taken  A= 20 cm
2
. 

 

 

 

3

4

3

4

3

4

145.6 10
72.8 ,

20 10

145.6 10
36.4 .

2 20 10

455 10
113.7 ,

2 20 10

I
I

II
I

I
I

N
MPa

A

N
MPa

A

N
MPa

A



















  

  


  
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Example 2 

Determine the displacements and verify the equilibrium condition.

  

 

 

 

U1.4 nodal displacements 

F1.4 nodal forces 

 

Table represents the geometric and physical characteristics of the elements   

 

Element 

 

Nodes 

 

EeAe 

 

Length  

 i I   

1 1 2 2EA L 

2 2 3 EA 2L 

3 3 4 2EA L 

 

 

1-The elementary stiffness matrices are: 

 

Element 1 

 

1 2

1

1 2

2

                               

1 12

1 1

U U

UEA
K

UL


 
 
  

                   

 

U1 U2 U3 U4 

F1 F2 
F3 F4 

1 

2 3 4 
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Element 2 

 

2 3

2

2 3

3

                               

1 1

1 12

U U

UEA
K

UL


 
 
  

                       

 

Element 3 

 

3 4

3

3 4

4

                              

1 12

1 1

U U

UEA
K

UL


 
 
  

                   

2- Global stiffness matrix (Assembly) 

1 2 3 4

1

2

3

4

                     U

2 2 0 0

1 1
2 2 0

2 2

1
0 1/ 2 3 3

2

0 0 3 3

g

U U U

U

UEA
K

UL

U

 
 
 
   
      
   
 
 
  

               

 

3- Application of boundary conditions 

 

   

1 1

2 2

3 3

4 4

                                               

02 2 0 0

1 1
2 2 0

?2 2

1 1
0 3 3

2 2 ? 2

0 0 3 3 0

g i iK u F

U F

U F FEA

L

U F F

U F

  
 

         
    
      
        

    
           

     
                  

 

4- Reduced matrix after elimination (Boundary conditions) 

The unknown displacements are the solutions to the following equation 

 

2

3

5 1

2 2

1 7 2

2 2

réduite

U F

EA
K

U FL

    
    
       

     
                         

 

 

from where 

2

9

17

FL
U

EA
      And

3

11

17

FL
U

EA

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The reaction forces are determined   

2 1

3 4

2 0

0 3

x

x

U F

EA

U FL

   
   

         
     
      

   
      

 

where 

1 4

18 33
 ,          

17 17
x xF F F F   

 
 

The Equilibrium condition is verified   

1 2 3 4

18 33
F 2 0

17 17
x x x xF F F F F F F                

Example 3 

Determine the equivalent nodal loads and displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8  Variable cross-sectional structure subjected to a variable distributed load 

3q 

x 

y 

2L 

2L 

F=qL/2 

q 

F=qL 

1 

2 

3 
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Solution  

 

 2 2 .2 3

q y ay b

q
y L q L a L q q a

L

 

       
 

 

 0 0 3

q y ay b

y q b q

 

   
 

 2 2 .2 3
q

y L q L a L q q a
L

         

  3
y

q y q
L

 
  

 
 

Equation of the distributed varialbe load  

 

 

 

 

0 2

2 2 2
2

2
2

A y ay b

y b A

A
y L La A a

L

y
A y A

L

 

 

    

 
  

 

 

by modeling bars  1-2 and 2-3 of the structure  as simple elements Element 1-2

      

   
2 2

11

2 2
0 0

1

1 12

1 2 2

2

eq

L L
eq T

eq

F F K

FF L
B E B dV E ydy

F F L L

L

 

 
      

         
      

  

 
 

11 1

2 22

1 13

1 14

eq

eq

FF vEA

F vF L

       
       

        

 

The load  q(x) varies linearly, so 

 

1 1 2

1 22

2

26

eq

eq

F q qL

q qF

    
   

   
 

1 1 2

1 22

2

26

eq

eq

F q qL

q qF

    
   

   
 

1

2

7

6 3

3 2 53

3

eq

eq

qL
F q qL

F q q qL

 
       

     
     

  
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1

2

7

6 3

3 2 53

3

eq

eq

qL
F q qL

F q q qL

 
       

     
     

  

 

1 1

2 2

7

1 133

5 1 14

3

qL

F vEA

F vqL L

 
       

       
     

  

 

Element 2-3  

2 2

3 3

1 1

1 12

F vEA

F vL

    
     

      

 

Assembly  

1 1

2 2

3 3

7 / 3 3 / 4 3 / 4 0

5 / 3 3 / 4 3 / 4 1/ 2

0 0 1/ 2 1/ 2

F qL v
EA

F qL v
L

F v

      
      

         
              

 

Boundary conditions  

 

1

2

3

0 7 / 3 3 / 4 3 / 4 0 0

5 / 3 3 / 4 3 / 4 1/ 2

/ 2 0 0 1/ 2 1/ 2

qL v
EA

qL qL v
L

qL v

       
      
          

               
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3
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9
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2.3. Modeling of Truss structure using bar element  

 

2.3.1 Transformation of coordinates from the local system to the global system 
 

  

 
                          Figure 2.9  Photo of a Bridg  structure  

 

In a truss or lattice structure, Fig.2.8 , the parts can assume different directions. Since the stiffness 

matrix and the displacement and load vectors are defined for a coordinate system oriented locally in 

relation to the element, it is necessary to represent them in a common coordinate system, called global, 

so that there is physical coherence when assembling the stiffness matrix and the global load vectors. 

This coherence concerns the components of the displacement and nodal force vectors of the mesh 

elements, which can only be correctly added if they are all referred to the same coordinate system, the 

global coordinate system. The requirement of a common coordinate system leads to representations of 

local matrices in this common system, obtained through transformations, shown below. 

 

Figure 2.10    Truss structure  
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2.3.1.1 Formulation of stiffness matrix  

 

The displacements in the local xOy system can be expressed as a function of the global 

displacements. . The displacements in the local system are u1 and u2 and in the global system 

U1, W1 and U2, W2. The angle (  ) is considered the angle between the X axis and the 

positive direction of the articulated bar 1-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Local and global coordinate systems 

 

 

1 1 1

2 2 2

cos sin

cos sin

u U W

u U W

 

 

 

 
 

(2.35) 

or in matrix form: 

 

     

1

1 1

2 2

2

cos sin 0 0

0 0 cos sin

U

u W
u T U

u U

W

 

 

 
 

        
        
      

 
  

 

 

 

(2.36) 

          

 

or [T] is called the transformation matrix of the local system into the global one and: 

 

   
2 22 1 2 1

2 1 2 1cos , sin
X X Z Z

et L X X Z Z
L L

 
 

      , 

 

L represents  the length of the articulated bar element. 

1 

2 

1’ 

2’ 

x 

z 

X 

Z 

W2 

W1 

U1 

U2 
u1 

u2 

Deformed  

initial  

 

 

 
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2.3.1.2 Transformation of forces from the local system into the global system 

 

We consider the articulated bar of Figure 3.2 subjected in the local system by the forces f1 

and f2 applied in nodes 1 and 2 in the local coordinate axis system. The components of these 

forces in the global system will be: 

1 1 1 2

2 1 2 2

cos ; cos

sin ; sin

x z

x z

F f F f

F f F f

 

 

 

 
 

(2.37) 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12  Nodal forces in the local and global coordinate axis system 

      

 

In matrix form, relations 3.3 can be written as: 

1

1 1

2 2

2

cos 0

sin 0

0 cos

0 sin

x

z

x e

z e

F

F f

F f

F









   
   

       
     
     
  
     

 

 

(2.38) 

   

or 

   
T

e e eF T f  
   

(2.39) 

 

for the global system of axes, we have : 

 

           

[ ]e

T T T
e e e e e e e e e e e

K

F T f T k u T k T U K U                     
             

(2.40) 

 

1 

2 

x 

z 

X 

Z 

U1 

Fx2 

f2 

 

f1 

Fz2 

Fx1 

Fz1 



34/61 
 

   

 

 

or 

 

 {Fe} = vector of nodal forces in the global system of axes; 

 {fe} = vector of nodal forces in the local system of axes; 

 [Ke] = stiffness matrix in the global axis system; 

 [ke] = stiffness matrix in the local axis system; 

 {Ue} = vector of nodal displacements in the global system of axes; 

 {ue} = vector of nodal displacements in the local system of axes. 

 
2 2

2 2

2 2

2 2

cos 0

sin 0 1 1 cos sin 0 0EA EA

0 cos 1 1 0 0 cos sinL L

0 sin

e

c cs c cs

cs s cs s
K

c cs c cs

cs s cs s



  

  



    
  
        

            
             

  
       

 

 

(2.41) 

            

where c = cos   and s = sin. 

 

NB. The stiffness matrix in the global system of axes is symmetric, singular and, as can be 

easily noticed, the elements of the main diagonal are positive. 

 

 
Example 1 

 

A plane truss structure consists of three truss elements connected to four nodes, as shown to 

the right. All trusses have cross-sectional area A and elastic modulus E. The length of each 

truss  element is evident by the figure. A point force, P, is acting on node4. Calculate the 

displacements at the nodes and the reaction forces at nodes 1 and 2, respectively. Show also 

that global equilibrium is satisfied in the vertical direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fy1 

Fy4 

2

L
  

L   

L   

U1 

W1 
Fy2 

 
 U2 

W4 

W3 

W2 

U4 

U3 

Fy3 

Fx3 

Fx4 

Fx1 
Fx2 

3 

4 

1 

2 

 e=90 

e=45 

e=-45 
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Element 

 

Nodes 

 

e [
o
] 

 

cos e 

 

sin e 

 

c
2 

 

s
2 

 

cs 

 i j       

1 1 3 -45   
2

2
  

2

1
 

2

1
 -

2

1
 

2 3 2 90 0
 

1
 

0
 

1
 

0
 

3 4 3 45  
2

2
 

2

1
 

2

1
 

2

1
 

 

 

For element 1 nodes (1,3) ,elements length (L) 

  

1 1 3 3

1

                       

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

U W U W

EA
K

L

 
  

 
 
 
 
 

    
   

  
 
 
 

 
 
 

1

1

3

3

U

W

U

W
           

 

 

     

For element 2 nodes (3,2) ,elements length (L/2) 

                                                              3 3 2 2U W U W  

2

0 0 0 0 0 0 0 0

0 1 0 1 0 2 0 22

0 0 0 0 0 0 0 0

0 1 0 1 0 2 0 2

EA EA
K

L L

   
   
    

        
     

   
       

3

3

2

2

U

W

U

W

 

For element 3   nodes (4,3) ,elements length (L) 

 

4 4 3 3

3

                          

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

U W U W
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K

L

 
  

 
 
 

 
 

    
   

  
 
 
 
 
 
 

4

4

3

3

U

W

U

W  

2

2

2

2



36/61 
 

Now we write the global stiffnes matrix  

1 1 2 2 3 3 4 4                                     

1 1 1 1
0 0 0 0

2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

0 0 0 0 0 0 0 0

0 0 0 2 0 2 0 0

1 1 1 1 1 1 1 1[ ] 0 0 0 0
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
0 2 0 2

2 2 2 2 2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

U W U W U W U W

EA
K

L


 




 




 



      

       

 

 















 
 
 
 
 
 
 
 
 
 
 
 



1

1

2

2

3

3

4

4

0

0

0

0

0

0

0

0

U

W

U

W

U

W

U

W

















 

 

Application of Boundary Conditions  
                           

 

1 1 1 1
0 0 0 0

2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

0 0 0 0 0 0 0 0

0 0 0 2 0 2 0 0

1 1 1 1 1 1 1 1[ ] 0 0 0 0
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
0 2 0 2

2 2 2 2 2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2

EA
K

L

 
  

 
 
 
 
 
 
 
 
 
 
 

       
 
 
        
 
 
 

  
 
 
  
 
 

 

   

 



37/61 
 

Reduced Matrix  after elimanting  

3

4

1
3

02

1 1

2 2

WEA

W pL

 
 

       
    

      

 
 

 

 

3 4

2 12
 and   

5 5

PL PL
W W

EA EA
   

 
 

Reaction forces  and the  global equilibrium verfication  
 

1

1

2 3

2 4

3

4

1
0

52

1
0

52

0 0 0

2 0 4

51
0

62

51 1

2 2

x

y

x

y

x

x

P

F P

F

F WEA

F W PL

F

PF

P

  
  

  
   
    
   
   
          

         
       
    
    

    
     
   
   
      

. 

 

 

Global equilibrium of the vertical direction  

1 2

4
0

5 5
y y

P P
F F P p p p           Ok! 

Global equilibrium of the horizontal   direction  
 

1 2 3 4

6
0 0

5 5
x x x x

P P
F F F F p           Ok! 

 

Example 2 

 

A truss structure is consisted of three bar elements , having an elastic modulus E and a 

transversal cross-sectional area (A). The structure  is loaded by a  concentrated force Q/2, and 

with  distributed load  Q acting at the  vertical element.  

 Write the stiffness matrix of each elements . 

 Write the global stiffness matrix  

 Apply the boundary condition and determine the displacements. Show also that global 

equilibrium is satisfied in the vertical direction. 
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Element 

 

Nodes 

 

e [
o
] 

 

cos e 

 

sin e 
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s
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For element 1 nodes (1,2) ,elements length ( 2L ) 
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  
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 
  
 
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For element 2 nodes (2,3) ,element's length (L) 

                       2 2 3 3U W U W                                         

2

2
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2

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

EA
K

L
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 
 

    
   

 
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For element 3   nodes (1,3) ,element's length (L) 

                     

                     1 1 3 3U W U W                                           

2

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

EA
K

L

 
 
 

     
   

 
  

1

1

3

3
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W

U
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Now we write the global stiffnes matrix

 

 

                 

 

1 1 2 2 3 3                                                            

1 1 1 1
0 0 0 0

2 2 2 2 2 2 2 2

1 1 1 1
0 1 0 1

2 2 2 2 2 2 2 2

1 1 1 1
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0 0 0 0
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
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

    


   

  







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


 
 
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0

0

0

0

0

0

U

W

U

W

U

W












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Application of Boundary Conditions  
 

1 1 2 2 3 3                                                           

1 1 1 1
0 0 0 0

2 2 2 2 2 2 2 2

1 1 1 1
0 1 0 1

2 2 2 2 2 2 2 2

1 1 1 1
1 0 1 0[ ]

2 2 2 2 2 2 2 2

1 1 1 1
0 0 0 0

2 2 2 2 2 2 2 2

0 0 1 0 1 0 0 0

0 1 0 0 0 0 0 1

U W U W U W

EA
K

L


   





    


      


    


   


  



















 

1

1

2

2

3

3

0

0

0

0

0

0

U

W

U

W

U

W













 

 

 

Reduced Matrix  after elimanting  
 

 

 

 

1

2

1

2

1 1
1

2 2 2 2
[ ]

1 1 0
1

2 2 2 2

3 21

2

2 11

2

/ 2 1

r

W Q
K

U

QL
W

EA

QL
U

EA

Where

Q Q L

 
  

      
     

         
 

 





 

 

 

 

Nodal Displacements  

 

 

 

1

2

3 21

2

2 11

2

/ 2 1

QL
W

EA

QL
U

EA

Where

Q Q L

 





 

 

 

 

 

 

Example 3  

In the system illustrated below, all the bars, of identical lengths L, are hinged at both ends. 

The bar cross-sections are denoted A and the modulus of elasticity is denoted E. A vertical 
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load P is applied at point B. 

 Write the stiffness matrix of elements AB, BC, and CD? 

 Write the overall stiffness matrix? 

 Solve the system to obtain the displacements at nodes B and C? 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13  Articulated system with spring 
 

Solution 

1. Element stiffness matrices 

 

Bar  AB and  CD   00    

 

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

e

EA
K

L

 
 
 
 
 
 
  

 

Barre BC  090   

 

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

e

EA
K

L

 
 
 
 
 
 

  

 

 

 

 Assembly of the structural stiffness matrix 

 

the assembled global stiffness matrix must take into account the stiffness of the spring in the 

vertical direction in C according to the degree of freedom Cv  

L L 

P 

A 
B 

D C 

L 

k 
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 

1 0 1 0

0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 1 0 1

0 0 0 1 0 0 1 0

0 1 0 0 1 0 0 0

1 0 1 0

0 0 0 0

e

EA
K

L
kL

EA

 
 
 
 
   
 

   
 

    
 
 

    
 
 
 
 
 

 

 After introducing boundary conditions  0 ,A A D Du v u v    the equations corresponding 

to these degrees of freedom are deleted and the system is thus reduced to 

 

 

1 0 1 0

0 0 0 0

1 0 1 0 0 0 0 0

0 0 0 1 0 1

0 0 0 1 0 0 1 0

0 1 0 0 1 0 / 0 0

1 0 1 0

0 0 0 0

A

A

B

B

e

C

C

D

D

u

v

u

vEA
K

uL

vkL EA

u

v

  
  
  
  
    
  
    

   
     

  
      

  
   

  
      

 

 

Reduced matrix after elimination 

 

 

1 0 0 0 0

0 1 0 1

0 0 1 0 0

0 1 0 1 / 0

B

B

e

C

C

u

v PEA
K

uL

vkL EA

    
    
        

     
     
     

         

 

 

 

Solving the system of equations 

 

0

1 /

0

/

B

B

C

C

u

v EA kLPL

u EA

v EA kL

   
   
       

   
   
   

     
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Example 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table represents the geometric characteristics of the elements 

 

Elément 

 

Nœuds 

 

e [
o
] 

 

cos e 

 

sin e 

 

c
2 

 

s
2 

 

cs 

 i j       

1 2 4 0  1 0 1 0 0 

2 2 3 -90 1 0 1 0 0 

3 2 1 135  
 

2

2
  

2

1
 

2

1
 -

2

1
 

 

 

 

 

 

 

 

 

2

2

3 

P=500KN 

2 m 

2 m 

2 m 

1 

2 

4 

45
o
  

Bar 1 

Bar 2 

Bar  3 

30
o
  

Fx1 
U1 

U2 

U4 

U3 

W4 

W2 

W3 

Fx2 

Fx4 

Fx3 

Fy4 

Fy1 

Fy3 

Fy2 
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Element 1 

                      2 2 4 4U W U W  

1

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

EA
K

L

 
 
 

    
   

 
  

2

2

4

4

U

W

U

W
  

 

Element  2 

                      2 2 3 3U W U W  

2

0 0 0 0

0 1 0 1

0 0 0 0

0 1 0 1

EA
K

L

 
 
 

    
   

 
  

2

2

3

3

U

W

U

W

 

Element 3        
    

 

3

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

1 1 1 1

2 2 2 2

EA
K

L

 
  

 
 
 
 
 

    
   

  
 
 
 

 
 
 

2

2

1

1

U

W

U

W  

Global stiffness matrix 

                                    1 1 2 2 3 3 4 4U W U W U W U W

 

1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 0 1 1/ 2 0 0 1/ 2 0 0 1 0

1/ 2 1/ 2 0 1/ 2 0 1 1/ 2 0 1 0 0
[ ]

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0

EA
K

L

  
 
  
 
      
 
     

  
 
 

 
 

 
 
  

1

1

2

2

3

3

4

4

U

W

U

W

U

W

U

W
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Application of Boundary conditions  

 

                           
1 1 2 2 3 3 4 4U W U W U W U W

          
 

1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 1/ 2 1/ 2 0 0 0 0

1/ 2 1/ 2 0 1 1/ 2 0 0 1/ 2 0 0 1 0

1/ 2 1/ 2 0 1/ 2 0 1 1/ 2 0 1 0 0
[ ]

0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0

EA
K

L

  
 
  
 
      
 
     

  
 
 

 
 

 
 
  

1

1

2

2

3

3

4

4

0

0

0

0

0

0

0

0

U

W

U

W

U

W

U

W

















 

 

        Reduced Matrice  

22

22

3 1

2 2

1 3

2 2

x

y

FUEA

FWL

 
        

    
       

 
         

2 2cos(30 ) ,   sin(30 )o o

x yF P F P     

where   

   2 2 2 2 2 2

2 2

 3  et    3 3
4 4

500

2

775 591.5
  et   

x y x y

L L
U F F W F F

EA EA

P KN

L m

U W
EA EA

   





  

  

 

Reaction forces and equiibrume verification
 

 

 

 

 

2 2

1

2 2
1

3 2

3 2
2 2

4

4
2 2

1

1 1 4

2 2 1

1 1 4

2 2 0

0 0 1
3

0 1 4

1 0 1
3

40 0

0

y x

x

x y
y

x

y

x y

x

y
x y

F F

F
F F

F

F UEA

F WL
F F

F

F F F

 
 

   
    
    

         
            

         
             
    
    
       

     
  

. 
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Vertical direction  

   2 2 2 2 2 2 2

1 1
3 0

4 4
y x x x y x xF F F F F F F           Ok!  

Horizontal direction   

   2 2 2 2 2 2 2

1 1
3 0

4 4
x y y x y y yF F F F F F F          Ok!   

where  

1

1

3

3

4

4

45.75

45.75

0

295.75

387.25

0

x

y

x

y

x

y

F KN

F KN

F

F KN

F KN

F



 








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Chaptre  3      Bending of a beam  

 

3. Formulation of  beam finite element 

 

The limitation of using bar elements arises from their inability to transmit bending effects, 

which restricts their application in modeling of structures with fixed connections, such as 

welded, riveted, or screwed joints—common features in real-world constructions. 

Consequently, another type of finite element is utilized for these applications: the beam finite 

element. This linear (one-dimensional) element is adept at handling both tension-compression 

and bending with torsion, making it more suitable for complex structural analyses. The 

characteristics of this element's formulation can be effectively illustrated in the example 

presented in Figure 3.1 

 

 

Figure 3.1  – Beam Finite Element: a) Simple beam on two supports, loaded 

with a distributed load; b) Curved beam element; c) Sign convention for shear 

forces and bending moments. 

 

The formulation of the beam element is based on the elementary theory of beams according to 

the  following assumptions : 

 the beam is loaded only in the direction of the y-axis (in a two-dimensional 

formulation of the problem); 

 beam deformations are small compared to its characteristic dimensions; 

 the beam material is linearly elastic, isotropic and homogeneous; 

 the beam has a prismatic cross-section, the axis of symmetry of which is located in the 

plane of beam bending. 

 the element has a finite length and is defined by two nodes, one at each end; 

 the connection of an element with other elements is carried out only at its nodes; 

 -the element is loaded only at its nodes. 
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3.1 Derivation of the Element Stiffness Matrix 

3.1.1. Direct Approach 

To model structural elements subjected to bending loads, a beam element is used (Figure 3.2). 

 

 

Figure 3.2   Beam element configuration  

 

 

 

The main characteristics of a beam element are its length (l), the moment of inertia of the 

cross-section (I), and the modulus of elasticity of the material (E). A linear beam element 

(Figure 3.1) is defined by two nodes, (i) and (j), each possessing two degrees of freedom: 

deflection (v) and the angle of rotation of the section (θ ) relative to the z-axis. Due to the 

small deformations, the following relationship is used : 

dv

dx
   

(3.1) 

 

The differential equation of the curved axis of the beam is 

 
2

2

( )
( ).

d v x
EI M x

dx
  

(3.2) 

 

which  can be written as 

 
2

2
( ).i

d v
EI F x M x

dx
   

(3.3) 

 

Integrating twice with respect to x, we obtain 

l 

Fi 

z 

i e 

Fj 

Mj Mi θi 

θj 
vi vj 

x 

j 
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3 2

1 2( ) .
6 2

i i

x x
EIv x F M C x C     

(3.4) 

 

where C1, C2 are integration constants determined from the boundary conditions 

 

 

0 ;

0

i

j

v v

 




 

(3.5) 

Thus 

3

4

;j

j

C EI

C EIv

  




 
(3.6) 

hence 
3 2

( ) ;
6 2

i i
i j j j i j

x x
EIv x F M EI x EIv     

(3.7) 

2

( ) .
2

i
i j j i j

x
EI x F M x EI     

(3.8) 

 

On the other hand, equation (3.2) can be written as 

 
2

2

1

,j i j

d v
EI F x M

dx
   

(3.8) 

 

where the new coordinate is entered 

1x l x   

 

Integrating equation (3.8) twice with respect to x, we obtain 

 
3 2

1 3 1 4( ) ,
6 2

i i
j j

x x
EIv x F M C x C     

(3.9) 

 

 

(0) ;

(0) .

j

j

v v

 

 


 

 
(3.10) 

 

 

thus 

3

4

;

.

j

j

C EI

C EIv

  


 

 
(3.11) 

 

 

hence 
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3 2

( ) ,
6 2

i i
i j j j i j

x x
EIv x F M EI x EIv     

(3.12) 

2
2( ) .

2

i
i j j i j

x
EI x F M x EI     

(3.13) 

 

vj and θj can be determined from equations (3.7), (3.8): 

 
3 2

;
6 2

j i i i i

l l
EIv F M EI l EIv     

(3.14) 

2

.
2

j i i i

l
EI F M l EI     

(3.15) 

 

vi and θi  can be determined from equations (3.12), (3.13): 

 
3 2

;
6 2

j j j j j

l l
EIv F M EI l EIv     

(3.16) 

2

.
2

i j j j

l
EI F M l EI      

(3.17) 

 

 

Solving the system of four equations (3.14) – (3.17) for Fi, Mi, Fj, Mj, we obtain 

 

3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6
;

6 4 6 2
;

12 6 12 6
;

6 2 6 4
,

i i i j j

i i i j j

i i i j j

i i i j j

EI EI EI EI
F v v

l l l l

EI EI EI EI
M v v

l l l l

EI EI EI EI
F v v

l l l l

EI EI EI EI
M v v

l l l l

 

 

 

 


   



    




    


    


 

 

 

 

(3.18) 

 

 

or in matrix form 
,Ku F  (3.19) 

 

where and is the column vector of nodal displacements and rotation angles 

i

i

j

j

u

u
u





 
 
  

  
 
 
  

 

 

(3.20) 
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F – column vector of forces and bending moments 

i

i

j

j

F

M
F

F

M

 
 
  

  
 
 
  

 

 

(3.21) 

 

 

 

K – stiffness matrix of the beam element 

 

3 2 3 2

11 12 13 14

2 2
21 22 23 24

31 32 33 34

3 2 3 2

41 42 43 44

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

EI EI EI EI

L L L L
k k k k EI EI EI EI

k k k k l l l l
K

k k k k EI EI EI EI

l l l lk k k k

EI EI EI EI

l l l l

 
 

 
  
   
  
   
  
    
   
 
 
 
 

 

 

(3.22) 

 

 
3.1.2 Indirect Approach (Variational) 

The element stiffness matrix for a beam element can be derived using the variational 

approach, which involves minimizing the potential energy of the system.  In this context, the 

nodal variables of a beam element must include not only the displacements of its nodes but 

also their rotations, as illustrated in Figure 3.2. This figure depicts nodes i and j of the 

element, located at its ends, along with the associated nodal: transverse displacements v1 and 

v2 and rotations θ1 and θ2. 

Then the element displacement function can be represented as 

 

( ) ( , , , )i j i jv x f v v     

(3.23) 

its boundary conditions will be as follows: 

1

2

( )

( )

i

j

v x v

v x v




 

 

(3.24) 
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i

j

i

x

j

x

dv

dx

dv

dx









 

 

(3.25) 

 

Further derivation of the element shape function involves selecting a coordinate system such 

that x1=0 =and x2= l. While this choice is not mandatory, it simplifies the algebraic 

representation of the function. Given the boundary conditions and the one-dimensional nature 

of the problem (with respect to the independent variable), we can assume the existence of a 

displacement function in the following polynomial form: 

2 3

0 1 2 3( )v x a a x a x a x     (3.26) 

 

Substitution of boundary conditions (3.24)  and (3.25) into the equation (3.26) gives four 

equations that allow us to determine the coefficients of the polynomial: 

0

2 3

0 1 2 3

1

0

2 2

1 2 3

(0)

( )

i

j

i

j

l

v v a

v L v a a l a l a l

dv
a

dx

dv
a l a l a l

dx





 

    

 

   

 

 

 

(3.27) 

 

The solution of these equations gives the following expressions for the coefficients of the 

polynomial: 

0

1

2 2

3 2 2

3 1
( ) (2 )

2 1
( ) ( )

i

j

j i i j

i j i j

a v

a

a v v
l l

a v v
l l



 

 





   

   

 

 

 

(3.28) 

 

Substitution equations  (3.28) into the equation (3.26) gives the final entry of the displacement 

function in the form: 

2 3 2 3 2 3 3 2

2 3 2 2 3 2

3 2 2 3 2
( ) 1 i i j j

x x x x x x x x
v x v x v

l l l l l l l l
 

       
                
       
       

 
(3.29) 
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A more convenient form , this function is given by using the dimensionless coordinate  , 

such that: 

x

l
   

(3.30) 

 

the function takes the form: 

       
2 3 2 3 2 3 2( ) 1 3 2 2 3 2 1i i j jv x v l v l                     (3.31) 

 

This form of notation is better suited for integration when deriving the element's stiffness 

matrix 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

e

k k k k

k k k k
k

k k k k

k k k k

 
 
 
 
 
 
  

 

(3.32) 

 

The stiffness matrix of a beam element is derived on the basis of Castigliano's theorem and in 

a two-dimensional formulation : 

2 21

3 2 2
0

  m,n=1...4,m nz
mn nm

d N d NEI
k k d

L d d


 
    

 

(3.33) 

  

Finally, the beam stiffness matrix is given as follows: 

 

3 2 3 2

2 2

3 2 3 2

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

e

EI EI EI EI

l l l l

EI EI EI EI

l l l l
k

EI EI EI EI

l l l l

EI EI EI EI

l l l l

 
 

 
 
 
 
 
 
   
 
 
 
 
 

 

 

 

(3.34) 
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Example 1 

 

Given : EI = 3000 KNm²,  q= 20KN/m ,  F=30KN  

Find : Deflections, rotations and reaction forces. 

Solution  

Step 1 – Enumeration of nodes and elements  

Before listing the nodes and elements, it is important to determine where to place the nodes. 

Nodes should be set at all points where there is: 

 A support 

 A change in the type of load 

 A point load 

 A moment of force 

 Sisplacement 

Next, we will list each degree of freedom, each node, and each element. Note that when 

assigning degrees of freedom to the nodes, only two are assigned per node: one for vertical 

displacements and another for rotations. In this case, horizontal displacements are not 

necessary, as beam elements, unlike frames, can be assumed to not deform axially. 

 

20 KN/m 30 KN 

4m 5m 3/2 m 3/2 m 

1 2 3 4 5 

1v  

1  

2v  
3v  

4v  
5v  

2  3  
4  

5  

1 2 3 4 5 

1F  

1M

 

2F  
3F  

4F  
5F  

2M

 

3M

 
4M

 
5M

 

1 2 3 4 



55/61 
 

Step 2 – The stiffness matrices for each element are created 

The matrix method involves dividing the beam into smaller segments. Each of these segments 

contains properties that can be expressed mathematically in matrix notation as follows: 

2 2

3

2 2

12 6 12 6

6 4 6 2

12 6 12 6

6 2 6 4

I

I

L L

L L L LEI
K

L LL

L L L L

 
 
 

    
     

 
  

 

Stiffness matrix of each element 

element 1 

1

562.5 1125 562.5 1125 0 0 0 0 0 0

1125 3000 1125 1500 0 0 0 0 0 0

562.5 1125 562.5 1125 0 0 0 0 0 0

1125 1500 1125 3000 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

K

 
 
 
 
   
 

 
 
 

     
 
 
 
 
 



 





 

element 2 

2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 288 720 288 720 0 0 0 0

0 0 720 2400 120 1200 0 0 0 0

0 0 288 720 288 720 0 0 0 0

0 0 720 1200 720 2400 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

K

 
 
 
 
 
 

 
 

   
     

 
 
 
 
 
 
 
 
 
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element 3  

3

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 10666.7 8000 10666.7 8000 0 0

0 0 0 0 8000 8000 8000 4000 0 0

0 0 0 0 10666.7 8000 10666.7 8000 0 0

0 0 0 0 8000 4000 8000 8000 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

K

 
 
 
 
 
 




    




   






 














 

element 4 

4

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 10666.7 8000 10666.7 8000

0 0 0 0 0 0 8000 8000 8000 4000

0 0 0 0 0 0 10666.7 8000 10666.7 8000

0 0 0 0 0 0 8000 4000 8000 8000

K

 
 
 
 
 
 
 



    









  


 













 

This is known as the stiffness matrix of an element. The stiffness matrix relates the forces and 

moments applied at the nodes to the displacements and rotations of those same nodes using 

the equation: With the data corresponding to each beam span (each element), the 

corresponding stiffness matrices must be determined. There are 4 spans, resulting in 4 

elements and 4 elementary stiffness matrices: 

Note: When generating an elementary stiffness matrix, it is good practice to indicate the 

degrees of freedom to which this matrix corresponds. This will facilitate the assembly of the 

overall stiffness matrix later. For example, the second stiffness matrix relates to nodes 2 and 

3, with degrees of freedom 3, 4, 5, and 6, respectively. These degrees of freedom should be 

clearly noted above and alongside the elementary stiffness matrix, as illustrated by the green 

numbers in the image above. 
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Step 3 – Assembling the Stiffness Matrix 

For this step, imagine there is an empty matrix of dimension 10x10 (the same number of 

degrees of freedom as the entire beam) where we will place the elementary matrices one by 

one, according to their corresponding position. Repeat the procedure for the other two 

elements. The generated equation [K global]{U global}={F global} with all the elements 

added together  

is: 

 

562.5 1125 562.5 1125 0 0 0 0 0 0

1125 3000 1125 1500 0 0 0 0 0 0

562.5 1125 850 405 288 720 0 0 0 0

1125 1500 405 5400 720 1200 0 0 0 0

0 0 288 720 10255 7280 10666.7 8000 0 0

0 0 720 1200 7200 10400 8000 4000 0 0

0 0 0 0 10666.7 8000 21333 0 106

GK

 

  

 

  
  
 



   66.7 8000

0 0 0 0 8000 4000 0 16000 8000 4000

0 0 0 0 0 0 10666.7 8000 10666.7 8000

0 0 0 0 0 0 8000 4000 8000 8000

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

   
 

 

 

 

 

Step 4 – Imposing boundary conditions and loads 
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562.5 1125 562.5 1125 0 0 0 0 0 0

1125 3000 1125 1500 0 0 0 0 0 0

562.5 1125 850 405 288 720 0 0 0 0

1125 1500 405 5400 720 1200 0 0 0 0

0 0 288 720 10255 7280 10666.7 8000 0 0

0 0 720 1200 7200 10400 8000 4000 0 0

0 0 0 0 10666.7 8000 21333 0 106

GK

 

  

 

  
  
 



  

1 1

1

2

2

3

3

4

4

5

5

0

0

0

0

66.7 8000

0 0 0 0 8000 4000 0 16000 8000 4000

0 0 0 0 0 0 10666.7 8000 10666.7 8000

0 0 0 0 0 0 8000 4000 8000 8000

v F

v

v

v

v











   
  
   
  
   
  
  
  

    
  

  
  
  
  

   
  

     
  

     

1

2

2

3

3

4

4

5

5

M

F

M

F

M

F

M

F

M

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
  

 

 

In this figure, the restricted degrees of freedom are those corresponding to the supports that 

prevent the beam from rotating or shifting in that sector. For example, the embedding 

prevents degrees of freedom 1 and 2 from shifting or rotating, so U1 and U2 are zero. The 

same applies to degrees of freedom 3 and 5. They cannot shift vertically, so they are zero. 

Therefore, where the displacements are zero, the reactions are unknown. Therefore, each of 

these equivalent loads must be entered into the force and moment vector in the linear system 

of equations in the corresponding degree of freedom. Point loads, such as the 30 kN load, do 

not need to be transformed into an equivalent load, as this is already a load applied directly to 

a node. Thus, for example, for degree of freedom 3, the concurrent loads in this degree of 

freedom are: 

• The equivalent load of 28 kN resulting from the triangular load 

• The equivalent load of 50 kN resulting from the distributed load 

• The reaction R3 resulting from the support. 

These three forces are entered into the force vector in degree of freedom 3. 

The same is repeated for both moments and forces in the corresponding degrees of freedom, 

thus: 

 

 

 



59/61 
 

 

 

 

 

 

 

 

 

 Step 5 Solving the System of Equations 

To solve the system, the rows and columns corresponding to the restricted degrees of freedom 

must first be eliminated from the system. In this case, rows and columns 1, 2, 3, and 5. 

In this way, we are left with only the unknown displacements as unknowns.  

2

3

4e

4

5

5

5400 1200 0 0 0 0

1200 10400 8000 4000 0 0

0 8000 21333.3 0 10666.7 8000

0 4000 0 16000 8000 4000

0 0 10666.7 8000 10666.7 8000

0 0 8000 4000 8000 8000

r duced
v

K

v









  
  
  
  
            

   
   

     
   

     

25.667

41.667

30

0

0

0

 
 
 
 
  

  
 
 
 
 
   

 

 

This elimination of rows and columns might seem arbitrary, but it is not. Columns 1, 2, 3, and 

5 are eliminated since, when multiplying [K] by {u}, the coefficients that accompany 

displacements equal to zero are obviously eliminated in the multiplication. The reduced 

system of equations shown now is solved classically, by inversion of the reduced stiffness 

matrix, or by methods such as Gauss-Jordan or any similar method. 

 

 

20 KN/m 30 KN/m 

4m 5m 3/2 m 3/2 m 

41.667 

50 28 

41.667 

       50 

10,667 
16 

     12 

R1 

R2 

R3 R5 
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2

3

4

4

5

5

0.005 rad

0.00111 rad

0.0095 m

0.01013 rad

0.02479 m

0.01013 rad

v

v









   
   
   
   
      

   
   

   
   

   
     

 

Reactions forces  

To find the reactions R1, R2, R3, and R5, simply replace the displacements found above and 

insert them into the overall 10x10 system of equations. This gives: 

562.5 1125 562.5 1125 0 0 0 0 0 0

1125 3000 1125 1500 0 0 0 0 0 0

562.5 1125 850 405 288 720 0 0 0 0

1125 1500 405 5400 720 1200 0 0 0 0

0 0 288 720 10255 7280 10666.7 8000 0 0

0 0 720 1200 7200 10400 8000 4000 0 0

0 0 0 0 10666.7 8000 21333 0 106

GK

 

  

 

  
  
 



  

0

0

0

0.005

0

0.0011

66.7 8000 0.0055

0 0 0 0 8000 4000 0 16000 8000 4000 0.01013

0 0 0 0 0 0 10666.7 8000 10666.7 8000 0.02473

0 0 0 0 0 0 8000 4000 8000 8000 0.01013

   
   
   
   
   
   

   
  
  

  
 
 
 

 
  

 
    

 
   

1 1

1 2

2 3

2

3 5

3

4

4

5

5

12

10.667

28.50

16 41.667

50

41.667

30

0

0

0

F R

M R

F R

M

F R

M

F

M

F

M

  
 
  
 
  
 

  
 

    
  

  
  

   
  

  
  

  
  

   

 

 

Multiplying the two sides on the left, we obtain a 10×1 vector that is equal to the 10×1 vector 

on the right: Each term on the left is equal to each term on the right. In the rows where there 

are unknowns, the respective reactions are solved. In the rows where there are no unknowns, 

the identity is simply verified. 

1

2

3

5

6.3749

3.1665

80.8252

82.7999

R KN

R KN

R KN

R KN








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