
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University of Sciences and Technology of Oran ‐ Mohamed BOUDIAF ‐

Faculty of Mechanical Engineering
Department of Naval Architecture and Marine Engineering

Introduction to
FORTRAN 77 Programming

Dr. ABED Bouabdellah

2025

Course Manual

Contents

Introduction 4

1 Fundamentals of Computer Science 6
1.1 Information Processing . 6
1.2 Computer Programs and Programming Languages 8
1.3 Compilation . 8

2 Introduction to FORTRAN 77 10
2.1 Historical Background . 10
2.2 Definition and Semantic Elements of Fortran 77 11

2.2.1 Data Types in Fortran 77 11
2.2.2 Execution Flow in Fortran Programs 12

2.3 Module: Fortran Programming Syntax 12
2.3.1 The Fortran Character Set 12
2.3.2 Lexical Elements . 12
2.3.3 Instruction Structure 13
2.3.4 Program Structure . 13
2.3.5 Important Notes . 14

3 Constants and Variables 15
3.1 Constants . 15

3.1.1 Integer Constants . 15
3.1.2 Real Constants (Single Precision) 16

3.2 Double Precision Constants 16
3.3 Complex Constants . 16
3.4 Logical Constants . 17
3.5 String Constants . 17
3.6 Constant Declaration . 17
3.7 Variables . 17

3.7.1 Variable Declaration 18
3.8 Variable Types and Ranges . 18

1

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3.8.1 Integer Variables . 18
3.8.2 Real Variables . 19
3.8.3 Complex Variables . 19
3.8.4 Character Variables . 19
3.8.5 Logical Variables . 20

3.9 Type Declaration Best Practices 20

4 Operators and Expressions 21
4.1 Arithmetic Operators and Mathematical Functions 25

4.1.1 Arithmetic Operators (2019) 25
4.1.2 Order of Evaluation in Arithmetic Expressions 25
4.1.3 Type Conversion in Results from +, ‐, *, / 26
4.1.4 Additional Examples . 27

4.2 Intrinsic Arithmetic Functions 28
4.2.1 Trigonometric Functions 28
4.2.2 Other Mathematical Functions 28
4.2.3 Minimum and Maximum Functions (2019) 29

4.3 Logical Expressions . 29
4.3.1 Definition . 29
4.3.2 Relational Operators 29
4.3.3 Compound Logical Expressions 30
4.3.4 Operator Precedence in Logical Expressions 30

5 Input and Output Instructions 32
5.1 Generalities . 32
5.2 Input/Output (I/O) . 32

5.2.1 The PRINT Instruction 32
5.2.2 The READ Instruction 33
5.2.3 The WRITE Instruction 34
5.2.4 Handling Indexed Variables 34

5.3 The FORMAT Instruction . 35
5.3.1 Format Specifiers . 35
5.3.2 Data Editing Specifiers 35
5.3.3 Layout and Editing Specifiers 38
5.3.4 The / Specifier . 39

6 Subprograms 41
6.1 General Concepts . 41

6.1.1 Purpose of Subprograms 41
6.1.2 Communication Between Subprograms and Their Environment . 41

6.2 Different Types of Subprograms in FORTRAN 77 42

2

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

6.2.1 Internal Subprograms 42
6.2.2 Function Type Declaration 43
6.2.3 External Subprograms 43
6.2.4 Function Type Declaration 44
6.2.5 General Subprograms (Subroutines) 47
6.2.6 General Subprograms (Subroutines) (Continued) 47
6.2.7 Local Variables . 49
6.2.8 Advantages of Adjustable Dimensioning 51
6.2.9 Common Blocks . 51
6.2.10Advantages and Disadvantages 53
6.2.11Passing Subprogram Names as Parameters 53

Conclusion 55

Appendix 56

References 60

3

Introduction

This educational document provides an introduction to computer programming
using FORTRAN 77, one of the earliest high‐level programming languages de‐
signed specifically for scientific and engineering computations. Despite its
age, FORTRAN remains widely used in fields such as physics, computational
chemistry, engineering simulations, and numerical weather prediction due to
its exceptional efficiency in mathematical and array‐based computations.

Why Learn FORTRAN 77?

While modern Fortran standards (e.g., Fortran 90/95/2003/2008) offer advanced
features, FORTRAN 77 remains a valuable learning tool for several reasons:

• Historical Importance: Many legacy scientific codes, particularly in high‐
performance computing (HPC), are written in FORTRAN 77.

• Numerical Efficiency: Optimized for mathematical operations, it is still
favored in computationally intensive tasks.

• Conceptual Clarity: Its simple syntax helps beginners focus on algorithmic
thinking and structured programming.

• Continued Relevance: Many academic and industrial applications still rely
on FORTRAN‐based numerical libraries.

Course Objectives

By the end of this course, you will be able to:

• Write and debug basic FORTRAN 77 programs.

• Use control structures (loops, conditionals) to implement computational
algorithms.

• Apply fundamental numerical methods (root‐finding, integration, linear
algebra).

4

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

• Work with arrays, functions, and subroutines for modular programming.

• Translate mathematical formulations into efficient FORTRAN code.

Course Outline

The material is structured to progressively develop programming skills with
an emphasis on scientific applications. Key topics include:

• Basic Syntax and Program Structure

• Data Types, Variables, and Operators

• Input/Output (I/O) Handling

• Control Flow: IF Statements and DO Loops

• Procedural Programming: Functions and Subroutines

• Array Manipulation and Matrix Operations

• File Handling for Data Processing

• Implementing Numerical Algorithms

Each section includes worked examples, exercises, and programming assignments
to reinforce learning through practical application.

How to Use This Document

To maximize learning:

• Read actively: Follow along with code examples by writing and testing them
yourself.

• Experiment: Modify provided programs to observe how changes affect output.

• Practice consistently: Complete all exercises to solidify understanding.

• Apply concepts: Try implementing small numerical methods from your field
of study.

Final Remarks

Programming is fundamentally about structured problem‐solving. Learning
FORTRAN 77 equips you with timeless skills in algorithmic thinking, code
efficiency, and computational precision—whether you continue with modern
Fortran or transition to Python, C++, or MATLAB. The principles you mas‐
ter here will serve as a strong foundation for future work in scientific
computing.

5

Chapter 1

Fundamentals of Computer Science

1.1 Information Processing

Computer Science (from French ”informatique”, coined in 1962 by Philippe
Dreyfus by combining ”information” and ”automatique”) is the scientific
discipline concerned with the automatic processing of information using
computers. This field fundamentally relies on three core components:

Algorithms

An algorithm is a finite sequence of clear, unambiguous, and ordered in‐
structions that can be executed by a computer to solve a specific problem
or perform a particular task. Algorithms define how data is processed to
achieve desired outcomes.
In programming, algorithms are designed to manipulate data structures, per‐
form calculations, make decisions, and control the flow of execution. They
can be implemented in any programming language, including legacy ones such
as Fortran 77, which was widely used for scientific computing due to its
efficiency in handling numerical operations.

Data

Data refers to the collection of values, facts, or information that is pro‐
cessed by algorithms. Data can take many forms such as numbers, text, images,
or complex structures like databases or arrays. The quality and structure
of data significantly affect the performance and accuracy of algorithms.

Computers

Computers are physical devices capable of executing operations automatically
based on given algorithms applied to provided data. They process encoded

6

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

instructions at high speed and deliver the desired results. Modern comput‐
ers include not only personal devices but also servers, embedded systems,
supercomputers, and cloud‐based systems.

Problem‐Solving Process

To solve a problem using a computer:

1. Identify the problem and the necessary data

2. Design an algorithm that specifies how to process the data

3. Encode both the algorithm and the data into a form understandable by
the computer (programming)

4. The result is a computer program, written in a programming language

Fortran 77 Example

Here’s a simple Fortran 77 program illustrating these concepts:

1 PROGRAM SUM_TWO_NUMBERS

2 C DATA: Declaration and initialization

3 INTEGER A, B, RESULT

4

5 A = 5

6 B = 7

7

8 C ALGORITHM: Addition operation

9 RESULT = A + B

10

11 C OUTPUT: Displaying the result

12 WRITE(*,*) 'Result: ', RESULT

13

14 END

Data: A = 5, B = 7

Algorithm: RESULT = A + B

Computer: Executes the program and outputs the result

7

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Learning Objectives

• Understand the fundamental concepts of computer science

• Learn to design basic algorithms

• Gain familiarity with programming concepts

1.2 Computer Programs and Programming Languages

A computer program is a sequence of encoded instructions that strictly follow
the syntax and semantic rules defined by a specific programming language.
These instructions are written into a source file using a plain text editor.
Unlike natural languages, programming languages are formal and require pre‐
cise adherence to structure and syntax. A single typo or incorrect symbol
can prevent the program from compiling or executing correctly.

Standardized Programming Languages

Most modern programming languages are standardized (e.g., machine language,
assembly language, Pascal, Python, Fortran, C, etc.). This standardization
provides an essential advantage: program portability, meaning a program can
be executed on different systems with minimal or no modifications.
Once written, the program must be read and translated into machine language
(binary code) so the computer can execute each instruction by mapping every
symbolic command to a specific action.

Translation into Machine Language

The execution of an algorithm written in a high‐level programming language
requires a translation phase from this symbolic language into the internal
machine language understood by the computer’s processor.
There are two main strategies for this translation process:

1.3 Compilation

Compilation involves translating the entire source program into machine
language all at once, using a special program called a compiler. The result
is an object program (or executable), which is directly understandable by
the computer.
‐ The object program is saved and can be executed independently of the
original source code.
‐ Compilation usually results in faster execution since the translation is
done once before running the program.

8

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Example (Fortran 77):

1 PROGRAM HELLO

2 WRITE(*,*) 'Hello, World!'

3 END

To compile and run:

gfortran hello.f -o hello
./hello

2. Interpretation

Interpretation translates and executes each line of the program on the fly,
one at a time, using an interpreter.
‐ No separate object file is generated.
‐ Execution is slower than compiled code because translation occurs during
runtime.
‐ However, it allows for immediate feedback and easier debugging, making it
ideal for development and scripting.
Example (Python):

1 print("Hello, World!")

To run:

1 python hello.py

Summary Table

Feature Compilation Interpretation

Translation method Entire program at once Line‐by‐line during execution
Output Object/Executable file No object file
Execution speed Faster Slower
Debugging More complex Easier and more interactive
Examples C, Fortran, Pascal Python, JavaScript

Conclusion

Whether a program is compiled or interpreted depends on the language and the
environment. Both methods serve the same ultimate goal: executing algorithms
efficiently on a computer.

9

Chapter 2

Introduction to FORTRAN 77

2.1 Historical Background

The programming language FORTRAN (an acronym for ”FORmula TRANslator”) was
designed by John Backus in 1954, and the first version became available in
1955. With the release of the first commercial computers in 1956, FORTRAN
was introduced to the scientific community as a powerful tool for numerical
computation.
The first reference manual published by IBM defined the initial version of
the language: FORTRAN I. Over time, successive versions were developed, each
incorporating new features and improvements:
‐ FORTRAN II (1957): Introduced support for subroutines, functions, and
common blocks (COMMON), enabling better code organization and modularity.
‐ FORTRAN III (1958): Added capabilities for machine‐dependent features but
was not widely adopted due to lack of portability.
‐ FORTRAN IV (1962): Marked a significant step forward with:
‐ Explicit type declarations (REAL, INTEGER, etc.)
‐ The DATA statement for initializing variables.
‐ The BLOCK DATA statement for initializing common blocks.
One of the most influential and long‐lasting versions was FORTRAN 77, of‐
ficially approved by ANSI (American National Standards Institute) in 1977.
This version gained worldwide acceptance and became known as the universal
FORTRAN.
Key enhancements in FORTRAN 77 included:
‐ Structured control statements such as IF-THEN-ELSE-ENDIF, significantly
reducing reliance on the GOTO statement.
‐ Support for character data types (CHARACTER), allowing manipulation of
strings and textual information.

10

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

These improvements made FORTRAN 77 more readable, maintainable, and suitable
for a wide range of scientific and engineering applications.

2.2 Definition and Semantic Elements of Fortran 77

Like any programming language, **Fortran 77** uses a set of basic elements
called words, which represent different types of entities:
‐ Constants: Fixed values used in computations.
‐ Variables: Named storage locations that can hold different values during
program execution.
‐ Functions: Predefined or user‐defined operations that return a single
value.
‐ Subprograms (Subroutines): Modular blocks of code that perform specific
tasks and can be called from other parts of the program.
‐ Keywords: Reserved words that have special meaning in the language (e.g.,
IF, DO, READ, etc.).
These elements are combined into statements (instructions) following strict
syntactic rules defined by the language.
Each statement defines a specific operation to be performed on data. A
complete Fortran program is simply a sequence of such statements.

2.2.1 Data Types in Fortran 77

In Fortran 77, data — including constants and variables — can be expressed
using six fundamental data types:

1. Integer mode (INTEGER) Represents whole numbers without decimal points.

2. Real mode (REAL) Represents floating‐point (decimal) numbers with single
precision.

3. Complex mode (COMPLEX) Used for complex numbers in the form a + bi.

4. Double precision mode (DOUBLE PRECISION) Provides higher‐precision real
or complex numbers for scientific computation.

5. Logical mode (LOGICAL) Boolean values used for conditional expressions:
.TRUE. or .FALSE.

6. Character mode (CHARACTER) Strings of text characters, allowing manip‐
ulation of textual data.

11

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

2.2.2 Execution Flow in Fortran Programs

In Fortran, the execution of a program is sequential by default. This means
that instructions are executed in the order they appear in the source code,
unless modified by control structures like loops or conditional statements.
For example:

1 PRINT *, 'Starting program'

2 A = 5

3 B = 10

4 SUM = A + B

5 PRINT *, 'Sum = ', SUM

This sequence will always execute from top to bottom unless explicitly
redirected by an instruction such as GOTO, IF, or DO.

2.3 Module: Fortran Programming Syntax

2.3.1 The Fortran Character Set

The Fortran alphabet consists of three distinct character classes:

• Digits: 0 1 2 3 4 5 6 7 8 9

• Letters:

– Lowercase: a b c ... x y z

– Uppercase: A B C ... X Y Z

• Special Characters: ‐ + / * , . () ” ’ = (space)

2.3.2 Lexical Elements

(a) Words

Fortran recognizes two types of words:

• Keywords: Reserved words with specific meanings (e.g., DO, WRITE, IF,
END)

• Symbols: Programmer‐defined identifiers with constraints:

– Maximum length: 6 characters (FORTRAN 77 standard)

– First character must be a letter

– Subsequent characters: letters or digits

– Used for variables, functions, and subprograms

12

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

2.3.3 Instruction Structure

Fortran instructions follow strict formatting rules:

Columns 1‐5 Column 6 Columns 7‐72 Columns 73+

Label field Continuation marker Instruction field Comments (ignored)

Key Features:

• Label:

– Optional numeric identifier (1‐99999)

– Must start in column 1

• Continuation:

– Any character (except ’0’ or space) in column 6 indicates continu‐
ation

– Maximum 19 continuation lines (FORTRAN 77)

• Instruction Field:

– Contains executable statements or declarations

– Must begin in column 7

2.3.4 Program Structure

A complete FORTRAN 77 program has the following skeleton:

1 PROGRAM program_name

2 [specification statements]

3 [executable statements]

4 END

Example

1 PROGRAM HELLO

2 INTEGER I, J

3 DO 100 I = 1, 10

4 J = I**2

5 WRITE(*,*) 'Square of', I, 'is', J

6 100 CONTINUE

7 END

13

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

2.3.5 Important Notes

• Fortran is case‐insensitive

• Fixed‐format requirements are relaxed in modern Fortran (90/95+)

• The PROGRAM statement is optional (default program name is used)

• The END statement must be the last line

14

Chapter 3

Constants and Variables

In computer programming, we frequently need to manipulate and temporarily
store information during program execution. This data may originate from
user input or be generated by the computer as intermediate or final results.
Data can be of several types: numeric, alphanumeric, or boolean. For this
purpose, we use constants and variables in computer programs.

3.1 Constants

Constants are data values that cannot be modified during algorithm execution
or program runtime. A constant is essentially a named value that remains
unchanged throughout program execution. Attempting to modify a constant’s
value will result in an error.
For example, we can use a constant named PI to store the value of π:

PI = 3.141592653589793

3.1.1 Integer Constants

Integer constants represent signed whole numbers. They must follow these
rules:

• May begin with an optional sign (+ or ‐)

• Must contain only digits (0‐9)

• Cannot contain other characters

Valid Examples Invalid Examples

123 3 14 (contains space)
‐18 3.14 (contains decimal point)
+4 2,71828 (contains comma)

15

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3.1.2 Real Constants (Single Precision)

Real constants represent floating‐point numbers in either:

• Standard decimal notation (must contain a decimal point), or

• Scientific notation (must contain ’E’)

For numbers between ‐1 and 1, the leading zero may be omitted.

Decimal Notation Examples:

0. 0.0 .0 1. 1.0
0.001 .001 -36. -36.0 -36.00
3.1415

Scientific Notation Examples:

31415E-4 31415E-04 314.15E-02
1.E12 1.0E12 1.0E012
1.0E+12 1.0E+012 5.3E-8
5.30E-8 5.3E-08 -5.30E-08
-5.30E-008

3.2 Double Precision Constants

Double precision constants use ’D’ instead of ’E’ in scientific notation and
provide approximately double the precision of real constants (typically 64
bits).

0.D0 31415D-4 31415D-04
314.15D-02 1.D12 1.0D12
1.0D012 1.0D+12 1.0D+012
5.3D-8 5.30D-8 5.30D-08
-5.30D-08 -5.3D-008

3.3 Complex Constants

Complex constants combine two real or double precision numbers in parentheses,
representing the complex number a + ib as (a, b).

Examples:

(0., 0.) (1., -1.) (2.5, 1.)
(1.34E-7, 4.89E-8) (1.34D-7, 4.89D-8)

16

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3.4 Logical Constants

Logical constants have only two possible values:

.TRUE. and .FALSE.

3.5 String Constants

String constants are sequences of characters enclosed in apostrophes. To
include an apostrophe within a string, double it:

1 'This is a string'

2 '/home/user/data'

3 'Don''t forget to double apostrophes'

3.6 Constant Declaration

Constants are declared using the PARAMETER attribute. They cannot be modified
during program execution.

Syntax:

1 PARAMETER (name1 = value1, name2 = value2, ...)

Examples:

1 PARAMETER (MAX_ITER = 1000, PI = 3.141592653589793D0)

2 PARAMETER (E_CHARGE = 1.602176634D-19, TOL = 1.0E-6)

3.7 Variables

Variables are named memory locations that can be read and modified during
program execution. They are essential for:

• Symbol manipulation

• Formula implementation

Before use, variables must be:

• Typed (explicitly or implicitly)

• Named according to language rules

17

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3.7.1 Variable Declaration

Fortran provides several intrinsic data types:

Declaration Type Description

REAL Single precision 32‐bit floating point
DOUBLE PRECISION Double precision 64‐bit floating point
INTEGER Integer Whole numbers
LOGICAL Boolean .TRUE. or .FALSE.
COMPLEX Complex Real‐imaginary pairs
CHARACTER String Text data

Examples:

1 INTEGER :: i, j, k, counter

2 REAL :: x_coord, y_coord, temperature

3 DOUBLE PRECISION :: exact_value , tolerance

4 COMPLEX :: impedance , wave_function

5 CHARACTER(LEN=20) :: student_name , course_code

6 LOGICAL :: converged , debug_mode

3.8 Variable Types and Ranges

3.8.1 Integer Variables

Integer variables can be declared with different sizes:

Type Bytes Range

INTEGER(1) 1 −128 to 127
INTEGER(2) 2 −32, 768 to 32, 767
INTEGER(4) 4 −2, 147, 483, 648 to 2, 147, 483, 647

Syntax:

1 INTEGER(kind) :: var1, var2, ...

Examples:

18

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

1 INTEGER counter

2 INTEGER(2) short_value

3 INTEGER(4) large_number

3.8.2 Real Variables

Real variables store floating‐point numbers with different precision levels:

Type Bytes Precision Range

REAL(4) 4 6‐7 digits ±1.18 × 10−38 to ±3.40 × 1038

REAL(8) 8 15‐16 digits ±2.23 × 10−308 to ±1.80 × 10308

Syntax:

1 REAL var1, var2, ...

2 DOUBLE PRECISION var1, var2, ...

3.8.3 Complex Variables

Complex numbers store real and imaginary components:

Type Description

COMPLEX(4) Single precision (2×REAL(4))
COMPLEX(8) Double precision (2×REAL(8))

Syntax:

1 COMPLEX var1, var2, ...

3.8.4 Character Variables

Strings are declared with fixed lengths:

Syntax:

1 CHARACTER(len) var1, var2, ...

2 CHARACTER(len=20) string_var

19

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3.8.5 Logical Variables

Boolean variables store truth values:

Syntax:

1 LOGICAL var1, var2, ...

3.9 Type Declaration Best Practices

• Always use IMPLICIT NONE to require explicit declarations

• Use meaningful, descriptive variable names

• Initialize variables when declaring them

• Use parameters for constant values

• Choose appropriate precision for numerical values

• Prefer modern Fortran syntax (e.g., REAL(8) over REAL*8)

20

Chapter 4

Operators and Expressions

III.1 Assignment Statement

The assignment statement stores the result of an expression in a variable.

General syntax:

variable = expression

Characteristics:

• The expression and variable must be of compatible types

• Assignment uses the = operator

• Evaluation occurs at compile time

• Operation precedence can be modified with parentheses

Examples:

1 pi = 3.1415926535 ! Real constant assignment

2 counter = 0 ! Integer constant assignment

3 active = .TRUE. ! Logical assignment

4 message = "Hello" ! String assignment

5 result = (a + b)*c ! Expression assignment

[Additional note: Fortran uses single equals (=) for assignment, unlike some
languages that use it for equality comparison]

21

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

III.2 Expression Composition

An expression may consist of:

Element Example

Constant 3.14
Variable x
Function SQRT(x)
Operation a + b
Combination a**2 + SQRT(b)

[Note: Fortran expressions follow standard mathematical conventions but have
some unique operators]

III.3 Variable Naming Rules

• Composition:

– Must begin with a letter (a‐z, A‐Z)

– May contain digits (0‐9)

– Maximum length: 6 characters (FORTRAN 77 standard)

• Prohibited:

– Accented characters

– Spaces

– Special symbols ($, @, etc.)

– Reserved keywords (PROGRAM, END, etc.)

• Case insensitivity: MyVar � myvar � MYVAR

[Historical context: Modern Fortran versions allow longer names, but these
rules reflect classic FORTRAN 77 constraints]

III.4 Fortran Operators

III.4.1 Arithmetic Operators

Operator Description Example

+ Addition a + b
- Subtraction a - b
* Multiplication a * b
/ Division a / b
** Exponentiation a**b

22

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

III.4.2 Relational Operators

Operator Description Example

.EQ. or == Equal a .EQ. b

.NE. or /= Not equal a .NE. b

.GT. or > Greater than a .GT. b

.GE. or >= Greater or equal a .GE. b

.LT. or < Less than a .LT. b

.LE. or <= Less or equal a .LE. b

[Note: Modern Fortran prefers ==, /= etc., but the dotted forms (.EQ., .NE.)
remain valid]

III.4.3 Logical Operators

Operator Description Example

.NOT. Negation .NOT. x

.AND. Logical AND a .AND. b

.OR. Logical OR a .OR. b

.EQV. Equivalence a .EQV. b

.NEQV. Non‐equivalence a .NEQV. b

[Explanation: .EQV. tests if both operands have the same truth value, while
.NEQV. is the XOR operation]

III.5 Operator Precedence

Evaluation order (from highest to lowest precedence):

1. Parentheses ()

2. Functions (SIN, COS, etc.)

3. Exponentiation **

4. Multiplication/Division * /

5. Addition/Subtraction + -

6. Relational operators .EQ. etc.

7. .NOT.

8. .AND.

9. .OR.

23

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

10. .EQV., .NEQV.

[Important: This precedence differs from many modern languages, especially
regarding logical operators]

Complete Example

1 PROGRAM EXAMPLE

2 IMPLICIT NONE

3 REAL :: x, y, result

4 LOGICAL :: condition

5

6 x = 5.0

7 y = 2.0

8

9 ! Complex arithmetic expression

10 result = (x**2 + y**2)/2.0

11

12 ! Logical expression

13 condition = (x > 0.0) .AND. (y < 10.0)

14

15 PRINT *, 'Result:', result

16 PRINT *, 'Condition:', condition

17 END PROGRAM EXAMPLE

[Note: The IMPLICIT NONE statement forces explicit variable declaration,
considered good practice in modern Fortran]

24

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

4.1 Arithmetic Operators and Mathematical Functions

4.1.1 Arithmetic Operators (2019)

Numerical expressions in Fortran are composed of operands and operators,
combined according to Fortran syntax rules. A numerical expression is one
whose operands are of one of the three numerical types: integer, real, and
complex (either single or double precision).
The Fortran arithmetic operators are as follows:

• + for addition

• - for subtraction

• * for multiplication

• / for division

• ** for exponentiation (I**2 means I squared, X**Y with X and Y real
means exp(Y*log X) when log X is defined)

Operands can be:

• Constants

• Simple or indexed variables

• Functions

• Complex expressions

Examples (2019):

1 3.14159

2 K

3 A(I)

4 SIN(A + B)

5 -1.0 / X + Y / Z ** 2

4.1.2 Order of Evaluation in Arithmetic Expressions

The evaluation of an arithmetic expression follows this established order:

1. Sub‐expressions in parentheses (starting with the innermost)

2. Standard numerical functions

25

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3. Exponentiation (raising to a power)

4. Multiplication and division (evaluated from right to left)

5. Addition, subtraction, or negation

Examples of execution order:

1. A+B*C**2

(a) C**2

(b) B*C**2

(c) A+B*C**2

2. A/(B*C)

(a) (B*C)

(b) A/(B*C)

4.1.3 Type Conversion in Results from +, ‐, *, /

Types are ranked in increasing order as follows:

1. INTEGER*2 (lowest rank)

2. INTEGER*4 (INTEGER)

3. REAL*4 (REAL)

4. REAL*8 (DOUBLE PRECISION)

5. COMPLEX*8 (COMPLEX)

6. COMPLEX*16 (highest rank)

The operand with the highest rank determines the result type. During compu‐
tation, if operands have different types, the operand with the lower‐ranked
type (using less memory) will be converted to the type of the higher‐ranked
operand.
Examples:

1. For addition, subtraction, and multiplication operations with integer
operands, the result will be an integer:

3 + 4 = 7

4 × 3 = 12

3 − 4 = −1

26

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

2. For division, the result will be the integer part of the quotient:

4/3 = 1

3/4 = 0

−9/2 = −4

3. For mixed‐mode operations (note the importance of typing):

(9/2) + 6.2 = 4 + 6.2 = 10.2

(9./2) + 6.2 = 4.5 + 6.2 = 10.7

4.1.4 Additional Examples

Example 4.1.1 Calculate the expression 2**3 + 5*4 - 6/2:

1. Exponentiation first: 2**3 = 8

2. Then multiplication: 5*4 = 20

3. Then division: 6/2 = 3

4. Finally additions and subtractions: 8 + 20 - 3 = 25

Example 4.1.2 Mixed‐type operations:

• 5 + 2.5 results in 7.5 (integer promoted to real)

• 10.0/4 results in 2.5 (integer promoted to real)

• (1.0, 2.0) * 3 results in complex number (3.0, 6.0)

27

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

4.2 Intrinsic Arithmetic Functions

4.2.1 Trigonometric Functions

Fortran provides the following intrinsic trigonometric functions:

• ASIN(X): Arc sine (inverse sine)

• ACOS(X): Arc cosine (inverse cosine)

• ATAN(X): Arc tangent (inverse tangent)

• SIN(X): Sine (angle in radians)

• COS(X): Cosine (angle in radians)

• TAN(X): Tangent (angle in radians)

• SINH(X): Hyperbolic sine

• COSH(X): Hyperbolic cosine

• TANH(X): Hyperbolic tangent

Examples:

1 PI = 4.0*ATAN(1.0) ! Calculate �

2 X = SIN(PI/2) ! X = 1.0

3 Y = ACOS(0.5) ! Y = �/3 � 1.0472

4 Z = COSH(1.0) ! Z � 1.54308

4.2.2 Other Mathematical Functions

Additional intrinsic functions include:

• ABS(X): Absolute value

• SQRT(X): Square root

• LOG(X): Natural logarithm (base e)

• LOG10(X): Common logarithm (base 10)

• EXP(X): Exponential function (eX)

Examples:

28

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

1 A = ABS(-5.2) ! A = 5.2

2 B = SQRT(16.0) ! B = 4.0

3 C = LOG(10.0) ! C � 2.30259

4 D = EXP(1.0) ! D � 2.71828

4.2.3 Minimum and Maximum Functions (2019)

• MIN(X1,X2): Minimum of two real numbers

• MAX(X1,X2): Maximum of two real numbers

These functions can also handle more than two arguments:

1 X = MIN(5.0, 3.0, 8.0) ! X = 3.0

2 Y = MAX(2.0, 9.0, 4.0) ! Y = 9.0

4.3 Logical Expressions

4.3.1 Definition

A logical expression allows comparison between two numerical expressions
(or character strings). An elementary logical expression consists of two
arithmetic quantities connected by a logical relational operator.

Arithmetic constant
Arithmetic variable

Logical relational operator

Arithmetic variable
Arithmetic expression

The result of a logical comparison is of logical type, having one of the
values:

• .TRUE. (true)

• .FALSE. (false)

4.3.2 Relational Operators

The relational operators in Fortran are:

• .LT. or < (less than)

• .LE. or <= (less than or equal to)

29

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

• .GT. or > (greater than)

• .GE. or >= (greater than or equal to)

• .EQ. or == (equal to)

• .NE. or /= (not equal to)

Examples:

1 LOGICAL L1, L2, L3

2 L1 = (5 < 3) ! L1 = .FALSE.

3 L2 = (4.0 == 4) ! L2 = .TRUE.

4 L3 = ('A' /= 'B') ! L3 = .TRUE.

5

6 IF (X >= 0.0) THEN

7 Y = SQRT(X)

8 END IF

4.3.3 Compound Logical Expressions

Logical expressions can be combined using:

• .AND.: Logical AND

• .OR.: Logical OR

• .NOT.: Logical NOT

Examples:

1 LOGICAL :: A, B, C

2 A = (X > 0.0) .AND. (X < 10.0) ! True if 0 < X < 10

3 B = (Y < 0.0) .OR. (Y > 100.0) ! True if Y outside [0,100]

4 C = .NOT. (Z == 0.0) ! True if Z � 0

4.3.4 Operator Precedence in Logical Expressions

The evaluation order for logical expressions is:

1. Arithmetic expressions

2. Relational operators

30

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3. .NOT.

4. .AND.

5. .OR.

Example:

1 LOGICAL RESULT

2 RESULT = X > 5.0 .AND. .NOT. Y < 0.0 .OR. Z == 1.0

3 ! Equivalent to: ((X > 5.0) .AND. (.NOT. (Y < 0.0))) .OR. (Z == 1.0)

31

Chapter 5

Input and Output Instructions

5.1 Generalities

The purpose of I/O (Input/Output) is to enable communication between a program
and its external environment.
‐ Input occurs when the program reads data from an external device (keyboard,
disks, etc.). ‐ Output occurs when the program writes data to an external
device (screen, disks, etc.).

5.2 Input/Output (I/O)

I/O involves specifying: 1. The type of data to be processed. 2. How the
data will be processed. 3. The logical file to be used.
There are two types of I/O instructions: ‐ Free‐format I/O. ‐ Formatted I/O.
Four primary instructions are used for I/O operations: ‐ PRINT or WRITE:
Displays (or writes) information to a device or file. ‐ READ: Reads data from
an external device. ‐ FORMAT: Describes how information is encoded/decoded.

5.2.1 The PRINT Instruction

Used to display results on the screen (monitor).

Syntax

a) Free‐format:

PRINT*, <listVar>

<listVar>: A comma‐separated list of variables.
Example:

1 PRINT*, 'The result is: ', I, J, f

32

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

b) Formatted:

PRINT <fmt>, <listVar>

<fmt>: A format specifier (can be a FORMAT label or a valid format string).
Example:

1 PROGRAM CH4

2 PRINT '(A6)', 'ABED'

3 PRINT 100, 'BOUABDELLAH'

4 100 FORMAT(A12)

5 STOP

6 END

5.2.2 The READ Instruction

Used to read data from a specified logical file.

Syntax

READ (<unit>, <fmt>) <listVar>

‐ <unit>: An integer indicating the logical file number. If unit = *, input
is from the keyboard; otherwise, it is from a data file. ‐ <fmt>: A format
specifier (can be a FORMAT label or a valid format string).
a) Free‐format:

READ (<unit>, *) <listVar>

Example:

1 REAL x, y

2 INTEGER i, j

3 READ (*, *) x, y, i, j

b) Formatted:

READ (<unit>, <fmt>) <listVar>

Example:

1 INTEGER i, j

2 READ (*, 100) i, j

3 100 FORMAT (215)

33

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

5.2.3 The WRITE Instruction

Used to write data to a specified logical file.

Syntax

WRITE (<unit>, <fmt>) <listVar>

a) Free‐format:

WRITE (*, *) <listVar>

Example:

1 WRITE (*, *) I, J, K

2 WRITE (*, *) 'Final values of I, J, K: ', I, J, K

b) Formatted:

WRITE (<unit>, <fmt>) <listVar>

Example:

1 PROGRAM CH41

2 M = 123456

3 WRITE (*, '(I8)') M

4 END

5.2.4 Handling Indexed Variables

For arrays (vectors/matrices), use implicit loops for I/O operations.
Example 1: Reading/Writing a vector column‐wise:

READ (<unit>, <fmt>) (V(k), k=1, 3)
WRITE (<unit>, <fmt>) (V(k), k=1, 3)

Equivalent to:

READ (<unit>, <fmt>) V(1), V(2), V(3)
WRITE (<unit>, <fmt>) V(1), V(2), V(3)

Example 2: Reading/Writing a matrix row‐wise:

READ (<unit>, <fmt>) ((V(i,j), j=1,3), i=1,3)
WRITE (<unit>, <fmt>) ((V(i,j), j=1,3), i=1,3)

34

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

5.3 The FORMAT Instruction

A non‐executable labeled instruction that defines how data is encoded/decoded
during I/O operations.

Syntax

<label> FORMAT (<specifiers>)

‐ <label>: Links the FORMAT to an I/O instruction. ‐ <specifiers>: Defines
the layout, alignment, and data type for I/O.
Example:

1 OPEN (11, FILE='DATA.INPUT')

2 OPEN (12, FILE='DATA.OUTPUT')

3 PI = 3.14159

4 READ (11, *) I

5 READ (11, 102) I

6 WRITE (*, 100) PI

7 WRITE (12, 100) PI

8 102 FORMAT (I3)

9 100 FORMAT ('THE VALUE OF PI IS: ', G13.6)

10 STOP

11 END

5.3.1 Format Specifiers

In the following, w, m, d, and e are unsigned integers representing:
w Total field width (must be > 0), including sign and decimal point.
d Number of digits after the decimal point (can be zero).
n Repetition factor for the specifier.

5.3.2 Data Editing Specifiers

The I Specifier

For integer variables (no decimal points/exponents).
Syntax:

[n]Iw[.d]

35

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

‐ Writes/reads n integers, each in a field of w characters (right‐justified).
‐ d: Minimum number of digits (padded with zeros if needed).
Note: If the number exceeds w, asterisks (****) are printed.

The F Specifier

Used for real numbers in fixed‐point notation.

Syntax

[n]Fw.d

‐ w: Total field width (must accommodate sign, decimal point, and digits).
‐ d: Number of digits after the decimal point.
Example: Printing the number -123.4567:
Format Output

F9.4 -123.4567
F11.4 __-123.4567
F8.4 ******* (overflow)
F13.6 __-123.456700
F6.0 __-123.

The E Specifier

Used for real numbers in floating‐point (exponential) notation.

Syntax

[n]Ew.d

‐ w must satisfy: w ≥ d + 7 (to accommodate sign, exponent, etc.).
Example: Printing -123.4567:
Format Output

E9.4 ******* (overflow)
E11.4 _-.1235E+03
E8.4 *******
E13.6 _-.123457E+03
E6.0 0.E+03

The D Specifier

For double‐precision numbers (identical to E in input; uses D instead of E
in output).

36

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Syntax

[n]Dw.d

Example: Printing -123.4567:
Format Output

D9.4 *******
D11.4 _-.1235D+03
D8.4 *******
D13.6 _-.123457D+03
D6.0 0.D+03

The G Specifier

Automatically switches between F and E notation based on the magnitude of
the number.

Syntax

[n]Gw.d

Example:

1 DOUBLE PRECISION PI

2 PI = 3.14159

3 R = -100.6

4 D = 123.456789E-03

5 H = 2.99792458D+08

6 WRITE(*,100) PI, R, D, H

7 100 FORMAT(' ',4G10.3)

Output:

1 3.14

2 -101

3 0.123

4 0.300E+09

The L Specifier

For logical variables (.TRUE. or .FALSE.).

37

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Syntax

[n]Lw

Example:

1 LOGICAL X, Y

2 X = .FALSE.

3 Y = .TRUE.

4 WRITE(*,100) X

5 WRITE(*,200) Y

6 100 FORMAT('X =', L2)

7 200 FORMAT('Y =', L5)

Output:

1 X = F

2 Y = ____T

5.3.3 Layout and Editing Specifiers

The A Specifier

For character strings.

Syntax

[n]Aw

Example:

1 CHARACTER x*4

2 x = 'math'

3 WRITE(*,10) x

4 WRITE(*,11) x

5 WRITE(*,12) x

6 10 FORMAT(A2,'!')

7 11 FORMAT(A5,'!')

8 12 FORMAT(A,'!')

Output:

38

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

1 ma!

2 math !

3 math!

The X Specifier

Inserts blank spaces.

Syntax

nX

Example:

WRITE(*,10) 'math'
10 FORMAT(2X,A,2X,'!')

Output:

__math__!

5.3.4 The / Specifier

Advances to the next record (line).

Syntax

/

Example:

WRITE(*,10) 'ABED', 'Bouabdellah'
10 FORMAT(A,/,A)

Output:

ABED
Bouabdellah

Character String Specifier

Prints literal strings enclosed in quotes.

39

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Syntax

'text'

Example:

WRITE(*,10) 'ABED'
10 FORMAT('Nom: ', A)

Output:

Nom: ABED

40

Chapter 6

Subprograms

6.1 General Concepts

6.1.1 Purpose of Subprograms

During algorithm development, we often encounter sequences that perform
identical functions, with only the data changing between uses.
While we could repeat and adapt these sequences as needed, it is more efficient
to create the sequence once in a separate module that can be executed whenever
required. This is the subprogram (S/P).
Additionally, software can become very large with numerous instructions,
significantly reducing clarity. In such cases, we use S/Ps not just to avoid
sequence repetition, but to break down the program into a set of shorter
S/Ps that are easier to design, read, and debug.
Thus, a S/P appears as a separate module that takes input data, performs
a processing sequence (matrix inversion, function integration, etc.), and
produces results.

6.1.2 Communication Between Subprograms and Their Environment

FORTRAN 77 enables subprograms to communicate with their external environ‐
ments through an associated parameter list. This parameter list constitutes
the ”window” through which the subprogram receives its data or returns its
results. The precise description of this list is essential for proper use
of the subprogram. We distinguish the following four classes of parameters:

1. Input parameters: These contain the subprogram’s data and are not
modified by it.

2. Input‐output parameters: These contain data before the subprogram call
and results afterward. Care must be taken with these parameters as the
data they contain is destroyed by the subprogram.

41

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

3. Output parameters: These contain the results produced by the subprogram.

4. Work parameters: These are parameters without specific meaning for
either input or output, which the subprogram uses for its internal
operations.

The purpose of a S/P is therefore either to avoid unnecessary repetition or
to fragment programs to make them ”mentally accessible” to those who design
them. It is a very powerful concept that allows, with a single instruction,
the execution of predefined sequences and thus the creation of a veritable
”macro‐language.”

6.2 Different Types of Subprograms in FORTRAN 77

FORTRAN 77 recognizes two types of S/Ps:

1. Internal S/Ps: Defined and usable only within a single module (program
or S/P).

2. External S/Ps: Defined, compiled, and usable in any other module (pro‐
gram or S/P). They can potentially be stored in S/P libraries (as with
standard functions: SIN, COS, etc.).

6.2.1 Internal Subprograms

These are functions of one or more variables whose definition can be given
in a single FORTRAN 77 statement, placed before any executable instruction.
They essentially represent assignments to express formulas that are used
repeatedly.

Syntax:

FUNCTION_Name (<Parameter list>) = <Expression>

Where:

• FUNCTION_Name: Alphanumeric string of up to 6 characters, the first
being a letter.

• Parameter list: Var.1, Var.2, ...

• Expression: Arithmetic expression of integer, real, or string operation
type, etc., depending on the function type.

84‐86

42

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

6.2.2 Function Type Declaration

The function type is defined, as with variables, either by implicit convention
or by explicit declaration.

Examples:

1 C Real-type function

2 ER (A, B) = ABS ((A - B)/A)

3 C Integer-type function

4 MD (I, J) = (I + J)*N**J

5 C Real-type function

6 DELTA (A, B, C) = B**2. - 4.*A*C

7 C Complex-type function

8 COMPLEX CER, A, B

9 CER (A, B) = A*B + (0., 1.)

10 C Character -type function

11 CHARACTER CAR*20, C*10

12 CAR (C, I) = C(1 : I)//(CHAR (I+1))

These functions are used like standard functions by naming them in an ex‐
pression of the corresponding mode.

Example Usage:

1 X = -ALOG10(ER(X, Y)) + 7.

2 INDICE = (MD(I, IB) + K)*(MD(I,J))

6.2.3 External Subprograms

Function Subprograms

These are functions of n variables. The difference with internal S/Ps is
that they can be used by any other module and can be defined by any number
of instructions.

Syntax:

A function subprogram is the sequence between the keywords FUNCTION and END.

43

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

1 [<Type>] FUNCTION Name (<Parameter list>)

2

3 [Declaration statements]

4

5 [Executable statements]

6

7 RETURN

8

9 END

• The construction of Name and Parameter list follows the same rules as for
internal functions. The function type is defined by implicit convention
or explicit declaration.

• Return to the calling module is achieved using the RETURN instruction.

87‐88

6.2.4 Function Type Declaration

The function type is defined, as with variables, either by implicit convention
or by explicit declaration.

Examples:

1 C Real-type function

2 ER (A, B) = ABS ((A - B)/A)

3 C Integer-type function

4 MD (I, J) = (I + J)*N**J

5 C Real-type function

6 DELTA (A, B, C) = B**2. - 4.*A*C

7 C Complex-type function

8 COMPLEX CER, A, B

9 CER (A, B) = A*B + (0., 1.)

10 C Character -type function

11 CHARACTER CAR*20, C*10

12 CAR (C, I) = C(1 : I)//(CHAR (I+1))

44

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

These functions are used like standard functions by naming them in an ex‐
pression of the corresponding mode.

Example Usage:

1 X = -ALOG10(ER(X, Y)) + 7.

2 INDICE = (MD(I, IB) + K)*(MD(I,J))

External Subprograms

Function Subprograms

These are functions of n variables. The difference with internal S/Ps is
that they can be used by any other module and can be defined by any number
of instructions.

Syntax:

A function subprogram is the sequence between the keywords FUNCTION and END.

1 [<Type>] FUNCTION Name (<Parameter list>)

2

3 [Declaration statements]

4

5 [Executable statements]

6

7 RETURN

8

9 END

• The construction of Name and Parameter list follows the same rules as for
internal functions. The function type is defined by implicit convention
or explicit declaration.

• Return to the calling module is achieved using the RETURN instruction.

• The return of the single output value is done through the function name.
This name must therefore be assigned at least once in the module (for
example, appear on the left side of an equals sign).

• If the function is of character type, the number of characters must be
specified.

45

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Example:

Consider the following flowchart defining a function f(x, y):

Algorithm 1 Function F(X,Y)
1: Name: F
2: Parameters: x, y
3: if x > y then
4: F = x2 − y2

5: else
6: F = x2 + y2

7: end if
8: Return

The corresponding FORTRAN 77 implementation would be:

1 FUNCTION F (X, Y)

2 C Input parameters:

3 C X: abscissa of the considered point (real variable)

4 C Y: ordinate of the considered point (real variable)

5 C

6 C Output parameter:

7 C F: function value

8 IF (X .GT. Y) THEN

9 F = (X - Y)/SQRT(X**2 + Y**2)

10 ELSE

11 F = X**2/ABS(X + Y)**1.5

12 ENDIF

13 RETURN

14 END

This subprogram can be used like any other function:

1 A = F(X1, X2)

2 X = F(X, Y)

3 U = F(X + 1., Y)**T + F(X, Y)**2

46

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

6.2.5 General Subprograms (Subroutines)

These are applications of n input variables to p output variables. Like
functions, they can be used by any other module and can be defined with any
number of instructions.
A general subprogram is the sequence between the keywords SUBROUTINE and END.

Syntax:

1 SUBROUTINE Name (<parameter list>)

2

3 [Declaration statements]

4

5 [Executable statements]

6

7 [RETURN]

8

9 END

Key characteristics:

• Unlike functions, subroutines can return multiple values through their
parameter list

• The subroutine name doesn’t return a value (no type declaration needed)

• Parameters must be properly declared with their types

• The RETURN statement is optional (END implies return)

6.2.6 General Subprograms (Subroutines) (Continued)

The symbolic name and parameter list construction follows the same rules as
for functions. Return to the calling module is achieved using the RETURN
instruction.

Example:

Consider the following algorithm defining subroutine SP1:

47

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Algorithm 2 Subroutine SP1
1: Name: SP1
2: Parameters: x, y
3: T = 0.0
4: for i = 1 to n do
5: T = T + i × x

6: end for
7: P = x + I

8: Q = T/P

9: Return

The corresponding FORTRAN 77 implementation would be:

1 SUBROUTINE SP1 (X, N, Q, P)

2 C This subroutine calculates P and Q...

3 C

4 C Input parameters:

5 C X: abscissa of the considered point (real variable)

6 C N: order of the expansion to compute (integer variable)

7 C

8 C Input-output parameter:

9 C Q: input - value of...

10 C output - result of...

11 C

12 C Output parameter:

13 C P: value of...

14 T = 0.0

15 DO I = 1, N

16 T = T + X * I

17 END DO

18

19 P = X + 1.

20 Q = P / T

21

22 RETURN

23 END

48

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Usage:

This subprogram is called using the CALL statement:

1 CALL SP1 (X, NOMB, U, V)

2 CALL SP1 (A, N, P(1), P(2))

3 CALL SP1 (A + B, K, U, V)

Important Remarks:

• Input parameters can be variables or expressions

• Output or input‐output parameters can only be variables

• There must be strict correspondence between:

– The formal parameter list in the subroutine definition

– The actual parameter list in the subroutine call

• Correspondence must be maintained in:

– Number of parameters

– Position in the parameter list

– Parameter mode (input, output, input‐output)

6.2.7 Local Variables

All variables that do not appear in the parameter list are called local
variables (for example: I, T in previous examples). They only exist and are
defined during the subprogram call. In particular, they do not retain their
values between calls.

VI.4. Passing Array Parameters

Frequently, it is necessary to include arrays in the parameter list. In
this case, these variables must be declared as arrays using ”DIMENSION”
statements.
FORTRAN 77 offers two possibilities for this declaration:

• Fixed dimensioning

• Adjustable dimensioning

49

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Fixed Dimensioning

Identical to dimensioning in a main program, the minimum and maximum index
values are constants. For example, in the case of a subprogram calculating
the maximum modulus of elements in a vector:

1 FUNCTION VMAX(V, N)

2 C Calculates the maximum absolute value in vector V of length N

3 DIMENSION V(100)

4 REAL VMAX

5 VMAX = 0.0

6 DO 10 I = 1, N

7 IF (ABS(V(I)) .GT. VMAX) VMAX = ABS(V(I))

8 10 CONTINUE

9 RETURN

10 END

Key characteristics:

• The array size is fixed at 100 elements in the subprogram

• Only the first N elements are actually used (N ≤ 100)

• The calling program must ensure the array doesn’t exceed this size

• Simple but inflexible ‐ requires knowing maximum size in advance

Adjustable Dimensioning

Adjustable dimensioning replaces constants in array declarations with vari‐
ables. These variables must be present in the parameter list. The function
from the previous section can be rewritten as follows:

1 FUNCTION VNORM (VECT, N)

2 C

3 C Input parameters:

4 C VECT : vector to compute norm

5 C N : vector dimension

6 C

7 C Output parameter:

8 C VNORM : norm of VECT

9 C

50

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

10 DIMENSION VECT(N)

11 VNORM = ABS(VECT(1))

12 DO I = 2, N

13 VNORM = AMAX1(VNORM, ABS(VECT(I)))

14 END DO

15 RETURN

16 END

6.2.8 Advantages of Adjustable Dimensioning

• Generality:

– The subprogram works for vectors of any dimension N

– No need to modify code for different array sizes

• Memory efficiency:

– No wasted memory reservation

– Matches exactly the size needed

• Maintainability:

– Single version handles all cases

– No coordination needed between calling and called programs

Important Notes

• The dimension variable (N) must be passed as a parameter

• The actual array size must match or exceed the dimension specified

• Adjustable dimensions can only be used in subprograms

• The upper bound must be a variable, not an expression

6.2.9 Common Blocks

FORTRAN 77 provides the ability to pass information to subprograms without
explicit parameters through common blocks. Variables are placed in common
blocks using the COMMON statement.

51

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Example:

1 CHARACTER*1 CAR, LIGNE*80, BUFF*100

2 COMMON /ZONE1/ A, B, I

3 COMMON /ZONE2/ C, J, K

4 COMMON /CAR1/ CAR, LIGNE, BUFF

Key characteristics:

• Variables A, B, I are in common block ZONE1

• Variables C, J, K are in common block ZONE2

• Character variables must be grouped separately (CAR1)

• Common blocks must be declared identically in all routines using them

Example Usage:

1 FUNCTION VNORM(N)

2 C Input parameter:

3 C N: vector dimension

4 C Output parameter:

5 C VNORM: vector norm

6 DIMENSION VECT(10)

7 COMMON /ZONE1/ VECT

8 VNORM = ABS(VECT(1))

9 DO I = 2, N

10 VNORM = AMAX1(VNORM, ABS(VECT(I)))

11 END DO

12 RETURN

13 END

14

15 PROGRAM ESSAI

16 DIMENSION VECT(10)

17 COMMON /ZONE1/ VECT

18 N = 7

19 X = VNORM(N)

52

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

20 END

6.2.10 Advantages and Disadvantages

Advantage:

• Reduces parameter list length for routines with many parameters

Disadvantages:

• Loss of generality:

– Cannot use adjustable dimensioning

– Requires fixed common block structure

– Cannot use different variable names

• Reduced readability:

– Modified variables not visible in parameter list

– Harder to understand data flow

Due to these drawbacks, common blocks are rarely used in modern FORTRAN
programming.

6.2.11 Passing Subprogram Names as Parameters

FORTRAN 77 allows passing subprogram names as parameters, enabling powerful
generic programming capabilities.

Example: Root‐Finding Subroutine

1 SUBROUTINE ZERO(F, A, B, MAXIT, X, IER)

2 C Input parameters:

3 C F: Name of function whose root is sought

4 C A: Lower bound of interval containing root

5 C B: Upper bound of interval

6 C MAXIT: Maximum allowed iterations

7 C Output parameters:

8 C X: Found root value

9 C IER: Exit indicator (0=success, 1=too many iterations)

10 XA = A

53

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

11 XB = B

12 T = (F(A) - F(B))/2.

13 ...

14 RETURN

15 END

Usage:

1 EXTERNAL INVOL, FONC

2 CALL ZERO(INVOL, XI, X2, MAX, SOLU, IER)

3 CALL ZERO(FONC, X, Y, MAX, SOLU, IER)

4

5 INTRINSIC SIN, TAN

6 CALL ZERO(SIN, -PI, PI, MAXIT, RACINE, IER)

7 CALL ZERO(TAN, X, Y, MAXIT, RACINE, IER)

Key points:

• Use EXTERNAL for user‐defined functions/subroutines

• Use INTRINSIC for standard functions

• Enables writing generic numerical algorithms

• Powerful technique for mathematical applications

54

Conclusion

FORTRAN 77 maintains its vital role in scientific computing, combining numeri‐
cal efficiency with timeless programming principles. This course establishes
a structured pathway from fundamental syntax to advanced algorithmic imple‐
mentation, equipping you with essential skills for computational science.
Through this material, you’ll develop crucial competencies that extend beyond
FORTRAN‐specific knowledge:

• Algorithmic Thinking: Transforming mathematical concepts into executable
code

• Computational Precision: Mastering numerical methods at the hardware level

• Performance Optimization: Writing efficient, resource‐conscious programs

• Legacy Code Literacy: Navigating and maintaining critical scientific code‐
bases

The practical exercises and examples serve as foundational elements for
real‐world scientific programming. Whether you continue with modern Fortran
variants or transition to other technical languages, the rigorous approach
cultivated here will provide enduring advantages in computational fields.
FORTRAN 77 stands as both a historical milestone and a living tool ‐ its
core principles continue to influence contemporary scientific computing.
The skills you develop will form a robust foundation for tackling complex
computational challenges across disciplines.

55

Appendix

Appendix A ‐ Fortran 77 Instructions

Basic Instructions

Instruction Description

ASSIGN Assigns a label value to an integer
BACKSPACE Positions file pointer to the previ‐

ous record
BLOCK DATA Identifies a data block subroutine

for initializing variables and arrays
CALL Calls and executes a subroutine
CHARACTER Declaration for alphanumeric vari‐

ables
CLOSE File closure
COMMON Global variables, shared among multi‐

ple modules
COMPLEX Declaration for complex variables
CONTINUE Obsolete instruction, no effect
DATA Variable initialization
DIMENSION Array declaration

56

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Control Structures

Instruction Description

DO For loop
DO WHILE While loop (F90)
ELSE Else part of IF...THEN...ELSE struc‐

ture
END DO End of DO or WHILE loop (F90)
END End of module (program, subrou‐

tine,...)
END IF End of IF construct
EXIT Premature exit from a DO loop
IF Alternative IF structure

Declarations and Types

Instruction Description

DOUBLE Double precision declaration
EXTERNAL Identifies a name as a subroutine or

function
IMPLICIT Assigns an implicit type to certain

variables
INTEGER Declaration for integer variables
INTRINSIC Declaration for intrinsic functions
LOGICAL Declaration for logical variables
REAL Real type declaration

Input/Output

Instruction Description

FORMAT Read or write format
INQUIRE File properties examination
OPEN File opening
PRINT Screen output
READ Read operation
WRITE Write operation
REWIND Points to beginning of file

57

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Subroutines and Control

Instruction Description

FUNCTION Function‐type subroutine
GOTO Jump statement
PARAMETER Assigns a name to a constant
PAUSE Temporary program halt
PROGRAM Program beginning
RETURN Return from subroutine or function
SAVE Maintains variables in subroutines
STOP Program termination
SUBROUTINE Subroutine name

58

Dr ABED Bouabdellah Introduction to Programming using FORTRAN 77

Appendix B ‐ Intrinsic Functions

Mathematical Functions

Function Description Input Type Output Type

COSH(X) Hyperbolic cosine real, double precision, complex same as input
SINH(X) Hyperbolic sine real, double precision, complex same as input
TANH(X) Hyperbolic tangent real, double precision, complex same as input
ABS(X) Absolute value

(real) or modulus
(complex)

real, double precision, complex real, double precision

MAX(X1,...,XN) Maximum value integer, real, double precision same as input
MIN(X1,...,XN) Minimum value integer, real, double precision same as input

Type Conversion Functions

Function Description Input Type Output Type

INT(X) Truncation real, double precision integer
FLOAT(X) or REAL(X) Convert integer to

single precision
real

integer real

DBLE(X) Convert to double
precision

integer, real double precision

NINT(X) Round to nearest
integer

real, double precision integer

Other Functions

Function Description Input Type Output Type

MOD(Y, X) Remainder of divi‐
sion y/x

integer, integer integer

CONJG(z) Complex conjugate complex, double precision same as input
SIGN(X1, X2) Returns sign of

X1*X2
integer, real, double precision same as input

CHAR(I) Returns ASCII
character for code
I

integer character

ICHAR(C) Returns ASCII code
of character C

character integer

LEN(C) Returns length of
string C

character string integer

59

References

Books

• Dubois, P. (1984). Introduction to Fortran Through Examples. Éditions
Technip.

• Etter, D. M. (1993). Structured FORTRAN 77 for Engineers and Scientists.
Benjamin/Cummings.

• Fuller, W. R. (1977). FORTRAN Programming: A Supplement for Calculus
Courses. Springer‐Verlag.

• Monro, D. M. (1982). Fortran 77. Edward Arnold.

• Kupferschmid, M. (2009). Classical Fortran: Programming for Engineering
and Scientific Applications. CRC Press.

• Lignelet, P. (1985). Practical Fortran 77. Masson.

Online Documentation

• Stanford University Tutorial: https://web.stanford.edu/class/me200c/tutorial_
77/

• IDRIS Fortran Training: https://www.idris.fr/formations/fortran/fortran-77

• Fortran 77 Wikibook: https://en.wikibooks.org/wiki/Fortran_77_Tutorial

• University of Leicester Professional Fortran 77: https://www.star.le.ac.
uk/~cgp/prof77.html

• University of Strathclyde Course: http://www.strath.ac.uk/CC/Courses/
fortran.html

• SoftaDesign Manuals: http://www.softadesign.org/manuels/fortran.html

60

https://web.stanford.edu/class/me200c/tutorial_77/
https://web.stanford.edu/class/me200c/tutorial_77/
https://www.idris.fr/formations/fortran/fortran-77
https://en.wikibooks.org/wiki/Fortran_77_Tutorial
https://www.star.le.ac.uk/~cgp/prof77.html
https://www.star.le.ac.uk/~cgp/prof77.html
http://www.strath.ac.uk/CC/Courses/fortran.html
http://www.strath.ac.uk/CC/Courses/fortran.html
http://www.softadesign.org/manuels/fortran.html

	Introduction
	Fundamentals of Computer Science
	Information Processing
	Computer Programs and Programming Languages
	Compilation

	Introduction to FORTRAN 77
	Historical Background
	 Definition and Semantic Elements of Fortran 77
	Data Types in Fortran 77
	Execution Flow in Fortran Programs

	Module: Fortran Programming Syntax
	The Fortran Character Set
	Lexical Elements
	Instruction Structure
	Program Structure
	Important Notes

	Constants and Variables
	Constants
	Integer Constants
	Real Constants (Single Precision)

	Double Precision Constants
	Complex Constants
	Logical Constants
	String Constants
	Constant Declaration
	Variables
	Variable Declaration

	Variable Types and Ranges
	Integer Variables
	Real Variables
	Complex Variables
	Character Variables
	Logical Variables

	Type Declaration Best Practices

	Operators and Expressions
	Arithmetic Operators and Mathematical Functions
	Arithmetic Operators (2019)
	Order of Evaluation in Arithmetic Expressions
	Type Conversion in Results from +, -, *, /
	Additional Examples

	Intrinsic Arithmetic Functions
	Trigonometric Functions
	Other Mathematical Functions
	Minimum and Maximum Functions (2019)

	Logical Expressions
	Definition
	Relational Operators
	Compound Logical Expressions
	Operator Precedence in Logical Expressions

	Input and Output Instructions
	Generalities
	Input/Output (I/O)
	The PRINT Instruction
	The READ Instruction
	The WRITE Instruction
	Handling Indexed Variables

	The FORMAT Instruction
	Format Specifiers
	Data Editing Specifiers
	Layout and Editing Specifiers
	The / Specifier

	Subprograms
	General Concepts
	Purpose of Subprograms
	Communication Between Subprograms and Their Environment

	Different Types of Subprograms in FORTRAN 77
	Internal Subprograms
	Function Type Declaration
	External Subprograms
	Function Type Declaration
	General Subprograms (Subroutines)
	General Subprograms (Subroutines) (Continued)
	Local Variables
	Advantages of Adjustable Dimensioning
	Common Blocks
	Advantages and Disadvantages
	Passing Subprogram Names as Parameters

	Conclusion
	Appendix
	References

