

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie d'Oran –Mohammed BOUDIAF-Faculté d'Architecture et de Génie Civil Département de Génie Civil

Spécialité : Génie Civil

Polycopié de MURS DE SOUTENEMENT Théorie et application

Dr NOURREDINE GOUFI

2020/2021

Préambule

Dans ce polycopié, adressé aux étudiants de master 2 en Génie Civil, les ouvrages de soutènement sont présentés d'une manière simplifiée tout en se limitant volontairement aux murs de soutènement en béton armé.

Les différents ouvrages de soutènement, leurs classifications ainsi que la particularité de chacun sont d'abord présentés. Par la suite, des notions simplifiées de calcul des poussées exercées sur les murs sont rappelées. Les différentes situations de vérification de la stabilité externe et interne d'un mur de soutènement sont alors développées et appliquées aux cas de mur poids en béton et de mur en béton armé en T renversé préalablement prédimensionnés selon des critères bien définis.

Une partie importante du polycopié est consacrée aux procédures de calcul de ferraillage de murs de soutènement. Les modèles et schémas statiques pour chaque élément constituant l'ouvrage sont indiqués.

Un autre aspect important des murs de soutènement est ensuite abordé. Il s'agit du problème d'effondrement de ces murs. Des règles de bonnes pratiques liées à la réalisation et l'entretient de ces ouvrages sont indiquées. Le calcul et vérification des murs de soutènement sous une sollicitation dynamique de séisme sont également abordés à travers le rappel des exigences du règlement parasismique algérien.

Enfin, pour donner un aspect pratique à ce polycopié, des exemples d'application sont présentés avec schémas de ferraillage. Ces exemples n'ont pas la prétention d'illustrer toutes les situations possibles rencontrées dans la pratique, mais ils sont traités dans le détail en vue de montrer la procédure de calcul et d'en faciliter la pratique.

Liste des figures

Chapitre 1 :	
Figure 1.1 Stabilité d'un talus en fonction de son inclinaison	1
Figure 1.2 Mur en maçonnerie de pierres sèches avec absence de joint	3
entre les pierres	
Figure 1.3 Parement d'un mur en pierres jointoyées	4
Figure 1.4 Parement d'un mur en briques jointoyées	4
Figure 1.5 Parement fictif utilisé pour la détermination des efforts de poussées	4
sur un mur poids	
Figure 1.6 Murs poids en béton non armé : Ouvrage en construction	4
Figure 1.7 Mur poids en gabions	5
Figure 1.8 Murs poids en caisson	6
Figure 1.9 Murs en terre armée	6
Figure 1.10 Disposition des armatures dans un mur en terre armée	7
Figure 1.11 Principe général de réalisation d'une paroi moulée	8
Figure 1.12 Fonctions des parois moulées et dimensions extrêmes	9
Figure 1.13 Rideau de palplanche	9
Figure 1.14 Mur ancré	10
Figure 1.15 Parois moulées ancrées	11
Figure 1.16 Rideau de palplanches ancrées par tirants actifs	11
Figure 1.17 Murs en béton armé en «T renversé» classique	12
Figure 1.18 Mur en béton armé préfabriqué	12
Figure 1.19 Mur en béton armé avec encorbellement en tête	12
Figure 1.20 Murs à contreforts en béton armé	13
Figure 1.21 Mur en béton armé à console	13
Figure 1.22 Mur en béton armé à dalle flottante	14
Figure 1.23 Mur à dalle d'ancrage	14
Figure 1.24 Mur à échelle	15
Figure 1.25 Principaux éléments constitutifs d'en mur de soutènement	15
en béton armé	
Figure 1.26 Diverses dispositions de bêches dans un mur de soutènement	16
en béton armé	
Figures 1.27 Mur en pneu sol	16

Chapitre 2

Figure 2.1 Etat de butée et de poussée	18
Figure 2.2 Poussée sur un écran selon la méthode de Coulomb	19
Figure 2.3 Généralisation de la méthode de Coulomb	19
Figure 2.4 Convention de signe des angles	21
Figure 2.5 Détermination des poussées en présence d'eau	23
Figure 2.6 Pression de surcharge sur un mur	24
Figure 2.7 Calcul des contraintes horizontales dues à surcharges en surface	26
Figure 2.8 Stabilité externe d'un mur de soutènement	27
Figure 2.9 Stabilité interne d'un mur de soutènement	27
Figure 2.10 Prédimensionnement de murs :(a) poids, (b) en béton armé	28
Figure 2.11 Représentation schématique des actions extérieures exercées sur un mur	29
Figure 2.12 Diagramme des poussées des terres	29
Figure 2.13 Diagramme des poussées dues à une surcharge d'exploitation	30
Figure 2.14 Diagramme des poussées dues à l'eau	31
Figure 2.15 Règle du tiers central	33
Figure 2.16 Répartition des contraintes sur le sol de fondation	36
Figure 2.17 Rupture par grand glissement du sol de fondation	37

Chapitre 3

Figure 3.1 Modèle de calcul et charges appliquées au rideau d'un mur de soutènement	41
Figure 3.2 Exemple de schéma de ferraillage de rideau	41
Figure 3.3 Exemples de configurations de ferraillage erronées	41
Figure 3.4 Calcul de la semelle droite d'un mur de soutènement	42
Figure 3.5 Exemples de ferraillage de la partie droite de la semelle de fondation	43
Figure 3.6 Calcul de la semelle droite d'un mur de soutènement	44
Figure 3.7 Exemples de ferraillage de la partie gauche de la semelle de fondation	44
Figure 3.8 Mur avec contrefort	45
Figure 3.9 Modèle de calcul du rideau de mur avec contreforts	45
Figure 3.10 Schéma statique de calcul d'une tranche de 1ml du rideau	46
d'un mur de soutènement avec contrefort	
Figure 3.11 Ferraillage du rideau d'un mur de soutènement avec contreforts	46
Figure 3.12 Semelle de mur avec contrefort	47

Figure 3.13 Schéma statique de calcul de la bêche d'un mur de soutènement avec contrefort	48
Figure 3.14 Schéma statique et section de calcul d'un contrefort	48
Figure 3.15 Sollicitation, moment et ferraillage d'un contrefort	49
Figure 3.16 Ferraillage du rideau et du contrefort d'un mur de soutènement	49
Figure 3.17 Sollicitations statiques équivalentes aux sollicitations dynamiques	50
Figure 3.18 Dispositifs de drainage derrière un mur de soutènement	53

Chapitre 4

Figure 4.1 Calcul des poussées actives sur un mur	56
Figure 4.2 Calcul de la poussée des terres sur un mur poids	59
Figure 4.3 Caractéristiques géométriques du mur à étudier	62
Figure 4.4 Forces exercées sur le mur	63
Figure 4.5 Modèle de calcul du rideau d'un mur de soutènement	67
Figure 4.6 Modèle de calcul de la semelle amont d'un mur de soutènement	68
Figure 4.7 Modèle de calcul de la semelle aval d'un mur de soutènement	70
Figure 4.8 Schéma de ferraillage d'un mur de soutènement en forme de Té	71
renversé sans contreforts	
Figure 4.9 Dimensions mur avec contreforts	72
Figure 4.10 Modèle de calcul du rideau de mur avec contreforts	73
Figure 4.11 Semelle de mur avec contrefort	74

Liste des tableaux

Chapitre 1	
Tableau 1.1 Valeurs deet C de quelques sols	2
Chapitre 2	
Tableau 2.1 Ordre de grandeur du coefficient de poussée du sol au repos	17
Tableau 2.2 Tables de Caquot-Kerisel du coefficient de poussées Ka de quelques	22
cas courants	
Tableau 2.3 Poids volumiques de sols courants	23
Tableau 2.4 Valeurs du coefficient de poussées K_{aq} de surcharges verticales (=0)	25
Tableau 2.5 Valeurs de l'angle ' ' de frottement entre le sol et le mur en fonction	34
de l'état de surface de parement	
Chapitre 4	

Table des matières

Chapitre 1 : Notions générales sur les ouvrages de soutènement	
1. Définition	1
2. Classification des ouvrages de soutènement	2
2.1. Fonctionnement par le poids de l'ouvrage	2
2.1.1. Les murs poids	2
2.1.1.1. Murs poids en maçonnerie de pierres sèches	3
2.1.1.2. Murs poids en maçonnerie jointoyée	3
2.1.1.3. Murs poids en béton non armé	4
2.1.1.4. Murs poids en gabions	5
2.1.1.5. Murs caisson	5
2.1.2. Murs en terre armée	6
2.2 Fonctionnement par encastrement de l'ouvrage dans le sol de fondation	8
2.2.1. Les murs en béton armé	8
2.2.2. Les murs en parois moulées	8
2.2.3. Les rideaux de palplanche	9
2.3. Fonctionnement par ancrage ou clouage	10
2.3.1. Les murs ancrés	10
2.3.2 Les parois moulées ancrées	10
2.3.3 Les palplanches ancrées	11
3. Les murs en béton armé	11
3.1. Les différents types de murs en béton armé	11
3.1.1. Mur en T renversé	12
3.1.2. Mur à contreforts	12
3.1.3. Murs divers	13
3.1.3.1. Murs à consoles	13
3.1.3.2. Murs à dalle de frottement	14
3.1.3.3. Murs à dalle d'ancrage	14
3.1.3.4. Murs à échelle	14
3.2. Constitution des murs de soutènement en béton armé	15
4. Autre type de murs de soutènement	16
5. Conclusion	16

Chapitre 2 : Dimensionnement et stabilité des murs de soutènement	
1. Introduction	17
2. Etat des sols au repos	17
3. Notions de poussée et de butée	17
4. Calcul des pressions sur un écran	18
4.1. Théorie de Coulomb (1773)	18
4.2. Théorie de Rankine (1857)	20
5. Théorie de Boussinesq (1882)	21
6. Prise en compte de la poussée hydrostatique	23
7. Prise en compte de l'effet de surcharges	24
7.1. Surcharge uniforme	24
7.2. Surcharge concentrée	25
7.3. Surcharge distribuée suivant une bande uniforme	25
8. Dimensionnement des murs de soutènement	26
8.1. Prédimensionnement d'un mur de soutènement et règles constructives	27
8.2. Efforts sollicitant un mur de soutènement	28
8.2.1. Identification des efforts	28
8.2.2. Détermination des valeurs des efforts	29
8.2.2.1. Efforts dus au sol	29
8.2.2.2. Efforts dus à la surcharge	30
8.2.2.3. Efforts dus à l'eau	31
8.3. Vérification de la stabilité externe d'un mur de soutènement	31
8.3.1. Stabilité au renversement	31
8.3.1.1. Cas de mur en béton armé	31
8.3.1.2. Cas de mur poids	32
8.3.2. Stabilité de glissement de base	33
8.3.3. Stabilité au poinçonnement du sol de fondation	34
8.3.4. Stabilité au grand glissement du sol de fondation	36
8.4. Vérification de la stabilité interne du mur de soutènement	37
9. Conclusion	38
	50

Chapitre 3 : Ferraillage des murs de soutènement et règles de bonne réalisation		
3.1 Introduction	39	
3.2 Ferraillage de murs de soutènement	39	

vi

2.1. Combinaison de calcul	39
2.2. Calcul des éléments du mur	39
2.1.1. Le rideau	39
2.1.2. La semelle de fondation	42
2.1.2.1. Semelle de droite	42
2.1.2.1. Semelle de gauche	43
3. Ferraillage de murs de soutènement avec contreforts	45
3.1. Modèle de calcul du rideau	45
3.2. Modèle de calcul de la semelle	47
3.3. Modèle de calcul de la bêche	47
3.4. Modèle de calcul du contrefort	48
4. Sollicitations sismiques	49
5. Le mur de soutènement dans le Règlement Parasismique Algérien (RPA99v2003)	50
5.1. Généralités	50
5.2. Vérification de la stabilité externe du mur	51
5.2.1. Stabilité au glissement	51
5.2.2. Stabilité au renversement	51
5.2.3. Stabilité au poinçonnement de la semelle du mur	51
5.3. Vérification de la stabilité interne du mur	51
6. Recommandations et précautions	52
6.1. Dispositifs de drainage	52
6.1.1. Les barbacanes	52
6.1.2. Le drain	52
6.1.3. Le remblayage	53
6.2. Mise en place de joints	53
7. Effondrements des murs de soutènement	53
8. Règles à respecter pour construire un mur de soutènement	54
9. Conclusion	55
Chapitre 4 : Exemples d'application	
Première partie : Vérification de la stabilité de différents types de murs	56
de soutènements	
Exercice N ^o 1	56

Exercice N ^o 2	59
Deuxième partie : Prédimensionnement et calcul du ferraillage de murs en BA	62
Exercice N ^o 1	62
Exercice Nº 2	72
Références bibliographiques	85

1. Définition

Les ouvrages de soutènement sont des structures destinées à prévenir l'éboulement ou le glissement d'un talus raide situé en amont [1]. Ils peuvent également être installés à l'occasion en tant que mesure préventive contre l'érosion des sols. Ainsi, la mise en œuvre de ces ouvrages peut être établie à titre temporaire ou définitif.

Les ouvrages de soutènement ont figuré dans l'histoire de la construction, dès son origine. Ils ont été en pierres sèches, puis en maçonnerie et parfois même en bois ou polymère et enfin en béton armé. Ils sont généralement utilisés :

- En site montagneux pour préserver les routes et chemins contre le risque d'éboulement, au bord d'un cours d'eau ou au passage d'une vallée ;
- En site urbain afin de diminuer l'emprise d'un talus naturel pour la réalisation d'une route, d'une construction ainsi que l'aménagement d'un bord de quai ou d'un ouvrage d'art ;

Lorsqu'il existe une différence de niveau entre deux points a et b d'un terrain, l'angle que fait la droite (AB) avec l'horizontale s'appelle angle de talus naturel (). Il s'agit de l'angle maximal que peut présenter un sol mis simplement en tas sans soutènement. Ce talus n'est plus stable à partir d'une certaine valeur (Figure 1.1). On est alors obligé de prévoir un ouvrage destiné à maintenir le massif de terres et qui est appelé 'mur de soutènement'. A noter que la dénivelée entre les terres situées à l'amont et l'aval de l'ouvrage peut être réalisée en procédant à la mise en place de remblais derrière l'ouvrage ou par extraction des terres devant celui-ci [2]. En pratique, il est aussi fréquent de procéder à la fois à un apport de remblai derrière l'ouvrage et à une extraction de terre devant celui-ci.

(a) : talus stable, (b) talus instable.

On définie également la cohésion 'C exprimée en kPa' d'un sol comme sa capacité à s'amalgamer ou se coller. Typiquement, le sable sec ou le gravier n'ont aucune cohésion (C=0), ils sont alors dits 'sols pulvérulents. A l'inverse, les argiles se caractérisent par une cohésion non nulle. Le tableau 1.1 donne quelques exemples de valeurs de ces caractéristiques (et C).

Nature du sol	C (kPa)	(°)
Gravier	0	40 à 45
Sable compact	0 à 10	30 à 40
Sable lâche ou peu compact	0 à 10	25 à 30
Argile	20	15 à 25

Tableau 1.1 Valeurs deet C de quelques sols.

2. Classification des ouvrages de soutènement

Il existe une grande variété d'ouvrages de soutènement des sols [2] qui se distinguent principalement par :

- La morphologie (ouvrages massifs armés ou non, rideaux et parois ancrés ou non, ouvrage en béton armé ou non) ;
- Le mode d'exécution et domaine d'emploi ;
- Les matériaux de fabrication ;
- Le mode de fonctionnement ;

Le choix du type d'ouvrage de soutènement dépend de plusieurs facteurs [2] tels que :

- Déblais ou remblai ou mixte ;
- Hauteur de soutènement ;
- Sol de fondation ;
- Disponibilité des matériaux ;
- Aspect extérieur ;

Comme les ouvrages de soutènement ont en commun la force de poussée exercée par le massif de terre retenu, on retiendra ce critère pour une description des différents ouvrages de soutènement. Trois modes de fonctionnement peuvent être distingués [1]:

- Cas où la poussée est reprise par le poids de l'ouvrage ;
- Cas où la poussée est reprise par encastrement de l'ouvrage ;
- Cas où la poussée est reprise par des ancrages ;

2.1. Fonctionnement par le poids de l'ouvrage

On retrouve dans cette classe les principaux ouvrages suivants [1]:

2.1.1. Les murs poids

Ce sont des murs en béton non armé, en maçonnerie de pierres sèches, en maçonnerie jointoyée, en gabions ou en éléments empilés préfabriqués en béton.

Il s'agit également d'ouvrages anciens, très rigides mais qui supportent mal des tassements différentiels de plus de quelques $^{\circ}/_{oo}$. Ils se caractérisent par une base plus large que le haut du mur. Ces murs étanches, sont en général pourvus d'un dispositif de drainage. Le poids du mur

lui-même qui inclut parfois une masse stabilisatrice de remblai permet d'assurer la stabilité mais lui confère un caractère de moindre économie en matière. Les murs poids requièrent moins de précision et de technicité que les murs autostables [2]. Ce type d'ouvrage convient le mieux pour résister par son propre poids à des hauteurs de 2 à 3 m de remblais.

2.1.1.1. Murs poids en maçonnerie de pierres sèches

Constitués de pierres sèches disposées sans aucun mortier ou liant (Figure 1.2 a et b), ces murs poids sont très anciens et se présentent généralement sous forme trapézoïdale et l'absence de joint entre les éléments constitutifs du mur facilite le drainage. La largeur à la base est généralement supérieure au tiers de la hauteur du mur. Ce type de mur ne nécessite pas beaucoup d'entretient, mais quelquefois des végétations parasites peuvent survenir et nécessiter une dévégétalisation. Il arrive également que des pierres se détériorent entrainant un besoin de réparation du parement. A noter que bien que la pierre sèche ne soit plus très utilisée, le bâti existant constitue un enjeu économique important (artisanat, tourisme, environnement, agriculture)

(a) (b) **Figure 1.2** Mur en maçonnerie de pierres sèches avec absence de joint entre les pierres [3].

2.1.1.2. Murs poids en maçonnerie jointoyée

Retrouvés particulièrement en sites montagneux, les murs poids en maçonnerie jointoyée sont constitués de blocs de pierres ou de briques liés entre eux par un mortier utilisé pour consolider les matériaux utilisés (Figures 1.3 et 1.4). Ils sont mis en œuvre après réalisation des fondations généralement en béton armé. L'erreur à éviter dans la mise en œuvre de ce type de mur est l'alignement des joints verticaux qui fragilisent le mur. Ces murs s'intègrent bien au paysage.

Contrairement aux murs poids en maçonnerie de pierres sèches, le drainage est nécessaire vu que l'eau ne peut plus passer entre les pierres. L'allure trapézoïdale peut être réalisée par des redans. La figure 1.5 illustre le parement fictif utilisé pour la détermination des efforts de poussées appliqués sur un mur poids en redans. Ce type de mur est également très ancien et les plus récents sont essentiellement des remplacements d'ouvrages effondrés.

Chapitre 1

Figure 1.3 Parement d'un mur en pierres jointoyées [3].

Figure 1.4 Parement d'un mur en briques jointoyées [3].

Figure 1.5 Parement fictif utilisé pour déterminer les efforts de poussées sur un mur poids [1].

2.1.1.3. Murs poids en béton non armé

Il s'agit de mur en béton non armé ou en béton cyclopéen (blocs de pierres ou moellons noyés dans le béton) coulé sur place (Figures 1.6 a et b). On y trouve parfois des armatures de peau [1]. Le drainage par barbacanes s'avère nécessaire car l'eau ne peut pas traverser le béton.

(a) (b) Figure 1.6 Murs poids en béton non armé : Ouvrage en construction [4].

2.1.1.4. Murs poids en gabions

Constitués d'éléments parallélépipédiques en grillage métallique remplis de blocs de carrière ou d'alluvions et qui présentent l'avantage de bien laisser passer l'eau ruisselante évitant ainsi toute pression hydrostatique supplémentaire (Figures 1.7 a et b). Les gabions fournissent beaucoup d'autres avantages puisqu'ils sont à la fois moins coûteux, très simple et rapide à faire et présentent une longue durabilité. Néanmoins, les caissons peuvent être atteints par la corrosion, ce qui constituerait une défaillance. De ce fait, il est nécessaire de les entretenir de temps en temps. Ce type de mur, plus récent, est moins rigide que les murs en maçonnerie, convient particulièrement aux cas de terrains compressibles.

Figure 1.7 Murs poids en gabions [4].

2.1.1.5. Murs caisson

Très anciens, souvent utilisés comme soutènement routier ou piéton, les murs caissons sont constitués d'un empilement d'éléments préfabriqués en béton (armé ou non), en acier et même en bois sans fond et remplis de terre [1].

Ces murs peuvent se présenter sous plusieurs aspects ou figures (fruités, droits ou courbes) ce qui leur confère un joli aspect architectural étant donné que le parement visible n'est pas forcément uniforme (Figures 1.8 a et b). De plus, la présence de terres les rend végétalisables et parfaitement adaptables aux caractéristiques du terrain et du sol tout en garantissant un drainage efficace.

La stabilité des murs caisson est assurée par la largeur des éléments et le poids du matériau de remplissage. Ils présentent l'avantage de rapidité et facilité d'exécution mais sont limités en hauteur et peuvent présenter des déplacements latéraux importants.

Figure 1.8 Murs poids en caisson [5].

Il existe également des ouvrages cellulaires utilisés principalement dans les travaux maritimes tels que les batardeaux cellulaires en palplanches métalliques ou des grands caissons en béton armé utilisés pour la construction des quais. Ce sont des ouvrages souples dans leur ensemble même si la cellule en forme de caisson rempli de sol est rigide.

2.1.2. Murs en terre armée

Tel que le béton armé, il s'agit d'une manière d'améliorer les caractéristiques d'un matériau de base (le sol) en lui incorporant des armatures passives travaillant en traction (Figures 1.9 a et b). La terre armée est ainsi une technique un peu récente (1963) qui repose sur l'utilisation du sol pour garantir la stabilité d'un talus. D'une manière générale, les ouvrages en terre armée sont conçus sans dispositifs particuliers de drainage, le sol constitutif du remblai étant formé d'un matériau drainant.

Figure 1.9 Murs en terre armée (a) armatures résistantes en acier, (b) armatures en synthétiques [6].

Les murs en terre armée sont formés de trois (3) composants [7]:

- 1. Un remblai granulaire compacté en couches pas trop épaisses ;
- 2. D'armatures disposées en lit dans le remblai et qui peuvent être soit :
 - Métalliques : pouvant présenter des problèmes de corrosion ;

- Géo synthétiques réalisées par nappes ou en bandes. Le renforcement par nappe se fait à l'aide de géosynthétiques de grande largeur joint ou non avec des longueurs de bandes ou nappes pas nécessairement constantes sur la hauteur de l'ouvrage. La figure 1.10 montre la disposition des armatures dans un mur.
- 3. Un parement, faisant le lien entre les armatures et assurant l'esthétique du mur, est généralement réalisé en éléments de béton préfabriqué facile à assembler, en pneus ou autres éléments récupérés.

Figure 1.10 Disposition des armatures dans un mur en terre armée [1].

Le principe consiste à associer à un massif de remblai mis en place par couches successives compactées des éléments de renforcement (ou armatures) résistant à la traction. L'ouvrage est terminé sur sa face extérieure par un parement destiné à retenir les grains de sol entre les lits d'armatures.

La principale caractéristique de ces ouvrages réside dans le fait que c'est le volume de sol associé aux éléments de renforcement qui participe directement à la stabilité. Les ouvrages en terre armée présentent également les avantages suivants :

- Rapidité d'exécution ;
- Murs souples et déformables pouvant supporter des poussées sans dommage ;
- Murs peu sensibles aux tassements ;
- Constructions ne nécessitant qu'un matériel très léger ;
- Coût compétitif ;

Deux conditions sont nécessaires pour permettre la réalisation de ce type d'ouvrage [7]:

- 1. Existence d'un frottement entre le sol et les armatures ce qui exclu à priori les sols argileux ;
- 2. Éviter l'écroulement du front de l'ouvrage par la mise en œuvre d'un parement de l'ouvrage ou peau constitué d'éléments métalliques de section elliptique ;

2.2. Fonctionnement par encastrement de l'ouvrage dans le sol de fondation

Le problème des murs poids est que pour des hauteurs de soutènement supérieures à 4 mètres, il faut mettre en œuvre des volumes de matériaux importants, donc des contraintes importantes au sol. On a alors recours au mur de soutènement souple, faisant intervenir les poids des terres à l'arrière de celui-ci pour assurer une part de stabilité. On retrouve dans cette classe les trois principales catégories d'ouvrages suivantes [1]:

- A. Les murs en béton armé ;
- B. Les murs en parois moulées ;
- C. Les rideaux de palplanches ;
- 2.2.1. Les murs en béton armé

Les murs en béton armé sont probablement le type d'ouvrage de soutènement le plus couramment employé. Il s'agit d'ouvrages en porte à faux relativement minces qui présentent une base élargie encastrée au sol de fondation et assurent la stabilité sous l'effet d'une partie du poids de remblai soutenu. A ce titre, ils sont considérés comme des murs poids lorsque le remblai compris entre le mur et la verticale passant par l'extrémité arrière de la semelle est pris en compte. Les murs en béton armé sont généralement rigides et peuvent être de formes diverses et réalisés sous de multiples façons. De plus amples informations sur ce type de murs objet de ce polycopié, seront données dans la fin de ce chapitre.

2.2.2. Les murs en parois moulées

La paroi moulée est un écran ou mur de soutènement en béton armé moulé dans le sol et réalisé en déblais. Ainsi, une paroi moulée est réalisée sur le terrain en place avant de procéder au creusement sur l'un des côtés du mur [1]. Le principe de la paroi moulée s'apparente aux pieux forés sous boue. Le procédé consiste à réaliser des panneaux de grande hauteur en béton armé coulé dans le sol. La stabilité de l'excavation est garantie, durant le forage, par une boue de type bentonite ciment (mélange d'argile traitée et d'eau). Les différents panneaux bétonnés sont reliés entre eux par des joints de façon à constituer une enceinte continue dans la fouille. La figure 1.11 illustre le principe général de réalisation d'une paroi moulée.

Figure 1.11 Principe général de réalisation d'une paroi moulée [8].

Un panneau standard d'une paroi moulée a une épaisseur allant de 0,5 à 1,5 m, une longueur de 2,8 à 8 m. Il est généralement réalisé jusqu'à une profondeur d'environ 30 m [9]. On peut atteindre des profondeurs maximales de l'ordre de 120 m (selon l'outil de forage employé) mais les parois moulées de profondeur supérieure à 50 m sont rares. En réalisant les panneaux de manière contiguë, on obtient une paroi continue dans le sol. Une paroi moulée est réalisée à l'aide de béton armé de teneur minimale en ciment de 350 à 400 kg/m³. De plus, la conception de la cage d'armature de la paroi doit permettre un bon écoulement du béton et garantir un enrobage minimum de 75 mm. Un dimensionnement permet de calculer la fiche nécessaire à la stabilité [1].

Figure 1.12 Fonctions des parois moulées et dimensions extrêmes [8].

2.2.3. Les rideaux de palplanche

Ils sont généralement réalisés par emboîtement de profilés métalliques en U ou en Z et mis en œuvre par battage ou vibrofonçage de palplanches temporaires ou définitives dans le sol de fondation (Figures 1.13 a et b). Les palplanches sont assemblées les unes aux autres au moyen de nervures latérales appelées serrures pour former un écran vertical ou faiblement incliné et le plus souvent rectiligne, servant de retenue d'eau ou de massif de sol [1]. Contrairement aux ouvrages tels que les parois moulées, les rideaux de palplanches sont des ouvrages flexibles, souples (de par leur faible épaisseur) qui admettent des déplacements importants.

a : Rideau de palplanche

b : Profilés métalliques en U

Figures 1.13 Rideau de palplanche [10].

Le fonctionnement des rideaux de palplanches est celui d'une structure chargée par la poussée des terres et de l'eau soutenue et résistant à la flexion pour mobiliser des appuis constitués, d'une part, par le sol en fiche et, d'autre part, s'il y'a lieu, par des tirants disposés dans la partie libre de l'écran [1]. Dans le cas des rideaux ancrés, la fiche du rideau de palplanche constitue 30 à 50% de sa hauteur totale, alors que pour les rideaux non ancrés, elle peut atteindre une valeur de 70%.

Dans le cas général, l'écran est partiellement encastré dans le sol alors qu'en partie supérieure, des appuis sous forme de tirants sont présents dés que la hauteur libre de l'écran dépasse les 4 m. Ces appuis ont alors pour rôle de limiter les déplacements en tête de l'ouvrage et assurer sa stabilité.

Les rideaux de palplanches offrent plusieurs possibilités d'utilisations telles qu'un usage comme soutènement en remblai ou en déblai, en sites aquatiques. Les limites de leurs emplois sont liées à leur mode de mise en œuvre par fonçage ainsi que leurs caractéristiques mécaniques et dimensionnelles. En effet, du point de vue mécanique, la résistance à la flexion est limitée à celles des profilés métalliques disponibles sur le marché alors que les dimensions sont limitées par rapport au moyen de transport (24 m au plus).

2.3. Fonctionnement par ancrage ou clouage

Dans le cas d'ouvrages de soutènement pour lesquels l'effort de poussée des terres est repris par le poids ou l'encastrement de l'ouvrage, il est possible d'associer des tirants ou ancrages pour reprendre une partie des efforts, ce qui donne lieu à des ouvrages de type murs et parois moulées ancrés. Il en est de même pour les rideaux de palplanches, lorsque le sol de fondation est trop résistant et ne permet pas de foncer les palplanches sur une profondeur souhaitée. Les ouvrages ancrés rencontrés sont [1] :

2.3.1. Les murs ancrés

Le principe des murs ancrés consiste à réduire les forces actives de glissement et à accroître les contraintes normales effectives sur la surface de rupture.

Figure 1.14 Mur ancré [1].

2.3.2. Les parois moulées ancrées

La paroi ancrée est un écran en déblai composé de voile en béton armé et de tirants d'ancrages précontraints (Figures 1.15 a et b).

2.3.3. Les palplanches ancrées

Dans le cas où les pressions exercées par le massif de terre à retenir ne peuvent être équilibrées par les forces de butée mobilisées dans la partie en fiche et si la hauteur hors fiche est importante, alors on a souvent recours à un système d'ancrage en tête au moyen de tirants.

3. Les murs en béton armés

- 3.1. Les différents types de murs en béton armé
 - 3.1.1. Mur en T renversé

C'est la forme fréquente pour un mur en béton armé (Figure 1.17), dit encore cantilever du fait du voile encastré dans la semelle. Sans contreforts, il est économique pour des hauteurs de moins de 5 à 6 mètres et peut être réalisé sur un sol de qualités mécaniques peu élevées. Par rapport au mur-poids de même hauteur, à largeur égale de semelle, il engendre des contraintes plus faibles sur le sol.

Dans le cas de murs en déblai, c'est-à-dire réalisés en terrassant un talus, les limitations de volume de terrassement et les difficultés de tenue provisoire des fouilles obligent à réduire la longueur du talon et à augmenter celle du patin. Un exemple illustrant quelques phases de réalisation d'un mur de soutènement en béton armé destiné à protéger une voie (mur amont) est illustré sur la figure 1.17. Il s'agit de la phase de coulage sur place du rideau du mur sur la

semelle déjà réalisée avec aciers en attente pour encastrement du voile, du décoffrage du rideau et enfin de l'ouvrage fini et mis en service. Les murs en T peuvent également être préfabriqués (Figure 1.18) et comporter parfois des encorbellements en tête (Figure 1.19).

a) Ouvrage coulé sur place avec coffrage et acier de la semelle en attente pour réalisation du voile
b) Ouvrage après décoffrage et c) : Ouvrage terminé

Figure 1.17 Murs en béton armé en «T renversé» classique [12].

Figure 1.18 Mur en BA préfabriqué [12]

Figure 1.19 Mur en BA avec encorbellement en tête [12].

3.1.2. Mur à contreforts

Lorsque la hauteur du mur devient importante ou que les coefficients de poussée sont élevés, le moment d'encastrement du voile sur la semelle devient grand. Une première solution consiste à disposer des contreforts dont le but est de raidir le voile en le reliant à la semelle (Figure 1.20 a). Généralement, les contreforts sont placés à intervalles réguliers de 2 à 5 m (l'espacement idéal correspond à la demi hauteur du mur) et agissent comme raidisseurs du rideau du mur de soutènement (Figures 1.20 a, b et c). Toutefois, la solution de murs avec

contreforts est assez onéreuse à cause des complications du calcul de ferraillage et d'exécution des travaux. A noter que les contreforts peuvent être disposés du coté des remblais (Figure 1.20 b) ce qui entrainerait des problèmes de remblaiement ou du coté aval du mur (Figure 1.20c) ce qui affecterait l'aspect extérieur du mur (esthétique discutable).

(a) Schéma de principe
 (b) contrefort coté amont
 (c) contrefort coté aval
 Figure 1.20 Murs à contreforts en béton armé.

3.1.3. Murs divers

Afin de réduire les poussées des terres et par conséquence le moment d'encastrement en pied du rideau d'un mur de soutènement de hauteur importante, plusieurs solutions peuvent être envisagées. Toutefois, même si ces solutions sont attractives et sécurisantes, elles présentent l'inconvénient d'être d'une exécution difficile et de grever le coût du mur, même si l'on économise par ailleurs sur la matière. Nous pouvons relever les murs suivants :

3.1.3.1. Murs à consoles

La masse de remblai sur la console joue un rôle stabilisateur. La séparation du massif en deux parties distinctes réduit les efforts de poussée. Mais, le remblaiement et le compactage sont difficiles et l'encastrement de la console constitue un point faible de la structure (Figure 1.21).

3.1.3.2. Murs à dalle de frottement

On a recours à cette solution lorsqu'on veut surelever un mur en maçonnerie, déjà existant, par un mur en béton armé sans appliquer sur le premier une charge excessive. Ils sont constitués d'un voile mince en béton armé relié à une dalle horizontale noyée dans le remblai au moyen de tirants. La dalle résiste au mouvement par frottement sur une ou deux facettes (Figure 1.22).

Figure 1.22 Mur en béton armé à dalle flottante.

3.1.3.3. Murs à dalle d'ancrage

Ce type est réalisé dans le cas des murs de quai. Ils sont analogues aux précédents, sauf que la dalle est assez éloignée du mur et mobilise le remblai en butée (Figure 1.23).

Figure 1.23 Mur à dalle d'ancrage.

3.1.3.4. Murs à échelle

Ouvrages constitués d'une suite de tirants courts qui travaillent essentiellement au frottement latéral dans le massif. Ce type de mur devient de plus en plus rare et présente les inconvénients suivants:

- Système fragile car, lors des terrassements les tirants risquent de fissurer par flexion ;
- La valeur du coefficient de frottement tirant-remblai n'est pas très sûre ;

Figure 1.24 Mur à échelle.

3.2. Constitution des murs de soutènement en béton armé

Ils se composent généralement de deux parties:

1. La paroi résistante :

Constituée d'un rideau (R) ou écran le plus souvent verticale qui reçoit les poussées des terres et surcharges. Il est encastré à sa base dans la semelle et peut être :

- Terminé ou pas dans sa partie supérieur par une poutre de redressement (PR) dont le rôle est de diminuer les déformations au sommet du rideau (Figure 1.25 a) ;
- Renforcé par des contreforts (éléments perpendiculaires au rideau) qui permettent d'augmenter la rigidité du rideau à la flexion (Figure 1.25 b) ;
- 2. La semelle de fondation :

C'est la fondation de l'ouvrage dont e débordement avant le rideau assure une bonne répartition des contraintes alors que le celui après le rideau augmente la stabilité du mur au renversement. En présence de contrefort, l'encastrement permet d'améliorer la rigidité de la semelle en faisant travailler le rideau et la semelle en dalle encastrée sur deux (2) ou trois (3) côtés.

Figure 1.25 Principaux éléments constitutifs d'un mur de soutènement en béton armé.

Parfois, la stabilité au glissement du mur nécessite de disposer sous la semelle une nervure dite 'bêche. Celle-ci peut être mise soit, à l'avant (Figure. 1.26 a) ou à l'arrière de la semelle (Figure. 1.26 b), ou parfois encore en prolongement du voile (Figure. 1.26 c). Le premier cas est intéressant car il permet de mettre la semelle totalement hors gel [13]. Mais à l'ouverture de la fouille de la bêche, il y a un risque de décompression du sol dans la zone où il est le plus

sollicité. De plus, il y a aussi un risque de voir, après la construction du mur, la butée devant la bêche supprimée par des travaux de terrassement (ouverture d'une tranchée pour pose d'une canalisation par exemple).

Figure 1.26 Diverses dispositions de bêches dans un mur de soutènement en béton armé [13].

Le troisième cas (c) est peu employé. Il est néanmoins très intéressant car il permet de réaliser facilement le ferraillage de l'encastrement du voile sur la semelle en prolongeant dans la bêche les treillis soudés formant des armatures en attente.

4. Autre type de murs de soutènement

En plus des divers murs introduits plus haut, on peut également trouver d'autres types de murs tels que les murs pneus. Ces derniers utilisent des pneumatiques linéairement disposés et associés à des remblais qui remplissent les vides et séparent les nappes de pneumatiques (Figures 1.27 a et b).

Figures 1.27 Mur en pneu sol [14].

5. Conclusion

Dans ce chapitre, on a passé en revue de manière globale, les ouvrages de soutènement destinés à prévenir le glissement d'un talus raide situé en amont du mur tout en mettant en avant, les avantages et les inconvénients des différents types d'ouvrages. Une attention particulière a été donnée aux murs en béton armé étant donné qu'il s'agit des plus utilisés actuellement. Pour cela, une description plus détaillée de ce type de structure du point de vue matériaux et composants est exposée. Par la suite, les efforts appliquées, la stabilité, le dimensionnement et l'entretient de ces ouvrages seront présentés.

1. Introduction

Les pressions des terres sur les ouvrages de soutènement sont fortement influencées par le déplacement relatif entre le mur et le sol. Selon ce déplacement, le sol se trouvera au repos, en équilibre de poussée (état actif : mur se déplace loin du sol derrière lui induisant des déformations latérales en extension) ou de butée (état passif : mur se déplace vers le sol produisant ainsi des déformations latérales de compression) [1].

2. Etat des sols au repos

A une profondeur « z » sous un remblai indéfini, la contrainte verticale sur une face horizontale est donnée par [15] :

$$v = .z$$
 (2-1)

L'état des contraintes dans un sol n'est pas hydrostatique. En effet, la contrainte horizontale $_{\rm h}$ est différente de la contrainte verticale $_{\rm v}$. Ainsi, s'il n'y'a pas de déplacement latéral, la contrainte horizontale sur une face verticale sera exprimée par :

$$\sigma_{\rm h} = K_0 \,.\, \sigma_{\rm v} = K_0 \,.\, \gamma.\, z \tag{2-2}$$

Où K₀ désigne le coefficient de poussée des terres au repos.

Le diagramme de pression des terres au repos étant linéaire, le résultante P_0 par mètre linaire du mur est :

$$P_{0} = \int_{H} \sigma_{h} dz = \int_{H} K_{0} \cdot \gamma . z dz$$

$$P_{0} = \frac{1}{2} \cdot K_{0} \cdot \gamma . H^{2}$$
(2-3)

Les valeurs du tableau 2.1 ci après peuvent être retenues comme ordre de grandeur du coefficient K_0 de poussée du sol au repos:

Tableau 2.1 Ordre de grandeur du coefficient de poussée du sol au repos [7].

Type de sol	Sable	Argile	Argile très molle et vase	Roche à très grande profondeur
Valeur de K ₀	0.5	0.7	1.0	1

Pour les matériaux granulaires, K₀ est souvent estimé en utilisant la formule de JAKY [15] :

$$K_0 = 1 - \sin$$
 (2-4)

3. Notions de poussée et de butée

Selon le déplacement relatif d'un ouvrage de soutènement, le sol se trouvera en équilibre de poussée (état actif : ouvrage se déplace loin du sol derrière, lui induisant des déformations latérales en extension) ou de butée (état passif : l'ouvrage se déplace vers le sol produisant ainsi des déformations latérales de compression) [1].

Pour qu'il y'ait mobilisation des pressions de poussée ou de butée, il faut qu'il y'ait un déplacement évalué à prés de H/1000 en cas de poussée et supérieur à H/100 en cas de butée

(Figure 2.1). On relève ainsi, que les déplacements nécessaires pour mobiliser la butée sont 10 fois plus importants que ceux des poussées [2].

Lorsque seuls des déplacements très faibles sont admissibles, une valeur de coefficient de butée $K_p = 1$ est adoptée.

Figure 2.1 Etat de butée et de poussée [1].

4. Calcul des pressions sur un écran

En pratique, il existe plusieurs approches de détermination de la pression qu'exerce un sol sur un écran. C'est d'ailleurs la première étape pour dimensionner ou vérifier la stabilité d'un ouvrage de soutènement. Parfois, les différentes méthodes donnent des résultats qui peuvent diverger. Dans ce qui suit, on propose de rappeler les principes des théories de Coulomb, de Rankine et de l'état d'équilibre de Boussinesq.

4.1. Théorie de Coulomb (1773)

Dans cette méthode, les forces de poussée et de butée s'exerçant derrière un écran sont évaluées à l'état de l'équilibre limite. La méthode est basée sur l'équilibre d'un coin de sol situé entre l'écran et une surface quelconque de glissement (Figure 2.2). Elle s'applique aux milieux pesant et surchargés et repose sur les hypothèses suivantes [2]:

- 1- Surface de rupture plane et passe par le pied de l'écran (coin de Coulomb) ;
- 2- L'angle de frottement entre l'écran et le sol est pris en compte ;
- 3- Le sol est homogène et isotrope ;
- 4- La cohésion n'est pas prise en compte et l'écran est rigide ;

Pour un écran vertical de hauteur H soutenant un massif de sol horizontal et sans cohésion, l'équilibre des forces qui s'appliquent sur le coin de sol (R, W et F = -P) permet de calculer la poussée en prenant le maximum de F.

Figure 2.2 Poussée sur un écran selon la méthode de Coulomb [2]

- ✓ W : Poids du prisme de sol (ABC ou écran/ligne de rupture/ surface remblai) ;
- ✓ P : Force exercée par l'écran sur le sol (inclinée de par rapport à la normale de l'écran et fonction de l'angle);
- \checkmark R : Réaction totale du sol sur le plan AC (fait un angle avec la normale au plan de rupture)

La force de poussée des terres s'exprime par :

$$P_a = 1/2 \quad K_a (H)^2$$
 (2-5)

La force de butée s'exprime par :

$$P_p = 1/2 K_p (H)^2$$
 (2-6)

Avec les coefficients de poussée Ka et de butée Kp donnés par :

$$K_{a(p)} = tan^2(/4 - ./2)$$
 (2-7)

=+1 en cas de coefficient de poussée et =-1 en cas de coefficient de butée.

En supposant une répartition linéaire des contraintes sur le parement de l'écran, le point d'application de la force de poussée est situé au tiers inférieur de l'écran H/3

Poncelet a généralisé la méthode de Coulomb à un écran incliné de et un sol incliné de par rapport à l'horizontale [2].

Dans ce cas, la force de poussée des terres P_a est donnée par :

$$P_a = 1/2 \quad K_a (H')^2$$
 (2-8)

avec : H'=H/cos()

Le point d'application de la force de poussée est à H'/3 de la base.

Et les coefficients de poussée et de butée des terres K_a et K_p sont donnés par [16]:

$$K_{a(b)} = \frac{\cos\left(\frac{1}{2} - \epsilon\lambda\right)}{\cos\left(\frac{1}{2} - \epsilon\lambda\right)} \frac{1}{\left[1 + \epsilon\sqrt{\frac{\sin\left(\delta + \phi\right) \cdot \sin\left(\phi - \epsilon\beta\right)}{\cos\left(\delta + \epsilon\lambda\right) \cdot \cos\left(\beta - \lambda\right)}}\right]^2}$$
(2-9)

=+1 en cas de coefficient de poussée et =-1 en cas de coefficient de butée

: Angle d'inclinaison du parement de l'écran ;

- : Angle que fait la surface du remblai avec l'horizontale ;
- : Angle de frottement interne du sol ;

Pour un écran lisse (=0), avec un talus à surface horizontale (=0) et un parement vertical (=0), on retrouve l'expression (2-7) du coefficient de poussée des terres.

$$K_a = \frac{1 - \sin(\phi)}{1 + \sin(\phi)} = \tan^2(\frac{\pi}{4} - \frac{\pi}{2})$$

4.2. Théorie de Rankine (1857)

Cette méthode permet de déterminer les forces de poussée et de butée s'exerçant derrière un mur à partir de la connaissance de l'état des contraintes () dans le sol au contact de l'ouvrage [1, 15]. La méthode de Rankine est basée sur les hypothèses suivantes :

✓ Sol isotrope ;

✓ Continuité des contraintes dans le sol même en présence d'un écran dans le massif de sol.

Selon Rankine, la résultante des contraintes est toujours perpendiculaire à l'écran. Ceci signifie que le frottement entre l'écran et le sol est ignoré (=0 parement de l'écran considéré comme lisse). Autrement dit, le frottement sol-écran n'est jamais mobilisé au niveau de la paroi verticale.

Dans le cas plus général d'un massif pulvérulent à surface libre inclinée d'un angle par rapport à l'horizontale et dont le parement de l'écran présente une inclinaison par rapport à la verticale tel que représenté par la figure 2.4, en admettant que les contraintes de poussées agissent de manière parallèle à la surface libre, la résultante de poussée s'exerçant sur l'écran est donnée par :

$$P_a = \int_H \sigma_y(z) dz = \int_{H'} K_a.(.z) \cos .dz$$
 (2-10)

$$P_a = \frac{1}{2.\gamma} K_a H^2 \cos(2-11)$$

H': désigne la longueur de la surface de contact écran/sol, liée à la hauteur du parement de l'écran par : H'=H/cos ()

P_a s'applique au tiers de H' à partir de la base de l'écran.

Le même raisonnement est valable pour la pression passive ou de butée.

Les coefficients de poussée active et passive ou de butée sont donnés par [16] :

$$K_{a(p)} = \frac{\cos(\beta) - \sqrt{\cos^2(\beta) - \cos^2(\phi)}}{\cos(\beta) + \sqrt{\cos^2(\beta) - \cos^2(\phi)}}$$
(2-12)

=+1 en cas de coefficient de poussée K_a et =-1 en cas de calcul de coefficient de butée K_p Si le sol de remblai est à surface horizontale (=0), on aura :

$$K_{a} = \frac{1 - \sin(\varphi)}{1 + \sin(\varphi)} = \tan^{2}(\frac{\pi}{4} - \frac{1}{2}) \text{ et } \frac{1}{1^{a}} = \frac{1}{2} \cdot K_{a} \cdot \gamma \cdot H_{2}$$
(2-13)

$$K_{p} = \frac{1 + \sin(\frac{\varphi}{\varphi})}{1 - \sin(\frac{\varphi}{\varphi})} = \tan^{2}\left(\frac{\pi}{4} + \frac{1}{2}\right) \text{ et } \overset{\text{def}}{=} \frac{1}{2} \cdot K_{b} \cdot \gamma \cdot H_{2}$$
(2-14)

Ainsi, lorsque l'écran est lisse (=0), vertical (=0) et que le sol est horizontal (=0), alors les théories de Rankine et de Coulomb donnent la même valeur de coefficients de poussée et de butée.

Remarque : Pour le bon choix du coefficient de poussée, une attention particulière doit être apportée aux signes des angles , , illustrés sur la figure 2.4. Ainsi, en cas de poussée, les angles sont positifs lorsqu'ils sont dans le sens trigonométrique (inverse aux aiguilles d'une montre). Pour la butée, les angles sont considérés positifs quand ils ont le sens des aiguilles d'une montre.

Figure 2.4. Convention de signe des angles [2].

Pour une surface de contacte écran/sol dite lisse, donc caractérisée par une absence de contraintes de cisaillement, les pressions sur l'écran sont normales. Autrement l'angle de frottement écran/sol =0.

5. Theorie de Boussinesq (1882)

Boussinesq a introduit l'effet du frottement sol-écran non pris en compte par Rankine [2]. L'effort de poussée des terres 'P' subsiste mais fait un angle (angle de frottement sol-écran) avec la normale du mur ou écran. Lorsque la surface de contact est parfaitement rugueuse,

l'écran et le sol sont considérés comme un seul corps et le frottement se fait à l'interface sol/sol et $=\pm$.

Dans le cas général, K_a et K_p sont fonction de , , et et leurs valeurs sont données dans des tables dont les plus récentes sont celles de Caquot-Kerisel et Absi [2].

Tableau 2.2 : Tables de Caquot-Kerisel du coefficient de poussées K_a de quelques cas courants [15].

		/	0	0.4	0.6	0.8	1
	δ/φ						
$\phi = 30^{\circ}$	0	$=0^{\circ}$	0,333	0,386	0,428	0,500	0,850
		= 10°	0,398	0,470	0,528	0,634	-
	2/3	$=0^{\circ}$	0,300	0,352	0,395	0,469	0,822
		= 10°	0,366	0,440	0,499	0,602	-
	1	= 0°	0,308	0,363	0,409	0,488	0,866
		= 10°	0,378	0,458	0,534	0,634	-
$\phi = 35^{\circ}$	0	= 0°	0,271	0,316	0,353	0,419	0,767
		= 10°	0,336	0,403	0,456	0,548	-
	2/3	= 0°	0,247	0,291	0,329	0,397	0,756
		= 10°	0,314	0,383	0,439	0,538	-
	1	= 0°	0,260	0,309	0,349	0,423	0,819
		= 10°	0,333	0,409	0,472	0,583	-
$\phi = 40^{\circ}$	0	= 0°	0,218	0,254	0,286	0,342	0,676
		= 10°	0,282	0,341	0,388	0,472	-
	2/3	= 0°	0,202	0,239	0,271	0,330	0,683
		= 10°	0,269	0,331	0,382	0,475	-
	1	= 0°	0,219	0,261	0,297	0,364	0,766
		= 10°	0,295	0,366	0,425	0,533	-

Avec :

 $\boldsymbol{\phi}$: Angle de frottement interne du remblai ;

 $\boldsymbol{\beta}$: Inclinaison de la surface libre du talus par rapport à l'horizontale ;

 $\boldsymbol{\lambda}$: Angle de l'écran avec la verticale ;

 δ : Inclinaison de la contrainte de poussée par rapport à la normale à l'écran ;

A noter également que l'hypothèse d'un écran lisse (=0) conduit en général à des valeurs pessimistes de K_a et K_p et par conséquence, cette hypothèse se trouve du coté de la sécurité vis-à-vis du renversement et glissement de l'écran. En effet, les coefficients K_a et K_p diminuent lorsque augmente. En outre, si l'écran est rugueux, K_a diminue et K_p croit, ce qui va encore dans le sens de la sécurité. A l'inverse, la composante tangentielle due à la rugosité entraine des efforts verticaux supplémentaires pouvant nuire à la stabilité au poinçonnement de la fondation de l'écran et dont il convient de tenir compte.

6. Prise en compte de la poussée hydrostatique

En présence d'eau, la contrainte de poussée s'exerçant sur un écran de parement vertical supportant un massif horizontal (=0) (Figure 2.5a) est alors :

$$z = w z + K_a(-w).z$$
 (2-15)

Avec : w: Poids spécifique de l'eau

 $Et K_a = tg^2 \left(\frac{\pi}{4} - \frac{\varphi}{2}\right)$

Ce qui donne :

$$P_a + P_{aw} = 1/2 . [\gamma_w + K_a . (\gamma - \gamma_w)] . H^2$$
 (2-16)

Ou bien :

$$P_a + P_{aw} = 1/2 (_w + K_a ._") H^2$$
 (2-17)

Avec : "= - w.

Si l'eau n'affleure qu'à une hauteur h_1 de la base ($h_1 < H$) (Figure 2.5b) alors, la poussée est donnée par (Figure 2.5c) :

$$P_{a \text{ totale}} = P_1 + P_2 + P_3 + P_4$$

$$P_{a \text{ totale}} = \frac{1}{2} K_a. \gamma. (H - h_1)^2 + K_a. \gamma. h_1. (H - h_1) + \frac{1}{2} \gamma. (H - h_1)^2 + \frac{1}{2} \gamma_w. h_1^2$$
(2-18)

Figure 2.5. Détermination des poussées en présence d'eau.

Dans ce qui suit, on donne un exemple de valeur de poids volumiques () de quelques sols.

Type de sol	(kN/m^3)
Terre végétale	14.50
Terre argileuse	18.00
Marne	17.00
Sable fin	14.00
Terre sableuse	17.00
Cailloux et gravier	15.00

Tableau 2.3 Poids volumiques de sols courants [17].

7. Prise en compte de l'effet de surcharges

Un écran de soutènement peut être soumis à des surcharges agissant soit directement sur le mur, soit par l'intermédiaire du remblai. Ces surcharges sur le terrain induisent une augmentation de la contrainte verticale et par conséquence la contrainte horizontale.

Trois cas de surcharge peuvent se présenter [16] :

- ✓ Surcharge uniforme ;
- ✓ Surcharge distribuée suivant une bande uniforme ;
- ✓ Surcharge ponctuelle ;

7.1. Surcharge uniforme

La contrainte $_{aq}$ due à une surcharge uniforme q agissant à la surface d'un sol non cohérent (C=0) et non pesant (=0) est donnée par :

Figure 2.6 Pression de surcharge sur un mur [18].

 K_{aq} : Coefficient de poussée (ou de butée) qui dépend de (inclinaison de l'écran), de (angle de frottement), de (inclinaison de la surface du remblai) et de (angle de frottement écran/sol).

Avec : q qui désigne la surcharge uniforme.

Le coefficient de pression K_{aq} due à la surcharge q est donné par [18]:

$$K_{aq} = \frac{\left[\cos() - .\sin() .\cos(\Delta_2)\right]}{\left[\cos() + .\sin() .\cos(\Delta_1)\right]} \cdot e^{(-2.\varepsilon.y \tan(\phi))}$$

Et :

$$= - +1/2(_{1}+_{2}+_{.}-_{.})$$
 (2-20b)

$$sin(_1) = sin(_)/sin(_)$$
 (2-20c)

$$sin(_2) = sin(_)/sin(_)$$
 (2-20d)

prend la valeur +1 en cas de calcul de coefficient de poussée active et -1 pour le cas de calcul de coefficient de butée.

Si le sol est homogène, la pression $_q$ est uniforme et sa résultante P_{aq} est appliquée à mihauteur de l'écran. Elle est donnée par :

$$\mathbf{P}_{\mathrm{aq}} = \mathbf{K}_{\mathrm{aq}}.\,\mathbf{q}.\mathbf{H}' \tag{2-21a}$$

Le tableau 2.4 donne des valeurs de K_{aq} pour une surcharge normale en fonction de $\ , \ , \ et \ .$

Tableau 2.4 Valeurs du coefficient de poussées K_{aq} de surcharges verticales (=0) [18].

	- (°)	=10°	=20°	=30°	=40°
δ=φ	+15	0.719	0.543	0.427	0.349
	+10	0.697	0.510	0.385	0.300
	+5	0.677	0.478	0.348	0.259
	0	0.656	0.449	0.315	0.224
	-5	0.636	0.422	0.285	0.194
	-10	0.616	0.395	0.258	0.167
	-15	0.598	0.371	0.233	0.144
δ=2/3φ	+15	0.724	0.536	0.410	0.316
	+10	0.702	0.508	0.372	0.274
	+5	0.681	0.476	0.336	0.236
	0	0.660	0.447	0.304	0.204
	-5	0.640	0.420	0.274	0.176
	-10	0.621	0.392	0.248	0.152
	$ \begin{array}{c} 0 \\ -5 \\ -10 \\ -15 \\ +15 \\ +10 \\ \end{array} $	0.602	0.369	0.224	0.131
$\delta = 0$	+15	0.772	0.592	0.448	0.334
	+10	0.749	0.555	0.407	0.290
	+5	0.726	0.521	0.368	0.251
	0	0.704	0.490	0.333	0.217
	-5	0.682	0.460	0.301	0.188
	-10	0.662	0.431	0.272	0.162
	-15	0.642	0.405	0.246	0.140

7.2. Surcharge concentrée Q

La pression latérale, au point considérer, due à une surcharge ponctuelle (Figure 2.7.a) peut être calculée à travers l'équation empirique suivante [15]:

$${}_{h}^{npu}(z) = \frac{3. Q. z. x_{z}^{ne} I^{15}}{2.} (2-22)$$

7.3. Surcharge distribuée suivant une bande uniforme

C'est généralement le cas d'une route, d'une voie ferrée ou d'une semelle filante, parallèle, au mur de soutènement. La pression latérale (Figure 2.7. b) est donnée par [15]:

$$\stackrel{\text{em}}{=} 2.\frac{q}{-}.[(+ \sin].\sin_{2\alpha}^{1e} + [(- \sin].\cos_{2\alpha}^{1on}$$
(2-23)

Avec :

: Angle AMB (en radian) d'un point M situé à une distance « z » de la surface du remblai ;

: Angle que fait le parement amont vertical de l'écran et la droite MM' (M' situé à midistance de la largeur de la bande représentant la surcharge) ;

(a) : Cas de surcharge ponctuelle (b) : Cas de surcharge uniforme sur une bande

Figure 2.7 Calcul des contraintes horizontales dues aux surcharges en surface [15].

Enfin, il est utile de noter que, généralement, les calculs des poussées sur un ouvrage de soutènement, sont menés en considérant un sol sans cohésion. En effet, l'expérience à indiqué que le rôle de la cohésion peut varier dans le temps, qu'il est mal connu et difficilement mesurable. De plus, la non prise en compte de cette cohésion va dans le sens de la sécurité.

Pour plus de détails de calculs relatifs aux configurations non décrites dans ce polycopié tel que le cas de sols multicouches, sols cohérents ...etc, il est recommandé de consulter les ouvrages de mécanique des sols.

8. Dimensionnement des murs de soutènement

Généralement, les méthodes de dimensionnement des ouvrages de soutènement se basent sur des calculs à la rupture avec prise en compte de coefficients de sécurité notamment pour les ouvrages classés comme rigides tels que les murs poids et les murs en béton armé alors que pour les ouvrages flexibles ou semi-flexibles à ancrage comme les parois moulées et les rideaux de palplanches, il est courant de dimensionner l'ouvrage en se basant plutôt sur un calcul en déformation. Ce manuscrit ne s'intéressera qu'aux soutènements rigides de type mur poids et mur en béton armé simple ou avec contreforts.

Le dimensionnement se base sur l'hypothèse d'un mur très long et le calcul se fera pour une longueur unité (L=1m). La hauteur H du mur et sa rugosité étant généralement des données du problème, on cherche la largeur du mur en suivant les étapes et vérifiant les critères suivants [1] :

- 1- Prédimensionnement de l'ouvrage ;
- 2- Détermination des efforts sollicitant le mur ;
- 3- Vérification de la stabilité externe du mur vis-à-vis de :
- ✓ Renversement (Figure 2.8 a) ;
- ✓ Glissement sur la base (Figure 2.8 b) ;
- ✓ Poinçonnement du sol de fondation (Figure 2.8c) ;
- ✓ Rupture du mur par grand glissement du sol de fondation (Figure 2.8 d) ;
- 4- Vérification de la stabilité interne du mur vis-à-vis de la rupture des éléments structuraux de l'ouvrage (Figure 2.9) ;

(a) Renversement (b) Glissement (c) Poinçonnement (d) Grand glissement Figure 2.8 Stabilité externe d'un mur de soutènement [1].

En plus des justifications externes et internes des murs de soutènement citées, l'Eurocode 7 [19] préconise également de vérifier :

- ✓ La rupture combinée dans le terrain et dans les éléments constituants la structure ;
- ✓ La rupture par soulèvement hydraulique ;
- ✓ Les mouvements du mur de soutènement pouvant affecter son apparence, son efficience ou celle d'ouvrages voisins ;
- ✓ Les fuites inacceptables à travers ou par-dessus le mur ;
- ✓ Le transport intolérable de particules de sol ;
- ✓ Les modifications inadmissibles de l'écoulement de l'eau souterraine ;

En outre, l'Eurocode 7 a établi des cas pour lesquels un calcul de déplacement en état limite de service est recommandé. Il s'agit de :

- ✓ Mur soutenant plus de 6 m de sol cohérent de faible plasticité ;
- ✓ Mur soutenant plus de 3 m de sol de forte plasticité ;
- ✓ Mur reposant ou est en contact avec une argile molle ;

8.1. Prédimensionnement d'un mur de soutènement et règles constructives

Le calcul d'un mur de soutènement étant une justification de sa stabilité, il est nécessaire de définir à priori ses dimensions. Les figures 2.10 a et b ci-dessous illustrent les proportions usuelles pour un mur de soutènement poids en béton et un mur cantilever en béton armé.

Figure 2.10 Prédimensionnement de murs [20] :(a) poids, (b) en béton armé

Un ancrage D forfaitaire est pris généralement égal à :

D=1m si H<4m et D=1.5 si D>4m;

8.2. Efforts sollicitant un mur de soutènement

Pour le calcul du ferraillage et donc la stabilité interne du mur de soutènement, la poussée active des terres ou de surcharges d'exploitation sont supposées s'exercer avec un angle d'inclinaison nul sur la normale au parement. Lorsque le parement en amont du rideau est incliné de , la composante verticale de la poussée est négligée. Cette simplification va dans le sens de la sécurité.

8.2.1. Identification des efforts

Ils sont illustrés sur la figure 2.11 et peuvent être définis comme :

A : Les forces verticales

- 1. W : Poids propre du mur (W_r : pour le rideau et W_s pour la semelle). Dans le cas de murs de soutènement avec contreforts, on peut tenir compte du poids propre des contreforts dans le calcul de la charge verticale qui doit être rapporté à 1mètre linéaire du mur ;
- 2. V : Poids des terres surmontant la fondation à l'amont ;
- 3. V_p : Poids des terres situé à l'amont de la fondation (généralement négligé) ;
- 4. V_1 : Poids dû à la charge d'exploitation q ;

B : <u>Les forces horizontales</u>

- 1. P_a : Poussée des terres soutenues à l'amont du mur et dépendant des caractéristiques du sol (poids volumique, angle de frottement interne) et de la hauteur des terres à soutenir ;
- 2. P_p : Butée du terrain situé à l'aval du mur (généralement négligé) ;
- 3. P_{aq}: Poussée due à la charge d'exploitation ;

A ces forces peuvent éventuellement s'ajouter :

- 1. Des forces concentrées en certains points (tirants d'ancrage par exemple) ;
- 2. Si le drainage n'est pas assuré, alors la présence d'eau engendrera des pressions hydrostatiques en amont et en aval ainsi que des sous-pressions sous la semelle ;

A titre indicatif, un remblai horizontal saturé en eau, exercerai une poussée 2.5 fois plus importante que si le remblai est sec. Pour cela, il convient de rappeler l'intérêt de la prévision de système de drainage vertical et horizontal et d'évacuation par le biais de barbacanes [2].

Figure 2.11 Représentation schématique des actions extérieures exercées sur un mur

A noter que par mesure de sécurité, la butée P_p est généralement négligée. En effet, cette butée peut toujours être supprimée par des travaux de terrassement ultérieurs (pose de canalisations) et les déplacements du pied du mur ne sont généralement pas suffisants pour la mobilisation à l'aval du mur de cette butée. En effet, ce déplacement de l'ordre de H/1000 est non admissible pour cette catégorie d'ouvrages.

8.2.2. Détermination des valeurs des efforts

On présente dans ce qui suit un exemple de calcul de ces différents efforts pour le mur de soutènement présenté sur la figure 2.12.

• Poussée des terres sur le rideau P_a

Elle est donnée par l'expression (2-5) à savoir :

$$P_a = 1/2 \quad K_a \left(h_r \right)^2$$

Avec :

: Poids spécifique des terres (en kN/m³).

 $K_a: Coefficient \ fonction \ de \ l'angle \ de \ frottement \ interne \ , \ de \ l'inclinaison \ du \ mur, \ de \ l'inclinaison \ du \ remblai.$

Comme la distribution des poussées le long du rideau du mur de soutènement est triangulaire, alors la poussée P_a est appliquée à $h_r/3$ de la base du rideau.

• Poids des terres V

La composante verticale de la poussée due aux terres correspond simplement au poids des terres situées au dessus de la semelle en amont du mur (côté poussée)

V= . v'

Avec : v' qui désigne le volume des terres calculé pour une tranche de 1 ml

$$V = .h_{r}.b_{2}. (1ml)$$
(2-24)

8.2.2.2. Efforts dus à la surcharge

L'effet de la surcharge d'exploitation sur un mur de soutènement se manifeste par une composante horizontale à répartition rectangulaire uniforme de résultante P_{aq} et une composante verticale V_1 traduisant le poids de cette surcharge.

• Poussée de la surcharge sur le rideau P_{aq}

 $P_{aq}(h_i) = K_a. q$ poussée à une hauteur h_i . La pression totale est alors donnée par :

$$Q_1 = K_a. q. h_r$$
 (2-25)

Comme la distribution des poussées le long du rideau du mur de soutènement est uniforme, alors la poussée P_{aq} est appliquée à $h_r/2$ de la base du rideau.

• Poids de la surcharge V₁

Donné pour une bande de 1 mètre linéaire par :

$$V_1 = q. b_2. (1ml)$$
 (2-26)

8.2.2.3. Efforts dus à l'eau

En cas de présence d'une nappe d'eau, les poussées dues à cette eau sont illustrées sur la figure 2.14.

Figure 2.14 Diagramme des poussées dues à l'eau.

Remarque :

Les pressions hydrostatiques en aval du mur de soutènement ne sont pas considérées et donc non représentées sur la figure 2.14.

8.3. Vérification de la stabilité externe d'un mur de soutènement

La stabilité externe d'un mur de soutènement doit être étudiée à l'état limite ultime [2, 7].

8.3.1. Stabilité au renversement

Cette vérification s'effectue à l'ELU en considérant la combinaison fondamentale et, s'il y'a lieu, la combinaison accidentelle. La combinaison fondamentale s'écrit :

$$1,35 G_{max} + G_{min} + 1,5 Q \tag{2-27}$$

Avec : G_{max} correspondant aux actions défavorables telles que la pression des terres et G_{min} correspondant aux actions favorables telles que le poids de l'ouvrage, poids des terres sur la semelle amont.

8.3.1.1. Cas de mur en béton armé

Cette vérification est basée sur le fait de considérer que le sol sous la semelle de fondation doit rester entièrement comprimé. Il s'agit d'une vérification d'absence de risque d'un renversement ou basculement du mur par rapport au point « A » point extrême de la semelle

à l'aval du mur à travers la définition d'un rapport de moments d'actions stabilisantes / actions déstabilisantes, que l'on compare à un coefficient de sécurité défini en hypothèse. La vérification s'écrit comme suit :

$$F_{\rm r} ({\rm sans \ but{\acute e}}) = M_{\rm st/A} / M_{\rm r/A} \quad 1,5 \tag{2-28}$$

M_{st/A} et M_{r/A} sont les moments stabilisants et renversants calculés par rapport au point A.

Les moments stabilisants ' M_{st} ' sont induits par :

L'action du poids propre de l'ouvrage et du volume de sol qui charge la fondation. En outre, bien que participant à la résistance au renversement du mur, par mesure de sécurité, l'effet de la butée est négligé.

Les moments renversant 'Mr' sont induits par :

La poussée des terres, des surcharges ainsi que celle de l'eau si celle-ci est retenue par l'ouvrage.

En l'absence de poussées dues à des forces concentrées supplémentaires et en négligeant l'effet de la butée, Les moments stabilisant M_{st} et renversant M_r sont calculés comme suit :

 $M_{st}=M(W_r)+M(W_s)+M(V)+M(V_1)$

 $M_r = 1.35M(Q) + 1.5 M(Q_1)$

Soit donc :

$$F_{r} = \frac{M(w_{r}) + M(w_{r}) + M(V_{l})}{1.35 M(Q) + \frac{1}{1.5} M(Q_{1})} \ge 1.5$$
(2-29)

A noter que cette vérification est effectuée en particulier pour des sols durs. En cas d'un sol mou ou de résistance médiocre, il est conseillé d'éviter le risque de renversement en dimensionnant la semelle de façon à avoir une excentricité e 0.

Dans le cas où l'on tient compte de la butée, pour que le mur soit stable, on exige un coefficient de sécurité au moins égal à 2. Donc, on vérifie :

$$F_r (\text{sans butée}) = M_{\text{st/A}} / M_{r/A} 2 \qquad (2-30)$$

8.3.1.2. Cas de mur poids

Pour les murs poids, une condition suffisante de stabilité au renversement est traduite par une vérification de la résultante des efforts qui doit se situer dans le tiers central du mur (soit une excentricité e b/6) [2, 7]. La vérification de cette condition signifie que le sol sous la semelle est entièrement comprimé (Figure 2.15). Cette règle est parfois également utilisée pour la vérification au renversement des murs en béton armé [18].

A noter que cette règle du tiers central est plus sévère que celle du rapport des moments. Généralement, son application aboutie à des valeurs de facteur F_r voisin de 3. Par ailleurs, si le mur est fondé sur un sol dur, alors on pourra admettre que la réaction sur la base soit en dehors du tiers central.

Figure 2.15 Règle du tiers centrale [1].

En cas de vérification de la stabilité au renversement vis-à-vis d'une situation accidentelle (en tenant compte de l'action d'un séisme par exemple), dans son article 10.4.7, le règlement parasismique algérien (RPA99/V2003) préconise un coefficient de sécurité de 1,3 [21]. La résistance au renversement étant le résultat du poids du mur, de sa fondation et du remblai sus-jacent.

8.3.2. Stabilité de glissement de base

Il s'agit de vérifier que le mur ne glisse pas à sa base sur un sol donc qu'il n'y a pas de risque de déplacement horizontal [2, 7]. Autrement, on doit s'assurer que les contraintes de cisaillement mobilisées à la base du mur sont supérieures à la résistance d'adhérence base/sol.

Pour cela, on vérifie que la composante des efforts horizontaux faisant glisser l'ouvrage (T) reste inferieure à la résultante des efforts horizontaux retenant l'ouvrage donnée par : $R_H+C.b$

$$F_{g} = \frac{C.b + R^{-izonta}}{T} \stackrel{H}{=} 1.5$$
(2-31)

Avec : $R_H = N$. tan ;

N : Composante normale ou verticale de la réaction = F_v ;

C et : Caractéristiques d'adhérence et de frottement au contact du terrain de fondation et du mur généralement prises comme étant la cohésion et l'angle de frottement interne du terrain de fondation. En effet, lors de la rupture d'un mur par glissement, il est fréquemment constaté que la partie inférieure de la fondation entraîne avec elle une couche de terre et par conséquent, la rupture se produit au sein du massif et non dans le plan même de la base de la fondation.

b : largeur de la base du mur ;

 $T = F_h$ (efforts horizontaux faisant glisser l'ouvrage);

Remarque : La valeur de ' ' angle de frottement entre le sol et le mur est liée à l'état de surface du mur (son signe dépend du sens du déplacement relatif entre le sol et le mur). En pratique pour un contact sol/ béton, on prend généralement dans le cas de murs rugueux en

béton ou en maçonnerie la valeur de = 2/3. d'autres cas de figure sont donnés au tableau 2.5 suivant.

Tableau 2.5 Valeurs de l'angle ' de frottement entre le sol et le mur en fonction de l'état de
surface de parement [1]

État de surface du parement	Angle de frottement sol-mur ' '
Surfaces très lisses ou lubrifiées	eme o -
Surface peu rugueuse (béton lisse, béton traité).	$\frac{\delta}{\delta} = 1/3 \frac{1}{\varphi}$
Surface rugueuse (béton, béton projeté, maçonnerie, acier)	<u>s</u> <u>s</u> - 2/3 <u>s</u>
Murs caissons	$\frac{s}{s-2}/3 \frac{\varphi}{\varphi}$
Parements fictifs inclinés des murs cantilevers	$= \frac{2/3}{\varphi} \varphi$ $= \frac{2/3}{\varphi} \varphi$ $= \frac{2}{\varphi}$

A rappeler que la résistance au glissement peut être améliorée par la disposition d'une bêche à la base de la semelle. Le frottement se fait alors sol/sol et on prend = .

Dans le cas où l'on tient compte de la butée, pour que le mur soit stable, on exige un coefficient de sécurité au moins égal à 2. Donc, on vérifie :

$$F_{g} = \frac{C.b + R^{\text{ic, on x}}}{T} \ge 2$$
(2-32)

En cas de vérification de la stabilité au glissement vis-à-vis d'une situation accidentelle (en tenant compte de l'action d'un séisme par exemple), le RPA préconise un coefficient de sécurité de **1,2** (art 10.4.7). La résistance au glissement est calculée en admettant que la rupture se produit dans le sol et non pas à l'interface semelle/sol.

8.3.3. Stabilité au poinçonnement du sol de fondation (ELS/Accidentelle)

La stabilité vis-à-vis d'une rupture du sol par poinçonnement est examinée par un calcul de capacité portante de ce sol à travers l'adoption d'un certain coefficient de sécurité sur la capacité portante du terrain de fondation [2]. Autrement, on vérifie que l'on est loin des conditions de rupture du sol de fondation pour lequel, la contrainte normale appliquée reste inferieure à une fraction de la contrainte de rupture de ce sol.

La détermination de la capacité portante du sol se base sur des essais de laboratoire ou in situ. Elle relève du domaine de calcul des fondations et n'est pas traitée dans ce manuscrit.

La vérification de la stabilité au poinçonnement du sol de fondation d'un mur de soutènement est analogue au calcul d'une fondation superficielle. En réalité, la répartition des contraintes sous le sol de la semelle du mur de soutènement dépend des propriétés du sol et de la rigidité de la fondation. Une répartition uniforme des contraintes sous le sol d'une fondation est considérée lorsque cette fondation est souple et génère des tassements différemment répartis. Lorsqu'une fondation est considérée comme rigide, alors le tassement est uniforme mais pas les contraintes. Toutefois, par mesure de simplification des calculs, on admet une distribution linéaire mais pas uniforme des contraintes normales sous la fondation. Ce qui revient à tenir compte de l'excentricité 'e' de la charge appliquée par rapport à l'axe de la fondation. Cette excentricité est donnée par :

$$e = \frac{b}{2} - \frac{M}{\frac{st}{N}} - \frac{M}{\frac{st}{N}}$$
(2-33)

Ou bien :

$$e = \frac{M}{\frac{Gst}{N}}$$
(2-34)

Avec : $M_{Gst} = M_{Gsst}$ et Gs : Centre de gravité de la semelle.

$$Et: N = F_v$$

Trois cas se présentent alors :

 $\underline{1^{ier} cas} : e=0$

La résultante des forces verticales passe par l'axe de la semelle (Figure 1.16a). On vérifie que :

$$\sigma = \frac{\sum F}{b^{\varkappa}} < \sigma_{sol}$$
(2-35)

 $\underline{2^{\text{ieme}} \text{ cas}}: 0 \le e \le b/6$

La résultante des forces verticales passe dans le tiers central de la semelle et n'engendre pas de contraintes de traction dans le béton sous sa base. Deux approches sont utilisées. Une vérification en utilisant la contrainte maximale (plus défavorable). Figure 2.16 b.

$$\sigma_{\rm max}^{\rm maximals} \in \sigma_{\rm sol}$$
(2-36)

Ou une vérification (dans certains ouvrages) d'une contrainte de référence définie par :

$$\sigma_{\rm ref} = \frac{3.\sigma_{\rm rages} \, d^{3} {\rm une \, col}}{\frac{m_{\rm ax} + \sigma_{\rm min}}{4} < \sigma_{\rm sol}}$$
(2-37)

La contrainte maximale $_{max}$ (au droit du talon de la semelle) et minimale $_{min}$ (au droit du pied du mur) (Figure 2.16) s'écrivent ainsi :

$$\begin{aligned} \sigma_{\max} &= \frac{N}{b} \cdot \left(\mathbf{1} + \frac{\mathbf{6} \cdot \mathbf{e}}{\mathbf{b}} \right) \\ \max &= \frac{\mathbf{b}}{b} \cdot \left(\mathbf{1} + \frac{\mathbf{6} \cdot \mathbf{e}}{\mathbf{b}} \right) \\ \sigma_{\min} &= \frac{N}{b} \cdot \left(\mathbf{1} - \frac{\mathbf{6} \cdot \mathbf{e}}{\mathbf{b}} \right) \end{aligned}$$
(2-38b)

$$3^{\text{ieme}} \cos (e > b/6)$$

La résultante des forces verticales ne passe pas dans le tiers central de la base du mur. Une partie du béton de la semelle sera tendue et il y'a risque de décollement de cette partie de semelle. Pour la détermination de la contrainte maximale, on applique la méthode de Meyhorf qui calcule la force portante sur une largeur (fictive) réduite b' de la semelle du mur donnée par : b'= b-2.e (Figure 2.16 c).

Et on vérifie que :

$$\sigma_{\max} = \frac{N}{b'} < \sigma_{sol}$$
(2-39)

Il est également important de noter que :

- En dépit du fait que l'étude de la stabilité externe des murs de soutènement repose sur un calcul à la rupture, les efforts de poussées (et éventuellement de butées) déterminés tiennent compte des déformations de service de l'ouvrage. Ainsi, s'il n'y a pas possibilité de déplacement d'un mur de soutènement (comme pour les murs latéraux d'un pont cadre), la force de poussée doit être calculée en utilisant un coefficient de poussées des terres au repos (K_{ao}) et non avec le coefficient de poussée actif K_a.
- 2) Si le mur est fondé sur un terrain rocheux, alors on admettra une excentricité e b/4 au lieu de : e b/3.

8.3.4. Stabilité au grand glissement du sol de fondation

Il s'agit d'une stabilité vis-à-vis d'une rupture par glissement d'ensemble du terrain d'assise englobant le sol et le mur, particulièrement rencontrée dans les sols en pente en l'absence même de toute défaillance de la structure considérée [2]. La surface de rupture passe alors à l'arrière du mur (Figure 2.17). La ligne de rupture a lieu selon un cercle de glissement.

La méthode des tranches de Bishop est fréquemment utilisée pour déterminer la valeur minimale du coefficient de sécurité (qui doit être supérieur à 1,5) ainsi que la position du cercle de rupture correspondant. Les glissements d'ensembles peuvent également être dus à :

- Des fondations insuffisamment ancrées ;
- Des fondations non horizontales ;
- Présence de sols meubles tels que les sols argileux ;

Figure 2.17 Rupture par grand glissement du sol de fondation [2].

A noter que cette vérification fait appel à des notions de stabilité des pentes qui ne sont pas abordées dans le présent manuscrit (voir cours de mécanique des sols)

8.4. Vérification de la stabilité interne du mur de soutènement

L'étude de la stabilité interne est propre à chaque type d'ouvrage. La ruine par rupture interne du mur, peut être attribuée à une insuffisance de la résistance structurale des éléments qui forment le mur à savoir le rideau ou voile, la semelle et particulièrement leur jonction. Dans le cas des murs poids, la vérification de la stabilité relève des calculs classiques de béton (qui ne doit pas travailler en traction). D'après Costel et Sanglerat [20], on accepte parfois des contraintes de traction allant jusqu'à 50kPa et la section critique est celle de la jonction fut/fondation.

Pour les murs en béton armé, un calcul rigoureux d'armatures (hors ferraillages minimaux) avec choix de la fissuration est indispensable afin de justifier la résistance interne selon le BAEL pour certaines sections prédéfinies telles que :

- L'encastrement rideau- semelle ;
- L'encastrement du talon semelle-rideau ;
- L'encastrement du patin semelle-rideau ;
- Toute section dangereuse définie par l'utilisateur après analyses de l'ouvrage ;

Généralement, la traction maximale est identifiée à la surface d'encastrement du rideau (soumis à une flexion) dans la semelle. La contrainte de traction correspondante est alors donnée par :

$$\sigma_{\max} = \frac{M_{enc}}{l/v}$$
(2-40)

Où :

 M_{enc} : Désigne le moment à la section dangereuse ;

- I : Moment d'inertie d'une section droite du rideau ou de la semelle ou toute autre section dangereuse :
- V: Distance de l'axe neutre à la fibre la plus tendue de la section droite de l'élément vérifier du mur ;

9. Conclusion

Ce chapitre a traité les méthodes de dimensionnement et les critères de stabilité des murs de soutènement. Les différents états limites correspondants au comportement du système sol/mur ont été passés en revue à travers un rappel des théories de Coulomb, Rankine et Boussinesq pour la détermination des efforts appliqués à un mur de soutènement.

Le prédimensionnement des murs de soutènement en béton ou en béton armé a également été exposé. Il s'agit alors de déterminer les dimensions géométriques du mur pour qu'il soit stable vis-à-vis du renversement, du glissement et du poinçonnement sous l'action des forces qui lui sont appliquées en particulier la poussée des terres et de surcharges d'exploitation. L'effet d'une poussée supplémentaire due à la présence d'eau a aussi été exposé. Cependant, il est recommandé de prévoir des systèmes de drainage pour éviter ce type de force de poussées pouvant survenir sur un ouvrage de soutènement.

1. Introduction

Après avoir décrit dans le chapitre 2 la méthode de justification de la stabilité externe des murs de soutènement beaucoup plus liée à la mécanique des sols (MDS), on abordera dans ce qui suit, le problème de justification de la stabilité interne des murs de soutènement dont les vérifications relèvent de la résistance des matériaux et de calculs de structures en béton armé. Pour déterminer le ferraillage d'un mur de soutènement en béton armé, deux cas peuvent être distingués :

Mur sans contrefort ; Mur avec contrefort ;

2. Ferraillage des murs de soutènement sans contreforts

Selon les hypothèses de calcul, trois principaux éléments constituant un mur de soutènement sans contrefort seront calculés. Il s'agit de :

- Rideau ou voile vertical;
- De la partie de semelle située en amont du rideau, c'est-à-dire du côté remblai et qui sera identifiée dans ce manuscrit comme semelle de droite ;
- De la partie de semelle située en aval du rideau, c'est-à-dire du côté vide et qui sera identifiée dans ce manuscrit comme semelle de gauche ;

Des éléments supplémentaires tels que la bêche, la poutre de raidissement (en tête du rideau d'un mur de soutènement sans contrefort) peuvent également faire l'objet d'un calcul de ferraillage.

2.1. Combinaisons de calcul

L'état limite de résistance d'un mur de soutènement est vérifié en appliquant les règles du BAEL. L'état limite déterminant est arrêté en fonction du type de fissuration considéré :

ELU : Si la fissuration est peu nuisible ;

ELS : Si fissuration est préjudiciable ou très préjudiciable (cas de la majorité des murs de soutènement) ;

2.2. Calcul des éléments du mur

2.2.1. Le rideau

Le rideau est supposé encastré à sa base dans la semelle et libre au sommet. Il est ainsi, calculé comme une console soumise aux composantes horizontales des poussées des terres et de surcharges d'exploitation. Peuvent s'ajouter, les composantes horizontales de l'eau si cette dernière est prise en compte dans les calculs et de charges dynamiques résultant d'un séisme.

La section de calcul de ferraillage (ou section dangereuse) est située à l'encastrement du rideau à la semelle. Elle est calculée à la flexion simple si le poids propre du rideau est négligé. Dans le cas où l'on est obligé de tenir compte de toute force verticale agissant sur le rideau, alors celui-ci sera calculé comme console travaillant en flexion composée. Le ferraillage du rideau est déterminé pour une section d'un mètre linéaire de largeur et une épaisseur 'e' qui peut être constante ou variable selon la configuration géométrique du rideau. Le ferraillage trouvé pour une bande de 1m, est généralisé à tout le mur de soutènement.

Pour le cas de vérification de la stabilité interne du mur, il est plus sécurisant de négliger l'effet des poussées des terres et de surcharge d'exploitation sur la semelle de fondation comme l'illustre les équations (3-1) à (3-6).

Cas de la poussée des terres

Si on néglige la poussée sur la semelle du mur, on aura comme valeur de moment sollicitant le rideau à la section d'encastrement :

$$M_{o}^{s_{1}} = \frac{1}{2} K_{a,\gamma}^{t} \cdot h_{\frac{2}{r}} \cdot \frac{h_{r}}{5} = \frac{1}{6} K_{a,\gamma} \cdot h_{\frac{3}{r}}$$
(3-1)

Avec $h_r = H$ -e (épaisseur de la semelle)

Si on tient compte par exemple de la poussée des terres s'exerçant sur toute la hauteur du mur, on aura comme valeur de moment sollicitant le rideau à la section d'encastrement :

$$M_{1}^{\text{me}} \underbrace{1_{\text{leur}}^{\text{me}} \stackrel{\text{de la poussée des teau's satertion}}{\text{me}}_{\text{me}} \underbrace{1_{\text{leur}}^{\text{me}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{sec}} \stackrel{\text{de la poussée des teau's satertion}}{\text{solucitant le ride}} \underbrace{1_{\text{a}}^{\text{solucitant le ride}} \underbrace{1_{\text{solucitant le ride$$

En général, on adopte e=H/12 soit : $h_r = 11/12H$, on aura donc :

$$\frac{M_0}{M_1} = \frac{\frac{2 \text{ sol } 1^{h_r} - 1^{\prime}}{1_{/2} \text{ Ka} \cdot \gamma \cdot H^2}}{\frac{1}{1_{/2} \text{ Ka} \cdot \gamma \cdot H^2} \cdot \frac{1}{(hr - 2^{\prime})_3 \cdot H}} = 1.0^{27}$$
(3-3)

Cas de la poussée de surcharge d'exploitation

Si on néglige la poussée sur la semelle du mur, on aura comme valeur de moment sollicitant le rideau à la section d'encastrement :

$$M_{o}^{n} = \frac{1}{2 \cdot \kappa_{a} \cdot q_{o} \cdot h^{2}}$$
(3-4)

Si on tient compte par exemple de la poussée des terres s'exerçant sur toute la hauteur du mur, on aura comme valeur de moment sollicitant le rideau à la section d'encastrement :

$$M_{i_{1}}^{sur} = K_{a,q}^{mc} H_{i_{1}}^{te la poussée de ide} H_{i_{1}}^{s' ses Hant sur tout} (3-5)$$

$$M_{i_{1}}^{sur} = K_{a,q}^{mc} H_{i_{1}}^{te la poussée de ide} H_{i_{1}}^{s' ses Hant sur tout} (3-5)$$

$$M_{i_{1}}^{sur te l} = K_{a,q}^{mc} H_{i_{1}}^{te la poussée de ide} H_{i_{1}}^{s' ses Hant sur tout} (3-5)$$

$$\frac{M'_{0}}{M'_{1}} = \frac{1_{2} - c_{0}}{K_{a} \cdot q \cdot H} \frac{K_{a} \cdot q \cdot H}{K_{a} \cdot q \cdot H} \frac{K_{a} \cdot q \cdot H}{K_{a} \cdot q \cdot H} \frac{K_{a} \cdot q \cdot H}{K_{a} \cdot q \cdot H} (1)$$
(3-6)

On voit bien que le moment à la section d'encastrement du rideau est plus important lorsqu'on néglige les poussées de terre ou de surcharge d'exploitation qui s'exercent sur la semelle. C'est cette hypothèse (légèrement plus défavorable) qu'on retiendra dans nos calculs de stabilité interne du mur.

De plus, dans le cas de mur de soutènement dont le parement amont du rideau est incliné d'un angle , alors la composante verticale de la poussée est négligée. Ceci va également dans le sens de la sécurité.

Pour le cas du mur représenté sur la figure 3.1, le moment de calcul du rideau à ELU sera donné par :

$$M_{enc} = \frac{1.35}{h_a} \frac{h_r}{3} + \frac{1.5}{5} \frac{h_r}{h_a} \frac{h_r}{2}$$
(3-7)

La figure 3.1 illustre le modèle de calcul et les charges appliquées au rideau d'un mur de soutènement de parement lisse, vertical et soutenant un remblai à surface horizontale et une charge d'exploitation q.

Figure 3.1 Modèle de calcul et charges appliquées au rideau d'un mur de soutènement.

A noter que les armatures (principale et de répartition) déterminées suite au calcul, seront disposées dans la partie tendue du rideau qui correspond au coté en amont donc en contact du remblai et qu'un ferraillage constructif peut être également réalisé sur la face en aval du mur. La figure 3.2 illustre une disposition correcte du ferraillage du rideau alors que les figures 3.3 (a, b, c et d) montrent des exemples de configurations de ferraillage du rideau erronées.

a : Armatures principales placées loin de la face derrière les armatures de répartition ;

b : Armatures principales et de répartition placées en système de treillis soudé ;

c : Armatures principales placées au milieu du rideau du mur ;

d : Armatures principales placées sur la face aval du mur alors que la zone tendue du rideau est situé du coté en contact avec le remblai :

2.2.2. La semelle de fondation

2.2.2.1. Semelle de droite

Cette partie de semelle est calculée comme console encastrée en une extrémité au rideau du mur et libre à l'autre. Elle est soumise aux efforts dus, d'une part :

 ✓ Aux contraintes du sol () dirigées du bas vers le haut dont la résultante est appliquée au centre de gravité de cette partie de semelle ;

et d'autre part, aux efforts appliqués de haut en bas dus :

- ✓ Poids propre de la semelle $(_s)$;
- ✓ Poids des terres (t)
- ✓ Poids de la surcharge d'exploitation ($_q$).

La figure 3.4 illustre le modèle de calcul, les charges appliquées et le schéma statique équivalent de calcul.

Figure 3.4 Calcul de la semelle droite d'un mur de soutènement.

Les valeurs des contraintes 'et " sont déterminées selon les expressions suivantes :

donc :

$$\sigma_{1} = \sigma_{\min} + (\sigma_{\max} - \sigma_{\min}) \cdot b_{2} / i$$
(3-9)

A noter que selon les situations de calcul, les contraintes ' et " seront déterminées après pondération des contraintes _s, _t, _q et _{min}. Toutefois, pour une meilleure sécurité, seules les composantes de contraintes ayant un effet défavorable sont majorées. Les contraintes qui présentent un effet favorables (en générale avec un signe – dans les expressions) restent sans pondération. A titre d'exemple, si le calcul est fait pour un état limite ultime de résistance 'ELU', alors les équations précédentes deviennent :

$$\int '= 1.35x _{s} + 1.35x _{t} + 1.5x _{q} - min$$
(3-10a)

$$(3-10b)$$

Une pondération de 1.35 est affectée aux contraintes dues à des charges permanentes, une pondération de 1.5 est affectée aux contraintes dues à des charges d'exploitations alors que les _{min} et ₁ sont déjà calculées avec pondération.

La figure 3.5 suivante illustre un exemple de schéma de ferraillage de la semelle de droite dont la zone tendue est située en sa partie supérieure.

Figure 3.5 Exemple de ferraillage de la partie droite de la semelle de fondation

2.2.2.2. Semelle de gauche

Comme pour la partie de droite d'une semelle de fondation d'un mur de soutènement en béton armé, la partie gauche de la semelle est également calculée comme console encastrée en une extrémité au rideau du mur et libre à l'autre. Cependant, cette semelle gauche n'est sollicitée que par les efforts dus aux contraintes du sol dirigées du bas vers le haut () et les contraintes ' s' liées à son poids propres. Dans le cas où l'es efforts de butées sont pris en compte dans les calculs, alors il faut ajouter des contraintes dues au poids du sol situé en aval du mur et d'une éventuelle charge d'exploitation.

La figure 3.6 illustre le modèle de calcul, les charges appliquées à cette partie gauche de la semelle ainsi que le schéma statique équivalent avec la résultante des différentes contraintes. Les valeurs de 'g et "g (Figure 3.6) sont déterminées selon les expressions suivantes :

Figure 3.6 Calcul de la semelle droite d'un mur de soutènement.

Les valeurs des contraintes $'_g$ et $"_g$ (Figure 3.6) sont déterminées selon les expressions suivantes :

$$\begin{cases} 'g = _{max} - _{s} & (3-13a) \\ ''g = _{max} -[(_{max} - _{mi})x b_{1}/b] - _{s} & (3-13b) \end{cases}$$

La figure 3.7 illustre un exemple de schéma de ferraillage de la semelle gauche dont la zone tendue est située en sa partie inférieure.

Figure 3.7 Exemple de ferraillage de la partie gauche de la semelle de fondation.

Comme le montre la figure ci dessus, la partie gauche de la semelle (patin) est fréquemment ferraillée avec l'acier du rideau retourné horizontalement. Les aciers de la partie droite de la semelle (talon) étant situés en haut, on pose en général une nappe d'armature en bas de la semelle et le ferraillage est ainsi disposé sous forme de cadre sur toute la semelle. Pour compléter le ferraillage, il est nécessaire de disposer longitudinalement un ferraillage de répartition.

3. Ferraillage de murs de soutènement avec contreforts

3.1. Modèle de calcul du rideau

En présence de contrefort, le rideau est encastré sur trois cotés (Figure 3.8), donc il est plus rigide et plus stable. Pour les calculs et par mesure de simplification, ne sont considérés que les encastrements du rideau au niveau des contreforts. Toutefois, et contrairement aux murs sans contreforts dans lesquels le rideau travaille en flexion verticale, le rideau des murs avec contreforts travaille en flexion horizontale. Ainsi, comme le montre la figure 3.9, le calcul de ferraillage se ramène à l'étude de tranches horizontales de 1m de largeur dont les sollicitations sont variables sur la hauteur du mur.

Figure 3.8 Mur avec contrefort.

Figure 3.9 Modèle de calcul du rideau de mur avec contreforts.

Chaque tranche est sollicitée par un diagramme trapézoïdal de distribution de poussées non uniforme sur l'ensemble des tranches le long de la hauteur du rideau. Chaque diagramme trapézoïdal est transformé en un diagramme rectangulaire simplifié pour lequel la poussée est calculée à mi-hauteur de la bande étudiée (voir schéma ci-après).

La poussée à mi-hauteur est donnée alors par : $q_i = K_a K_a$. h_i

Le ferraillage du rideau par mètre linéaire est ainsi calculé à partir du schéma statique représenté sur la figure 3.10.

Figure 10 Schéma statique de calcul d'une tranche de 1ml du rideau d'un mur de soutènement avec contrefort.

Pour chaque tranche, le ferraillage principal sera disposé horizontalement en travée (zone médiane de la bande) et en appui (zone d'encastrement du rideau au niveau des contreforts) pour des moments de calcul donnés par :

En travée :
$$M_t^1 = 0.8 \times M_o^{a_1} = 0.8 \times q_i \times l_{\delta/2} = q_i \times l_{\delta/2} = 0.3 \times q_i \times$$

En appui:
$$M_a = 0.5 x M_o = 0.5 x q_i \times l_{g/s}^{3/4} = q_i \times l_{g/s}^{3/4} = (3-14b)$$

Dans la direction verticale, seront placées les armatures de répartition comme l'illustre la coupe transversale d'un mur représentée sur la figure 3.11.

Figure 3.11 Ferraillage du rideau d'un mur de soutènement avec contreforts.

3.2. Modèle de calcul de la semelle

Dans le cas de murs de soutènement avec contrefort, la bêche est généralement présente pour renforcer le mur. La partie de la semelle située du côté amont (côté plein) ou semelle de droite est alors modélisée comme une dalle encastrée le long des ses 4 cotés sur : le rideau, deux contreforts et la bêche. Toutefois, le calcul d'une telle dalle soumise à un chargement non uniforme est complexe, alors, on suppose en général que la dalle repose uniquement sur le rideau et la bêche tel qu'illustré sur la figure 3.12a.

Pour sa part, la partie arrière de la semelle située du côté de non présence de remblai (ou semelle gauche) est modélisée comme élément encastré à son extrémité au rideau du mur et libre à l'autre extrémité. Le schéma statique simple suivant est généralement adopté pour le calcul de la semelle d'un mur de soutènement avec contrefort (Figure 3.12 a). Les contraintes de sollicitations sont représentées sur la figure 3.12b et elles résultent de :

- Poids propre de la semelle ;
- Poids du rideau et des contreforts ;
- Poids propre des terres ;
- Poids de la surcharge sur le remblai ;
- Réaction du sol ;

Figure 3.12 Semelle de mur avec contrefort :

(a) Modèle de calcul, (b) : Diagramme de sollicitations équivalent

- R₁ et R₂ sont les résultantes des diagrammes de contraintes appliquées ;
- R₃ est la réaction de la bêche ;

3.3. Modèle de calcul de la bêche

La bêche est considérée comme une poutre continue encastrée aux contreforts et soumise aux réactions de la semelle droite. Le ferraillage est déterminé selon le modèle du schéma statique de la figure 3.13.

Figure 3.13 Schéma statique de calcul de la bêche d'un mur de soutènement avec contrefort

3.4. Modèle de calcul du contrefort

Les contreforts constituent des appuis pour le rideau, ils sont calculés comme des consoles verticales de hauteur variables, encastrées à leur base dans la semelle et soumis latéralement aux efforts transmis par le rideau. La section de calcul est en forme de Té dont la table de compression est représentée par le rideau. La figure 3.14 illustre le schéma statique de calcul des contreforts. La figure 3.15 montre la section, la sollicitation de calcul et le ferraillage correspondant.

Pour un espacement 'l' de contreforts, les pressions P_a ' et Q_a ' des terres et de surcharges agissant sur un contrefort sont données par :

$$F_{a}^{lees} = \frac{1}{2} K_{a} \cdot \kappa_{r} \cdot h_{r}^{2} \cdot (l)$$
(3-15a)

$$Q^{a'} = K^{a \cdot q} h^{r} (l)$$
 (3-15b)

Le moment maximal, à la section d'encastrement sera donc :

$$M_{enc} = h_r/3.P_a' + h_r/2.Q_a'$$
 (3-16)

Les armatures principales sont placées prés de la paroi inclinée (zone tendue) et ancrées dans la bêche. Des armatures de répartition sont en général également ajoutées de manière verticale mais peuvent aussi être placées parallèlement à la face inclinée du contrefort.

Les armatures horizontales ont pour rôle d'assurer l'ancrage du rideau dans le contrefort. Elles peuvent être soit :

- Les armatures du rideau calculées en travées et retournées dans le contrefort ;
- Les cadres et étriers calculés pour résister à l'effort tranchant ;

La figure 3.16 illustre le ferraillage du rideau et du contrefort d'un mur de soutènement

Figure 3.15 Sollicitation, moment et ferraillage d'un contrefort.

Figure 3.16 Ferraillage du rideau et du contrefort d'un mur de soutènement.

4. Sollicitations sismiques

Les sollicitations sismiques se traduisent par des vibrations, donc des accélérations dans le sens vertical et dans le sens horizontal. La méthode généralement utilisée pour modéliser l'action sismique est celle du modèle statique équivalent [7]. L'effet de la sollicitation sismique est traduit par :

- Soit une force volumique verticale (ascendante ou descendante) ;
- Soit une force volumique horizontale ;

L'effet de la sollicitation sismique est ajouté au poids du massif et des surcharges par le biais de deux coefficients sismiques \pm_v et h fonction de l'accélération nominale du site. Ces sollicitations s'appliquent au mur de soutènement ainsi qu'au massif de terre.

Deux combinaisons sont étudiées :

1) Application de $_{h}$ associée à + $_{v}$

$$F_{a} = \frac{1 + \sigma_{v}}{\cos \theta_{a}} \cdot M.g \quad \text{avec}: \quad \theta_{a} = \arctan \frac{\sigma_{h}}{1 + \sigma_{v}}$$
(3-17)

2) Application de $_{h}$ associée à - $_{v}$

$$F_{\rm p} = \frac{1 - \sigma_{\rm v}}{\cos \theta_{\rm b}} \cdot M.g \quad \text{avec}: \quad \theta_{\rm b} = \arctan \frac{\sigma_{\rm b}}{1 - \sigma_{\rm v}}$$
(3-18)

Figure 3.17 Sollicitations statiques équivalentes aux sollicitations dynamiques [7].

Pour le massif de terre soutenu, une poussée dynamique supplémentaire $P_{a.dyn}$ est ajoutée à la résultante de la poussée sous sollicitation statique (P_a). Tel que rapporté par schlosser [15], selon Seed et Whitman, le point d'application de cette sollicitation dynamique se situe à 0.6H à partir de la base.

5. Le mur de soutènement dans le Règlement Parasismique Algérien (RPA99v2003)

5.1. Généralités

Le Règlement Parasismique Algérien, dans sa version 2003, traite uniquement le cas de murs de soutènement dont la hauteur ne dépasse pas les 6 mètres. Dans ce cas de figure, la justification de ce type d'ouvrage sous sollicitations sismiques est justifiée en utilisant la méthode statique équivalente. Pour la vérification de la stabilité des murs, le RPA propose [21] :

1. Application de deux coefficients sismiques K_h et K_v (qui sont fonction du coefficient d'accélération de zone 'A') au mur, au remblai ainsi qu'aux charges d'exploitation selon les combinaisons (K_h , K_v) et (K_h ,- K_v). Ces coefficients sont donnés par :

$$K_h = A.(\% g) \text{ et } K_v = \pm 0.3 K_h$$
 (3-19)

 Détermination des efforts dus aux poussées des terres en remplaçant le coefficient de poussée K_a par un coefficient de poussée dynamique noté K_{ad}. La poussée dynamique derrière est alors donnée par :

$$F_{ad} = \frac{1}{2} K_{ad} (1 \mp K_{v}) \gamma H_{2}$$
(3-20)

A la différence de la poussée des terres appliquée à $h_r/3$ (répartition triangulaire), le RPA, indique que la poussée active dynamique P_{ad} est appliquée à H/2 de la base de la semelle du mur (ce qui correspond à une répartition uniforme de contraintes).

Le coefficient K_{ad} peut être calculé en notant que l'introduction des coefficients sismiques peut se ramener à considérer que le soutènement est soumis à une accélération inclinée sur la verticale. Il suffit donc d'effectuer une rotation d'angle = $\arctan[K_h/(1\pm K_v)]$ pour se ramener à un calcul classique de mur de soutènement.

Si l'on adopte l'expression de la formule de Coulomb pour le coefficient de poussée, on obtient le coefficient K_{ad} par la formule de Mononobe-Okabe [7], adoptée par l'Eurocode 8 ainsi que le RPA, et qui est :

$$K_{ad} = \frac{\frac{c\sigma s^2(\varphi - \Theta)}{\cos^2 \Theta \left[1 + \sqrt{\frac{\sin(\varphi - \beta - \Theta)}{\cos(\Theta) \cdot \cos(\beta)}}\right]^2}$$
(3-21)

Avec :

: Poids volumique du sol de remblai ;

: Angle de frottement interne du remblai sans cohésion ;

: Angle que fait la surface du remblai avec l'horizontale ;

 $\Theta = \operatorname{arctg} \left[K_{h} / (1 \pm K_{v}) \right];$

H : hauteur de la paroi verticale à l'arrière du mur sur laquelle s'exerce P_{ad};

Si pour un calcul donné, on veut tenir compte de la butée dynamique P_{pd} des terres situées à l'aval du mur, le RPA préconise la valeur suivante :

$$F_{pd} = 1/2 \cdot \gamma \cdot D_{2}^{te}$$
 (3-22)

Cet effort est appliqué horizontalement à D/3 à partir de la base de la semelle de fondation du mur. En outre, le RPA précise que pour les murs conçus en infrastructure de bâtiments, seule l'expression de l'effort de buté est modifiée et pour laquelle on introduit un K_0 . Cette butée dynamique est calculée ainsi :

$$F_{pd} = 1/2 . K_{o} . \gamma . D_{z}$$
 (3-23)

Avec : $K_0 = 1 - \sin()$

Pour l'effort de poussée dû à une charge d'exploitation 'q', la poussée dynamique est :

$$F_{ad}(q) = K_{ad}(1 \mp K_v) \cdot q \cdot (H/\cos\beta)$$
(3-24)

Cette poussée dynamique est appliquée horizontalement à H/2 au dessus de la base de la semelle du mur.

5.2. Vérification de la stabilité externe du mur

5.2.1. Stabilité au glissement

La stabilité au glissement est vérifiée en admettant que la rupture se produit dans le sol (et non plus à l'interface : semelle/sol). On applique alors à la résistance ultime au glissement un coefficient de sécurité de 1,2.

5.2.2. Stabilité au renversement

La stabilité au renversement est vérifiée en tenant compte d'un coefficient de sécurité de 1,3.

5.2.3. Stabilité au poinçonnement de la semelle du mur

La vérification de la stabilité au poinçonnement de la semelle d'un mur de soutènement est identique à celle d'une semelle de fondation.

5.3. Vérification de la stabilité interne du mur

Il s'agit de vérifier la résistance des différents éléments constituant le mur de soutènement selon les règles de calcul du BAEL [22].

6. Recommandations et précautions

6.1. Dispositifs de drainage

La plupart des sinistres affectant les murs de soutènement, proviennent essentiellement d'une sous estimation des effets dus à la présence d'eau. Tel qu'il a été déjà signalé, il faut bien penser au drainage du mur pour éliminer toute action supplémentaire d'eau et que ce mur ne forme un barrage. Ce drainage est naturel dans le cas de l'enrochement, des pierres sèches, du mur végétalisé ou des gabions mais ne l'est plus dans le cas de murs en béton armé ou en parpaings qui ne présentent pas cette spécificité. On doit alors assurer l'évacuation des eaux en concevant un drainage vertical puis horizontal par le biais des dispositifs suivants :

6.1.1. Les barbacanes

Il s'agit de tubes qui traversent le mur et qui sont légèrement inclinés vers l'aval des parois verticales et placés à hauteur du niveau d'eau bas pour permettre l'évacuation naturelle de l'eau se trouvant derrière le mur. Les barbacanes sont très efficaces pour évacuer rapidement les eaux, et éviter la montée en charge du mur lors des pluies torrentielles.

Généralement, le diamètre des barbacanes est de 5 à 20 cm et sont mises à intervalles réguliers d'environ 1.5 à 2m en longueur et en hauteur. L'application de produits bitumineux contre la paroi et la pose de films de géotextile contre le mur et sur les barbacanes sont importants.

La pose de géotextile sur barbacanes permet de filtrer les eaux et de leur éviter toute possibilité de se boucher à la longue par des particules de terre. Cette option nécessite un entretient permanent et peut conduire à des parements de murs peu esthétiques en relation avec l'existence de couleurs d'eau et de terre.

6.1.2. Le drain

Il s'agit d'un élément pouvant assurer la pérennité du mur de soutènement. Il est posé en partie inférieur du mur, exécuté du côté remblai et réalisé avec une pente d'environ 1% et un diamètre de plus de 100 mm pour permettre l'évacuation de l'eau dans la terre retenue à l'arrière du mur.

Pour réaliser le drain, on commence d'abord par l'application d'un enduit bitumeux sur toute la surface du mur. Le but de cette étape est de rendre étanche le mur, sauf au niveau des barbacanes où s'évacueront les eaux. Ceci permettra d'éviter toute dégradation du béton et du ferraillage du mur. Par la suite, on place un feutre géotextile filtrant à la fois sur le sol, sur la semelle de fondation et contre la paroi. Ensuite, le tuyau de drainage est mis en place. Il sera enveloppé de blocs de pierres et de gravier, qui seront à leur tour entourés par la nappe de géotextile (Figure 3.18a). Le tuyau de drainage devrait aboutir à un réseau d'évacuation d'eau.

Comme indiqué sur la figure 3.18b, les barbacanes doivent être placées plus haut que le drain horizontal pour avertir lorsque ce dernier est inopérant.

- **Figure 3.18** Dispositifs de drainage derrière un mur de soutènement (a) Conception du drain [23], (b) position des barbacanes et drain horizontal [24].
- 6.1.3. Le remblayage

La barbacane n'est pas un système de drainage suffisant, elle doit être associée à un massif drainant. Le remblai du massif drainant doit se faire par des matériaux de granulométrie croissante dans le sens de l'écoulement de l'eau. Avant la mise en œuvre du remblai, il convient de s'assurer que ses caractéristiques géotechniques sont conformes à celles prises en compte dans l'élaboration du projet. La mise en œuvre se fait par couches successives n'excédant pas 50 cm, avec des engins de compactage légers. Le remblaiement en grande masse ou avec un engin de compactage lourd passant près du mur est à proscrire car l'ouvrage serait, dans ce cas, soumis à des conditions plus défavorables que celles pour lesquelles il a été calculé.

6.2. Mise en place de joints

Pour éviter un développement anarchique de la fissuration et dégradation des murs de soutènement, il est utile d'introduire des discontinuités dans la structure de l'ouvrage sous forme de joints d'environ 15 mm, mis à intervalles réguliers d'environ 25 m lorsque le mur est posé sur une fondation horizontale et environ tous les 10 m lorsque le mur est fondé sur une semelle en pente avec des joints pouvant atteindre 30 à 40 mm d'ouverture.

7. Effondrements des murs de soutènement

Sur terrain, on constate que les sinistres sur les murs de soutènement sont parmi les plus courants. Les désordres affectant les murs de soutènements en béton armé se traduisent généralement par :

- Des fissures légères à énormes,
- Des tassements de sol de fondation provoquant un mouvement du mur.
- Des poinçonnements ;
- Déversement ou gonflement au 1/3 inférieur
- Basculement par la tête
- Glissements sur la base
- Rupture de ferraillage et basculement
- Déjointement des panneaux

Des études ont permis de constater que :

35 % des sinistres sont causés par l'eau et liés à la mauvaise conception ou mauvais fonctionnement des systèmes de drainage et d'évacuation des eaux de ruissellement. Les eaux de ruissellement accumulées derrière la paroi, exercent sur celle-ci une poussée hydrostatique, qui vient s'ajouter à celle déjà exercée par le terrain sec. Les murs de soutènement, prévus pour être autostables et calculés pour résister à la seule poussée des terres, ne seront pas capables de résister à ces pressions hydrostatiques supplémentaires.

25 % des sinistres sont causés par un mauvais dimensionnement en relation avec une sousestimation des poussées. Le renversement de l'ouvrage étant la manifestation la plus courante.

25 % des sinistres sont causés par un défaut d'exécution de l'ouvrage en relation avec les défauts de continuité de chaînage.

10 % des sinistres sont causés par une faute dans le déroulement des travaux en particulier la réalisation de fouilles raides qui s'éboulent ou le compactage excessif du remblai.

D'autres causes de sinistres peuvent également être identifiées à l'instar des fissures internes préjudiciables aux ouvrages, l'agressivité des eaux pour les matériaux constitutifs de ces ouvrages ainsi que les modifications non prévues telles qu'une surélévation même de faible hauteur pouvant compromettre la stabilité de l'ouvrage par l'ajout de surcharges de remblais ou de nouvelles structures.

8. Règles à respecter pour construire un mur de soutènement

Pour faire face à l'effondrement de murs de soutènement, il est primordial de respecter les règles de construction suivantes :

✓ Étude de sol

Nécessaire pour déterminer sa capacité portante.

✓ Conception du mur

Il s'agit de bien dimensionner l'ouvrage, y compris la vérification des surcharges même non permanentes. Une bonne disposition du ferraillage selon les plans établis. La quantité de ferraillage et sa bonne disposition sont des paramètres importants pour éviter la fissuration du mur.

✓ Réalisation des fondations

Un soin particulier doit être apporté aux semelles de fondations qui doivent être bien ancrées pour les mettre 'hors gel', et assurer une action positive de butée qui pourra éventuellement contribuer à sa stabilité au glissement et renversement. En outre, la liaison fondation-mur est un point crucial et les attentes-ferraillage du mur ne doivent pas être négligées.

✓ Système de drainage efficace

L'absence, la mauvaise conception ou le mauvais fonctionnement des systèmes de drainage et d'évacuation des eaux de ruissellement sont une cause fréquente de sinistre. Ainsi, il faut apporter un soin particulier à la réalisation du drainage constitué de drains verticaux (Qualité drainante du remblai) et horizontaux (en pied de mur) associés à des barbacanes très efficaces

pour évacuer rapidement les eaux, et éviter la montée en charge du mur lors des pluies torrentielles. Enfin, faire attention à ne pas utiliser un sol non drainant pour remblayer derrière le mur de soutènement.

✓ Qualité des matériaux

Il faut bien examiner la qualité des matériaux de réalisation : béton bien dosé, armatures bien disposées et sections réalisées conformément aux plans et en quantité suffisante.

✓ Etanchéité de la paroi contre terre

Pour protéger les armatures en acier d'un mur en béton armé, une couche d'étanchéité sur la paroi arrière du mur est réalisée, en contact avec les terres et l'eau.

✓ Entretien régulier

Il s'agit particulièrement de vérifier périodiquement le bon fonctionnement du drainage et des barbacanes, d'éliminer les végétations parasites sur l'ouvrage et de respecter les charges d'exploitation pour lesquelles le mur a été dimensionné.

9. Conclusion

Ce chapitre a été consacré à la présentation détaillée du calcul du ferraillage des différents composants d'un mur de soutènement en béton armé. Les modèles de calculs et les vérifications à faire pour assurer la stabilité interne de l'ouvrage ont été exposés et élucidés. La prise en compte des effets dynamiques selon la réglementation en vigueur a été également abordée. Une partie importante relative aux dispositifs de drainage, aux précautions à prendre pour éviter les effondrements de ce type d'ouvrage de soutènement ainsi que les règles à respecter ont été présentées et discutées. A partir de ces éléments, il s'avère qu'une bonne conception et un calcul détaillé de l'ouvrage sont certes nécessaires mais ils doivent être accompagnés par un suivi et entretient de ces ouvrages.

Exemples d'application avec correction

L'objectif recherché dans cette partie est l'application des différentes notions citées dans les chapitres précédents pour un mur de soutènement en béton ou en béton armé avec ou sans contrefort.

PREMIERE PARTIE: Vérification de la stabilité de différents types de murs de soutènements

Exercice N° 1

On souhaite remblayer un mur de soutènement en béton de 6 m de hauteur avec une terre sableuse de poids volumique de 17 kN/m³ et d'angle de frottement interne de 30°. La paroi amont du mur est verticale. On suppose qu'il n'y'a pas de frottement entre le mur et le sol. Calculer **la poussée active** sur le mur pour les cas suivants :

- a) Le profil du sol est horizontal ;
- b) Le sol supporte une surcharge de 40 kPa en amont du mur ;

c) En tenant compte d'un frottement de 20° entre le mur et le sol ;

d) Que peut-on conclure ?

Figure 4.1 Calcul des poussées actives sur un mur.

Réponse : L'ensemble des efforts est calculé pour une bande de 1 ml

1^{ier} Cas : Pas de surcharge

1) Théorie de Rankine

Le coefficient de poussée des terres est donné par :

$$K_a = \tan^2\left(\frac{\pi}{4} - \frac{\pi}{2}\right) = \tan^2(45 - 30/2) = 0,333$$

La poussée active pour une largeur b de 1m est donnée par :

 $P_a = 1/2$. K_a . .b. $H^2 x 1 = 1/2x 0,333 x 17x1 x (6^2) = 101,89 kN$

2) Théorie de Coulomb (généralisée par Poncelet)

Le coefficient de poussée K_a des terres est donné par l'expression (2-9), à savoir:

$$K_{a} = \frac{\cos^{2}(q - \lambda)}{\cos^{2}(\lambda) \cdot \cos(q + \lambda)} \frac{1}{\left[1 + \sqrt{\frac{\sin(q + 1) \cdot \sin(q - 1)}{\cos(q + \lambda) \cdot \cos(q - \lambda)}}\right]^{2}}$$

Avec : =0 (remblai horizontal);

=0 (Pas de frottement entre le mur et le sol) ;

 $=30^{\circ}$ (donnée); = 0 (parement amont du mur vertical)

On obtient :

$$K_{a} = \frac{\cos^{2}(q)}{[1 + \sin(q)]^{2}} = \frac{1 - \sin(q)}{1 + \sin(q)} = \tan^{2}\left(\frac{\pi}{4} - \frac{1}{2}\right) = \tan^{2}(45 - 30/2) = 0,333$$

 $P_a = 1/2$ $K_a H^2 x_1 = 1/2x 0,333x 17x_{1x} (6^2) = 101,89 \text{ kN}$

Dans cette configuration de cas (=0, =0 et =0), le coefficient de poussée K_a est le même, qu'il soit calculé à partir de la théorie de Rankine ou celle de Coulomb. Il en est de même pour le coefficient de butée.

2^{ieme} cas: Surcharge q=40 kPa

La poussée sur le mur exercée par la surcharge q est donnée par :

$$P_{aq} = K_{aq} \cdot q.H \cdot x(1) = 0,333x \ 40x \ 6x \ (1) = 79,92 \ kN$$

La poussée totale 'P_{at}' due aux terres et à la surcharge :

$$P_{at} = 101,89 + 79,92 = 181,81 \text{ kN}$$

3^{ieme} cas : Frottement entre le mur et le sol non négligé

On aura :

=0 (Remblai horizontal); = 0 (parement amont du mur vertical)

 $=20^{\circ}$ (frottement entre le mur et le sol : donnée) ; $=30^{\circ}$ (donnée) ;

=0 (surcharge verticale)

Le coefficient de poussée des terres K_a donné par l'expression (2-9) devient alors :

$$K_{a} = \frac{\cos^{2}(q)}{\cos(q)} \frac{1}{\left[1 + \sqrt{\frac{\sin(q+q) \cdot \sin(q)}{\cos(q)}}\right]^{2}} = 0,297$$

Le tableau 2.4 des valeurs du coefficient de poussée des surcharges verticales (=0), donne pour =0, = 0, =2/3 avec =30° une valeur de : K_{aq} =0,304

La poussée totale Pat sur le mur est alors pour 1 mètre linéaire :

$$P_{at} = P_{a} + P_{aq}$$

$$P_{at} = \frac{1}{2} \cdot \gamma \cdot K_{a} \cdot H^{2} \cdot (1) + K_{aq} \cdot q \cdot H \cdot (1) = \frac{1}{2} \times 17 \times 0,297 \times 6^{2} \times (1) + 0,304 \times 40 \times 6 \times (1)$$

$$= 90,88 + 72,96 = \mathbf{163,84 \ kN}$$

4. Conclusion :

Cette pression est inférieure à celle calculée pour le deuxième cas. En effet, le frottement qui se produit entre le sol et le mur réduit la pression exercée sur le mur. C'est pour cette raison d'ailleurs qu'on se retrouve en cas plus défavorable lorsque le calcul des poussées actives néglige ce frottement dans le calcul du coefficient de poussée

Exercice N°2

On veut vérifier la stabilité du mur poids représenté sur la figure 4.2. Le mur de parement vertical lisse et de poids volumique $_{b}$ de 22 kN/m³ retient un sol sableux de poids volumique de 17,50 kN/m³ et d'angle de frottement interne =35° à surface libre horizontale.

Le frottement entre le béton et le sol sous la fondation est de 25°.

En négligeant la force de butée exercée sur le mur, vérifier sa stabilité en indiquant la valeur de la contrainte admissible que doit avoir le sol sous le mur poids.

Figure 4.2 Calcul de la poussée des terres sur un mur poids.

Réponse :

On a les données suivantes :

- Paroi du mur verticale : $= 0^{\circ}$
- Paroi du mur lisse : $\delta = 0^{\circ}$
- Sol horizontal : = 0, $m = 35^{\circ}$ et =17,50 kN/m³
- Sol fondation $=25^{\circ}$

1. Bilan des efforts s'exerçant sur le mur :

Pour une bande de 1 mètre de longueur :

1-1 Force de poussée des terres P_a

 $P_{a}=1/2 K_{a} x x H^{2} x(1)$ $K_{a} = \tan^{2}(/4-/2) = 0,271$ $P_{a}=1/2x. 0,271 x 17,50 x (4,50)^{2} x 1,00$ = 48,02 kN $P_{a} \text{ est appliquée à H/3= 4,50/3=1,5 m de la base du mur}$

W= x H x L x1 = 22 x 4,5x 2,5x 1 =**247,50 kN**

W est appliqué à L/2=2,50/2=1,25m du point A

2. Vérification de la stabilité du mur

2-1 Stabilité au renversement

Pour assurer la stabilité du mur de soutènement au renversement, il suffit de vérifier que la résultante R de la réaction du sol est située au tiers central de la semelle de fondation. Sinon vérifier le coefficient de renversement ' F_r ' selon l'expression (2-28) : F_r (sans butée) = $M_{st/A} / M_{r/A} = 1,5$

2-1-1 Vérification de l'excentricité 'e' (par rapport au centre de gravité du mur) sous combinaison ELU (la plus défavorable)

$$e = \frac{M}{N} = \frac{M(P_a) + M(W)}{N = W} = \frac{1,35. P_a. \frac{H}{3} - W.0}{W}$$
$$e = \frac{1,35 \times 48,02 \times 1,50}{247,50} = 0,39 \text{ m} < \frac{b}{6} = \frac{2,50}{6} = 0,42 \text{ m}$$

Donc la résultante des efforts passe par le tiers central de la semelle et le mur est stable vis-àvis du renversement.

2-1-2 A titre indicatif, on va vérifier cette stabilité au renversement également à travers le coefficient de sécurité F_r .

 $M_{st/A} = W. L/2 = 247,50 x 1,25 = 309,37 kN.m$ (Favorable : pas de pondération)

 $M_{r/A} = 1,35x P_a x H/3 = 1,35x 48,02 x 1,5 = 97,24 kN.m$

F_r=309,37 / 97,24 = **3,18 > 1,5.**

Donc le mur est stable vis-à-vis du renversement.

2-2 Stabilité au glissement de la semelle

On doit vérifier que :

$$F_{g} = \frac{C.b + N.\tan\delta}{T} \ge 1.5$$

On a : Frottement semelle /sol = $= 25^{\circ}$

C=0 (sol pulvérulent),

N= F_v (efforts verticaux) = W (sans pondération cas de force favorable)

 $T = F_h$ (efforts horizontaux) =1,35x P_a (pondération de 1,35 : cas de force permanente défavorable)

$$F_{g} = \frac{247,50 \text{ x} \tan 25}{1,35 \text{ x} 48,02} = \mathbf{1}, \mathbf{78} \ge 1,5$$

Donc la fondation du mur est stable vis-à-vis du glissement.

2-3 Stabilité au poinçonnement : <u>Vérification ELS/ accidentelle</u>

Pour une tranche de 1ml

$$\begin{array}{l} \text{metranch} & \text{N} \\ \text{max} = & \overline{\underline{b} \cdot (1\text{ml})} \cdot (1 + \frac{6 \cdot e}{b}) \\ \text{max} = & \overline{\underline{b} \cdot N} \quad (1 + \frac{6 \cdot e}{b}) \\ \text{min} = & \overline{\underline{b} \cdot (1\text{ml})} \cdot (1 - \frac{6 \cdot e}{b}) \end{array}$$

Avec : $N = F_v = W = 247,50 \text{ kN}$

 $M_{GS} = M_{/GS} = P_a \ x \ H/3 = 48,02x \ 1,5 = \textbf{72,03 kN.m} \\ e = M_{GS} \ / \ N = 72,03 \ / \ 247,50 = 0,29 \ m \ et \ b = 2,50 \ m$

Soit:

$$\max_{\text{max}} = \frac{247,50}{2,50 \text{ x 1}} \cdot \left(1 + \frac{6 \text{ x} 0,29}{2,50}\right) = 168,15 \text{ kN/m2} = 0,168 \text{ MPa} = 1,68 \text{ bars}$$
$$\min_{\text{min}} = \frac{247,50}{2,50 \text{ x 1}} \cdot \left(1 - \frac{6 \text{ x} 0,29}{2,50}\right) = 29,85 \text{ kN/m2} = 0,029 \text{ MPa} = 0,298 \text{ bars}$$

Pour assurer la stabilité du mur, la portance du sol sous le mur doit être supérieure à 1,68 bars.

DEUXIEME PARTIE : Prédimensionnement et calcul du ferraillage de murs en BA

Exercice N°1 :

On veut dimensionner un mur en béton armé de hauteur H= 4,00 m ayant une forme de Té renversé. Le mur présente un parement amont (en contact avec le remblai) vertical lisse et retient un sol sableux de poids volumique de 16,50 kN/m³ et d'angle de frottement interne $=40^{\circ}$ à surface libre horizontale.

L'angle de frottement entre le béton et le sol sous fondation est de 35°. Le sol sous fondation à une capacité portante de 2 bars.

Le mur en béton armé de poids volumique $_{ba}=25 \text{ kN/m}^3$ prévu, sera réalisé avec un béton dont la contrainte caractéristique de compression f_{c28} est de 25 MPa avec des aciers longitudinaux de nuances Fe E 400 MPa et transversaux de nuances Fe E 235 MPa. Le mur devrait également supporter une surcharge d'exploitation sur remblai 'q' de 600 kg/m²

On néglige les forces de poussée et de butée exercées sur la semelle, et on admet qu'un système de drainage des eaux derrière le mur est prévu.

Figure 4.3 Caractéristiques géométriques du mur à étudier.

Réponse :

1. Prédimensionnement du mur

$e_0 > \min(H/24; 15cm)$	
Soit $e_0 >= \min(400/24; 15) = \min(16,67; 15)$	On prend: $e_0 = 20$ cm
b = 0,45.H +0,2 = 0,45x 4,00 +0,2 = 2,00 m	On prend: b = 2,00 m
H/8 b ₁ H/5 Soit 400/8 b ₁ 400/5 soit : 50 b ₁ 80	On prend : $\mathbf{b_1} = 50 \ \mathbf{cm}$
$e_1 = e_2 = H/12 = 400/12 = 33,33 \text{ cm}$	On prend: $e_1 = e_2 = 35$ cm
$b = b_1 + e_0 + b_2$ donc : $b_2 = b - b_1 - e_1 = 200 - 50 - 35 = 115$ cm	On prend $b_2 = 1,15 m$
2. Bilan des efforts appliqués :

Les efforts calculés pour une bande de 1 ml sont représentés sur la figure 4.4

Figure 4.4 Forces exercées sur le mur.

2-1 Poussée des terres : P_a

$$P_a = 1/2 x \quad x K_a x h_r^2$$

Parement du mur : Vertical (=0) et lisse (=0);

Surface de remblai horizontale, donc : =0

Par conséquence, le coefficient de poussée active du sol Ka est donné par ;

 $K_a = \tan^2(/4-/2) = \tan^2(/4-40/2) = 0,217$ Avec : $h_r = H-e_2 = 4,00 - 0,35 = 3,65$ m $P_a = 1/2x \ 0,217x \ 16,50 \ x \ (3,65)^2 \ x \ 1 = 23,85$ kN

2-2 Poids des terres sur la semelle amont : V

V= x $h_r x b_2 x 1 = 16,50 x 3,65 x 1,15 = 69,26 kN$

2-3 Poussée due à la surcharge : Paq

 $P_{aq} = K_a x q x h_r x 1 = 0,217x 6 x 3,65 = 4,75 kN$

2-4 Poids de la surcharge sur semelle amont : V1

 $V_1 = q x b_2 x 1 = 6 x 1,15 x1 = 6,90 kN$

2-5 Poids du mur

2-5-1 Poids de semelle

 $P_s = b_a x b x e_2 x 1 = 25 x 2x 0,35 x 1 = 17,50 kN$

2-5-2 Poids du rideau :

Pour faciliter les calculs, le rideau est décomposé en 02 parties : Rectangulaire : (e_0 . h_r) et Triangulaire : [(e_1 - e_0). h_r]
$$\begin{split} P_r &= P_{r1} + P_{r2} \\ P_{r1} &= {}_{ba} x \; e_o x \; h_r \; x \; (1) = 25 \; x \; 0,20 \; x \; 3,65 \; x \; (1) = \textbf{18,25 kN} \\ P_{r2} &= {}_{ba} x \; [1/2 \; x \; (e_1 - e_0) \; x \; h_r] \; x \; (1) = 25 \; x \; [1/2 \; x \; (0,35 - 0,20) \; x \; 3,65] \; x1 = \textbf{6,84 kN} \\ P_r &= P_{r1} + P_{r2} = 18,25 \; +6,84 = \textbf{25,09 kN} \end{split}$$

3. Vérification de la stabilité du mur

3-1 Stabilité au renversement

Pour assurer la stabilité du mur de soutènement au renversement, il suffit de vérifier que la résultante R de la réaction du sol est située au tiers central de la semelle de fondation. Sinon vérifier la valeur du coefficient de renversement ' F_r ' selon l'expression suivante :

 $F_r = M_{st/A} / M_{r/A} - 1,5$

Le tableau 4.1 résume les valeurs des efforts et de leur bras de leviers par rapport au point A (Figure 4.4).

Tableau 4.1 Valeurs des efforts et de leur bras de leviers pour la vérification de la stabilité du mur au renversement.

Composantes : Moment stabilisant (M _{st/A})	Effort (kN)	Bras de levier	Pondération	Moment (kN.m)
	V=69,26	1,425	Pas de pondération : cas favorable	98,69
	V ₁ = 6,90	1,425	Pas de pondération : cas favorable	9,83
	Ps= 17,50	b/2=1,00	Pas de pondération : cas favorable	17,5
	P _r = 25,09	0,709	Pas de pondération : cas favorable	17,79
X7.1 1 X4	143,81 kN.m			
valeur de M _{st/A}			143,81 kN.m	
Composantes : Moment	Effort (kN)	Bras de levier	143,81 kN.m Pondération	Moment (kN.m)
Composantes : Moment renversement	Effort (kN) P _a =23,85	Bras de levier 1,567	143,81 kN.m Pondération Charge permanente 1,35	Moment (kN.m) 50,45
Valeur de M _{st/A} Composantes : Moment renversement (M _{r/A})	Effort (kN) P _a =23,85 P _{aq} =4,75	Bras de levier 1,567 2,175	143,81 kN.m Pondération Charge permanente 1,35 Charge d'exploitation 1,5	Moment (kN.m) 50,45 15,50

Détail de calcul des bras de levier

1) Poids du rideau (divisé en partie rectangulaire ($h_r \ge e_0$) et triangulaire ($1/2(h_r)\ge(e_1-e_0)$)

$$X_{G} = b_{1} + \frac{\left[\frac{2}{3}(e_{1} - e_{0}).\frac{1}{2}h_{r}.(e_{1} - e_{0})\right] + \left[\left((e_{1} - e_{0}) + \frac{e_{0}}{2}\right).h_{r}.e_{0}\right]}{\left[\frac{1}{2}h_{r}.(e_{1} - e_{0}) + h_{r}.e_{0}\right]}$$

= 0.50+ [0.10x 0.274+ 0.25x 0.73] / [0.274+0.73] = 0.709 m

Dr N.Goufi

2) Poids de la semelle

 $X_p = b_2/2 = 2,00/2 = 1,00 \text{ m}$

3) Poussée des terres

 $Y_p = e_2 + 1/3h_r = 0,35 + 1/3x3,65 = 1,567 \text{ m}$

4) Poids des terres

 $X_p = b - b_2/2 = 2,00 - 1,15/2 = 1,425 m$

5) Poussée de surcharge

 $Y_q = e_2 + 1/2h_r = 0,35 + 1/2x3,65 = 2,175 m$

6) Poids de surcharge

 $X_p = b - b_2/2 = 2,00 - 1,15/2 = 1,425 m$

 $F_r = 143,81/65,95 = 2, 18 > 1,5$ Le mur est stable vis-à-vis du renversement.

3-2 Stabilité au glissement de la semelle

 $F_{g} = [C.b+N. tan] /T = 1,5$

Avec : C=0 (sol pulvérulent); $N = F_v$ (efforts verticaux)

 $N = V + V_1 + P_s + P_r = 69,26+6,90+17,50+25,09 = 118,75 \text{ kN}$

: Frottement semelle /sol = 35°

 $T = F_h$ (efforts horizontaux)

 $T = 1,35xP_a + 1,5xP_{aq} = 23,85 + 4,75 = 39,32 \text{ kN}$

 $F_g = 118,75x \tan(35)/(39,32) = 2,11 > 1,5$ La fondation du mur est stable vis-à-vis du

glissement.

3-3 Stabilité au poinçonnement : Vérification ELS/ accidentelle

Pour une tranche de 1ml, on

$$\begin{array}{l} \text{me tranch} & \text{N} \\ \text{max} = & \overline{\underline{b}} \cdot (1\text{ml}) \\ \text{max} = & \overline{\underline{b}} \cdot (1\text{ml}) \\ \hline & \text{h} \\ \text{min} = & \overline{\underline{b}} \cdot (1\text{ml}) \\ \hline & (1 + \frac{6 \cdot e}{b}) \\ \text{min} = & \overline{\underline{b}} \cdot (1\text{ml}) \\ \end{array}$$

Avec : N= $F_v = 118,75 \text{ kN}$,

 $M_{GS} = M/_{GS} = M(P_a) + M(P_{aq}) + M(P_r) + M(P_{rs}) - M(V) - M(V_1)$

 $e = M_G/N$

Le tableau 4.2 résume les valeurs des efforts et de leur bras de leviers par rapport au point G_s (Figure 4.4).

Effort (kN)	Bras de levier (m)/G _S	Moment M/ _{GS} (kN.m)	Valeur de M _{GS}
P _a =23,85	$h_r/3 + e_2 = 1,567$	37,36	
$P_{aq} = 4,75$	$h_r/2+e_2=2,175$	10,33	
Ps =17,50	0	0	22,63
$P_r = 25,09$	X=0,291	7,30	
V= 69,26	b/2-(b ₂)/2=0,425	29,44	
V ₁ = 6,90	b/2-(b ₂)/2=0,425	2,93	

Tableau 4.2 Valeurs des efforts et de leur bras de leviers pour la vérification du poinçonnement du sol de fondation.

Détail de calcul de bras de levier « X » du rideau du mur divisé en partie rectangulaire ($h_r x e_0$) et triangulaire ($1/2(h_r)x(e_1-e_0)$) par rapport au centre de gravité de la semelle.

$$X_{GS} = \frac{\left[\frac{b}{2} - \left(b_1 + \frac{2}{3}(e_1 - e_0)\right) \cdot \frac{1}{2}h_{r} \cdot (e_1 - e_0)\right] + \left[\left(\frac{b}{2} - \left(b_1 + (e_1 - e_0) + \frac{e_0}{2}\right)\right) \cdot h_{r} \cdot e_0\right]}{\left[\frac{1}{2}h_{r} \cdot (e_1 - e_0) + h_{r} \cdot (e_1 - e_0)\right]}$$

= [0,40x0,274+0,25x0,73] / [0,274+0,73] = 0,291 m

$$e = M_G/N = 22,63/118,75 = 0,191 m$$

On a :
$$e = 0,191 < b/6 = 2,00/6 = 0,333$$
 m

Calcul des contraintes

$$\frac{\text{des cond}}{\text{max}} = \frac{N}{\overline{b} \cdot (1\text{ml})} \cdot (1 + \frac{6 \cdot e}{\overline{b}})$$

$$\frac{\text{max}}{\text{max}} = \frac{\overline{b} \cdot N}{\overline{b} \cdot (1\text{ml})} \cdot (1 + \frac{6 \cdot e}{\overline{b}})$$

$$\frac{1 + \frac{6 \cdot e}{\overline{b}}}{1 - \frac{6 \cdot e}{\overline{b}}}$$

$$\frac{118,75}{2,00 \text{ x 1}} \text{ x} \left(1 + \frac{6 \text{ x } 0,191}{2,00}\right) = 93,40 \text{ kN/m}^2 = 0,93 \text{ bars}$$

$$\min = \frac{118,75}{2,00 \text{ x 1}} \text{ x} \left(1 - \frac{6 \text{ x } 0,191}{2,00}\right) = 25,35 \text{ kN/m}^2 = 0,25 \text{ bars}$$

On a: $_{max} = 0.93 \text{ bars} < _{(adm)} = 2.00 \text{ bars}$

Le sol de fondation résiste au poinçonnement.

4. Calcul du ferraillage : Tous les calculs seront faits pour une bande de 1 ml.

Comme la fissuration est peu nuisible, le calcul des armatures sera fait uniquement à l'ELU.

4-1 Ferraillage du rideau

4-1-1 Efforts agissants sur le rideau

Poussées des terres : $P_a=23,85$ kN et Poussée de surcharge : $P_{aq}=4,75$ kN

4-1-2 Modèle statique de calcul et présentation des charges

Le rideau est supposé encastré dans la semelle. Il est donc calculé comme console soumise à une flexion simple (le poids propre du rideau est négligé)

Figure 4.5 Modèle de calcul du rideau d'un mur de soutènement.

4-1-3 Calcul du moment maximal : à l'encastrement

 M_{max} = 1,35x $P_a \ge (h_r/3) + 1,5x P_{aq} \ge (h_r/2) = 1,35 \ge 23,85 \ge (3,65/3) + 1,5x 4,75x (3,65/2)$

M_{max}=52,17 kN.m

Flexion simple : la section de calcul la plus défavorable est un rectangle de dimensions $(e_1 x 100) \text{ cm}^2$

Situation ultime donc : $_{b}=1,5$ $_{s}=1,15$ $f_{bu} = 0.85xf_{c28}/_{b} = 0.85x25/1,5=14,16 \text{ MPa}$, $f_{su}=\text{Fe}/_{s}=400/1,15=348 \text{ MPa}$ On suppose d=0.9x $e_{1} = 0.9x350=315 \text{ mm}$, b'=1m=1000 mm

4-1-4 Ferraillage longitudinal :

$$\mu = M_{max} / [b'x d^2 f_{bu}] = 52,17 x 10^6 (N.mm) / [1000x(315)^2 x 14,16] = 0,037$$

On est en pivot A et donc pas d'armatures comprimées A'=0

$$A_{st} = M_{max}/[Zx f_{su}]$$
 Avec Z= d(1-0,5) et = $1 - \sqrt{1 - 2\mu} = 0.037$

Ce qui donne ; Z=315x (1-0.5x0.036) = 309,06 mm

Ainsi : $A_{st} = 52,17 \text{ x}10^6 / [309,06 \text{ x}348] = 485,09 \text{ mm}^2/\text{ml}$

Soit A_{st} (calculée) =4,85 cm²/ml

Armatures minimales

 $A_{min} = 0,23x \text{ b'x d x } f_t/\text{Fe} = 3,81 \text{ cm}^2/\text{ml}$

La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (4,85 ; 3,81) =4,85 cm²/ml Soit : A_{f} 4,85 cm²/ml Choix des armatures : 5 T12 /ml section qui correspond à $A_a(adoptées) = 5,65 \text{ cm}^2/\text{ml}$

Espacement des armatures : $S_t = 100/n_b$ (nombre de barres) = 100/5=20 cm

4-1-5 Armatures de répartition : Elles sont données par :

 $A_r \quad A_a/4 = 5,65/4 = 1,42 \text{ cm}^2/\text{ml}$

Choix des armatures : **4 T8** /ml section qui correspond à 2,01 cm²/ml

Espacement des armatures : $St=100/n_b = 100/4 = 25 \text{ cm}$

4-1-6 Vérification de l'effort tranchant :

On doit vérifier que :

= Vu/(bxd) 0,07 x $f_{c28/b}$ Vu = 1,35 x P_a + 1,5 x P_{aq} = 1,35 x 23,85+ 1,5 x 4,75 = 39,32 kN = 39,32x10³ / (1000x315) = 0,12 MPa 0,07 x $f_{c28/b}$ = 0,07 x $f_{c28/b}$ =0,07 x 25/1,5 = 1,17 MPa

On a la condition qui est vérifiée donc, on n'a pas besoin d'armatures d'effort tranchant.

4-2 Ferraillage de la semelle en amont du rideau (côté remblai) : Semelle de droite (1 ml).

4-2-1 Efforts agissants sur la semelle de droite de section $S_d=b_2 x \ 1ml$

Du haut vers le bas :

Le poids des terres : $t=1,35 \text{ kV}/\text{ S}_d = 1,35 \text{ x} 69,26/(1,15) = 81,30 \text{ kN/m}$

Le poids de la surcharge : $_q$ = 1,5xV₁/S_d = 1,5x 6,90 /(1,15) = 9,00 kN/m

Le poids de la semelle : $_{s}$ = 1,35x P_s/ S_d = 1,35x (25x 0,35 x1,15 x1) / (1,15) = 11,81 kN/m

Du bas vers le haut : La réaction du sol : répartition trapézoïdale (1 et min)

Calcul de $_{max}$, $_{min}$ et $_1$ (à partir de l'ELU) $M_{GS} = M/_{GS} = 1,35 \times M(P_a) + 1,5 \times M(P_{aq}) + 1,35 \times M(P_r) + 1,35 \times M(P_s) - M(V) - M(V_1)$ $= 1,35 \times 37,36 + 1,5 \times 10,33 + 1,35 \times 7,30 + 1,35 \times 0 - 29,44 - 2,93 = 43,42 \text{ kN.m}$ $N = 1,35 \times [P_r + P_s + V] + 1,5 \times V_1 = 1,35 \times [25,09+17,50+69,26] + 1,5 \times 6,90 = 161,35 \text{ kN}$ $e = M_{GS} / N = 43,42/161,34 = 0,269 \text{ m}$

$$\sigma_{\max} = \frac{N}{b} \cdot \underbrace{\left(1 + \frac{6 \cdot e}{b}\right)}_{\min} = \frac{1}{2,00} \times \underbrace{\left(1 + \frac{6 \times 1}{2,00}\right)}_{\min} = \frac{1}{2,00} \times \underbrace{\left(1 + \frac{6 \times 1}{2,00}\right)}_{\min} = \frac{1}{2,00} \times \underbrace{\left(1 + \frac{6 \times 1}{2,00}\right)}_{\min} = \frac{1}{1,34} \times \underbrace{\left(1 + \frac{6 \times 1}{2,00}\right)}_{\max} = \frac{1}{1,34} \times \underbrace{\left($$

 $_{1} = _{min} + (b_{2}/b) x(_{max} - _{min}) = 90,44 \text{ kN/m}$

Calcul du moment d'encastrement :

 $M_{enc} = M(_{s}) + M(_{q}) + M(_{t}) - M(Réaction du sol : _{min}, _{1})$

Le bras de levier 'X' de la réaction du sol de forme trapézoïdale est donné par :

 $X = \{ \begin{array}{ll} (b_2 x & _{\min})x & (b_2/2) \end{array} + \begin{bmatrix} 1/2 & b_2 x (& _1 - & _{\min})x & 1/3 & b_2 \end{bmatrix} \} / \begin{bmatrix} 1/2x & b_2 x & (& _1 + & _{\min}) \end{bmatrix}$

$$= \frac{\{ [(1,15\underline{x}_15,57)\underline{x}\ (1,15/2)] + [1/2\ 1,15\underline{x}(90,44\ -15,57)\underline{x}\ 1/3\ 1,15] \}}{[1/2\underline{x}\ 1,15\ \underline{x}\ (90,44\ +15,57)]}$$

X = 0,439 m

Alors :
$$M = [(81,30+9,00+11,81) \times (1/2x(1,15)^2)] - [0,439 \times (1/2x + 15,57)]$$

= 40,76 kN.m

4-2-2 Ferraillage longitudinal :

Section de calcul : (b'xe₂) = (1,00 x 0,35) m² soumise à une flexion simple. Le moment maximal est situé à l'encastrement de la semelle dans le rideau et vaut : 40,76 kN.m

Situation ultime donc : b=1,5 s=1,15

 $f_{bu} = 0.85 x \ f_{c28} / \ _{b} = \ 0.85 x 25 / 1.5 = 14.16 \ \text{MPa} \ , \qquad f_{su} = \text{Fe} / \ _{s} = 400 / 1.15 = 348 \ \text{MPa}$

On suppose $d = 0.9 \text{ x } e_2 = 0.9 \text{ x } 350 = 315 \text{ mm}$, b' = 1 m = 1000 mm

$$\mu = M_{max} / [b'xd^2f_{bu}] = 0,029$$

On est en pivot A et donc pas d'armatures comprimées A'=0

=
$$1 - \sqrt{1 - 2\mu} = 0,029$$
 et Z= d(1-0,5)=310,36 mm
A_{st =} M_{max}/[Zx f_{su}] = 40,76 x10⁶ (N.mm)/[310,36 x348] = 377,38 mm²/ml
Soit A_{st} (calculée) =**3,77 cm²/ml**

Armatures minimales

 $\begin{array}{ll} A_{min} = 0,23x \ b'x \ d \ x \ f_t/Fe = 3,81 \ cm^2/ml \\ \mbox{La section 'A_f' retenue est } A_f & max \ (A_{st}, A_{min}) = max \ (3,77\ ; \ 3,81) = 3,81 \ cm^2/ml. \\ \mbox{Soit :} & A_f & 3,81 \ cm^2/ml \end{array}$

Choix des armatures : 5 T12 /ml section qui correspond à $A_a(adoptée) = 5,65 \text{ cm}^2/\text{ml}$

<u>Espacement des armatures</u> : St= $100/n_b$ (nombre de barres)=100/5=20 cm

4-2-3 Armatures de répartition : Elles sont données par : $A_r = A_a/4 = 5,65/4 = 1,42 \text{ cm}^2/\text{ml}$

Choix des armatures : 4 T8 /ml section qui correspond à 2,01 cm²/ml

Espacement des armatures : $St=100/n_b = 100/4 = 25$ cm.

4-3 Ferraillage de la semelle en aval du rideau (côté vide) : semelle de gauche

4-3-1 Efforts agissants sur la semelle de droite de section $S_d=b_2x1ml$

Du haut vers le bas : Le poids de la semelle : $s=1,35 \text{xP}_{s}/S_{d}$

$$= 1,35x(25x0,35x0,50x1)/(0,50)=11,81 \text{ kN/m}$$

Du bas vers le haut : La réaction du sol : répartition trapézoïdale ($_2$ et $_{max}$)

Figure 4.7 Modèle de calcul de la semelle aval d'un mur de soutènement. Recherche des contraintes

On a : $_{max}$ = 145,77 kN/m et $_{min}$ = 15,57 kN/m 2 = $_{max}$ - (b₁/b) x($_{max}$ - $_{min}$) = 113,22 kN/m

Calcul du moment d'encastrement : $M_{enc} = M$ (Réaction du sol : $_{max}$, $_2$) - M($_s$) Le bras de levier 'X' de la réaction du sol de forme trapézoïdale est donné par :

Alors : $M = [0,261 \text{ x} (1/2 \text{ x} 0,50 \text{ x} (145,77+113,22)] - [(11,81) \text{ x} (1/2 \text{ x} (0,50)^2] = 15,39 \text{ kN.m}$ 4-3-2 Ferraillage longitudinal :

Section de calcul : (b'xe₂) = (1,00 x 0,35) m² soumise à une flexion simple. Le moment maximal est situé à l'encastrement de la semelle dans le rideau et vaut : 15,39 kN.m

Situation ultime donc : h=1,5s=1.15 $f_{bu} = 0.85 x f_{c28} / b = 0.85 x 25 / 1.5 = 14.16 MPa$, $f_{su} = Fe / b = 400 / 1.15 = 348 MPa$ On suppose $d = 0.9 \text{ xe}_2 = 0.9 \text{ x}350 = 315 \text{ mm}$, b'=1m=1000 mm $\mu = M_{max} / [b'xd^2 x f_{bu}] = 0.011$ On est en pivot A et donc pas d'armatures comprimées A'=0 $=1-\sqrt{1-2\mu}=0.011$ et Z= d.(1-0.5)=313,26 mm $A_{st} = M_{max}/[Zx f_{su}] = 15,39 \times 10^{6} (N.mm)/[313,26 \times 348] = 141,17 \text{ mm}^2/\text{ml}$ Soit A_{st} (calculée) =1,41 cm²/ml <u>Armatures minimales</u> : $A_{min} = 0.23 \text{ xb'x d x f_t/Fe} = 3.81 \text{ cm}^2/\text{ml}$ La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (1,41; 3,81) = 3,81 cm²/ml Soit : $A_f = 3,81 \text{ cm}^2/\text{ml}$ Choix des armatures : **5T 12** /ml section qui correspond à $A_a(adoptée) = 5,65 \text{ cm}^2/\text{ml}$ Espacement des armatures : St=100/nb (nombre de barres)=100/5=20 cm 4-3-3 Armatures de répartition : Elles sont données par : $A_r = A_a/4 = 5,65/4 = 1,42 \text{ cm}^2/\text{ml}$ Choix des armatures : **4T 8** /ml section qui correspond à 2,01 cm²/ml Espacement des armatures : $St=100/n_b = 100/4 = 25$ cm

5. Schéma de ferraillage

Figure 4.8 Schéma de ferraillage d'un mur de soutènement en forme de Té renversé sans contreforts.

Exercice N°2 :

On désire déterminer le ferraillage du mur de soutènement avec contreforts de 20 cm d'épaisseur ' e_c ' espacés de 2,80 m représenté sur la figure 4.9.

On considère les données suivantes :

Remblai

- Poids volumique $=16 \text{ kN/m}^3$;
- Angle de frottement interne $=35^{\circ}$ et surface horizontale =0;

Sol de fondation :

- Contrainte admissible _{adm}= 0,25 MPa ;
- Angle de frottement interne $=45^{\circ}$;

Mur en béton armé:

- Poids volumique : $_{ba} = 25 \text{ kN/m}^3$;
- Parement (remblai) vertical (= 0) et lisse ($\delta = 0$);
- $f_{c28} = 25$ MPa et Fe E400 MPa ;
- Fissuration peu nuisible ;

Hypothèses :

- On néglige la différence entre le poids volumique du contrefort et celui du remblai ;
- Dans cet exercice, la stabilité extérieure du mur est supposée vérifiée ;

Figure 4.9 Dimensions du mur avec contreforts.

Réponse :

1- Ferraillage du rideau

1-1 Modèle statique de calcul et présentation des charges

Hauteur du rideau : h_r = 4,60-0,20 = 4,40 m

Le rideau est décomposé en tranches horizontales de 1m de hauteur. On considère la pression à mi-hauteur de la bande.

Dans cet exemple, on développer a uniquement les calculs de la tranche la plus sollicitée c'està-dire la 5^{ieme} tranche.

Figure 4.10 Modèle de calcul du rideau de mur avec contreforts.

1-2 Efforts agissants sur le rideau

La poussée des terres sur la 5^{ieme} tranche est donnée par : $P_a = x K_a x h_5 x 1$

Parement du mur vertical lisse et surface de remblai horizontale, donc :

 $K_a = \tan^2(/4-35/2) = 0,271$

 $P_a = 0,271 \text{ x} (16) \text{ x} (3,90) \text{ x}1 = 16,91 \text{ kN/ml}$

Comme on a une fissuration peu nuisible, le calcul de ferraillage se fera à ELU. La poussée des terres sera alors : P_a = 1,35x 16,91 = **22,82 kN/ml**

1-3 Calcul des moments et efforts tranchants ultimes

1-3-1 Moment en travée : $M_t = 0.8 P_a x l^2/8 = P_a x l^2/10 = 22.82 x 2.8^2/10 = 17.89 kN.m$

1-3-2 Moment en appui : $M_a = P_a \ge 1^2/16 = 22,82 \ge 2,8^2/16 = 11,18$ kN.m

1-3-3 Effort tranchant : $V_u = P_a x l/2 = 22,82 x 2,8/2 = 31,95 kN$

1-4 Calcul de ferraillage longitudinal

Situation ultime donc : $_{b}=1,5$ $_{s}=1,15$ $f_{bu} = 0.85 x f_{c28} / _{b} = 0.85 x 25 / 1.5 = 14.16 MPa$, $f_{su} = Fe / _{s} = 400 / 1.15 = 348 MPa$ On suppose d= 0.9 x e₁ = 0.9 x 200 = 180 mm , b'=1m=1000 mm

1-4-1 Armatures en travées

$$\mu = M_t / [b'xd^2xF_{bu}] = 17,89 x10^6 (N.mm) / [1000x(180)^2x14,16] = 0,0389$$

On est en pivot A et donc pas d'armatures comprimées A'=0

 $\begin{array}{ll} A_{st} = & M_t / [Zx \ f_{su}] \\ Avec \ Z = \ d(1-0,5 \) \ et & = 1 - \sqrt{1 - 2\mu} = 0,039 \\ Ce \ qui \ donne \ ; \ Z = 180x \ (1-0,5x \ 0,037) = 176,41 \ mm \\ Ainsi \ : \ A_{st} = & 17,89 \ x10^6 \ (N.mm) / [\ 176,61 \ x348] = & 291,08 \ mm^2 / ml \\ & \text{Soit} \ A_{st} \ (calculée) = & 2,91 \ cm^2 / ml \end{array}$

Armatures minimales

 $A_{min} = 0.23 \text{ xb'x d x f}_{t28}/\text{Fe} = 0.23 \times 100 \times 18 \text{ x } 2.1/25 = 2.17 \text{ cm}^2/\text{ml}$

La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (2,91 ; 2,17) = 2,91 cm²/ml

Soit : $A_f = 2,91 \text{ cm}^2/\text{ml}$

Choix des armatures : **5T 10** /ml section qui correspond à A_a (adoptée)=3,92 cm²/ml

Espacement des armatures :

 $St=100/n_b$ (nombre de barres)=100/5=20 cm

4-1-5 Armatures de répartition : Elles sont données par

Ar $A_a/4 = 3,92/4 = 0,98 \text{ cm}^2/\text{ml}$

Choix des armatures : **4** 6 /ml section qui correspond à $1,13 \text{ cm}^2/\text{ml}$

Espacement des armatures : $St=100/n_b = 100/4 = 25$ cm

1-4-2 Armatures en appui

 $\mu = M_a / [b'xd^2 x f_{bu}] = 11,18 x10^6 (N.mm) / [1000x(180)^2 x14,16] = 0,024$

On est en pivot A et donc pas d'armatures comprimées A'=0

 $A_{st\,=}~M_a\!/\![Zx~f_{su}]$

Avec Z= d.(1-0,5) et = $1-\sqrt{1-2\mu} = 0.024$

Ce qui donne ; Z =180 x(1-0,5x0,023) = 177,81 mm

Ainsi : $A_{st} = 11,18 \times 10^{6} (N.mm) / [177,81 \times 348] = 180,68 \text{ mm}^2/\text{ml}$

Soit : A_{st} (calculée) =1,81 cm²/ml

Armatures minimales

 $A_{min} = 0.23 \text{ xb'x d x f}_{t28}/\text{Fe} = 0.23 \times 100 \times 18 \text{ x} 2.1/25 = 2.17 \text{ cm}^2/\text{ml}$

La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (1,81 ; 2,17) = 2,17 cm²/ml

Soit : $A_f = 2,17 \text{ cm}^2/\text{ml}$

Choix des armatures : **5T 10** /ml section qui correspond à $A_a(adoptée) = 3,92 \text{ cm}^2/\text{ml}$

Espacement des armatures : St=100/nb (nombre de barres)=100/5=20 cm

1-4-5 Armatures de répartition : Elles sont données par

 $A_r \quad A_a/4 = 3,92/4 = 0,98 \text{ cm}^2/\text{ml}$

Choix des armatures : **4** 6 /ml section qui correspond à $1,13 \text{ cm}^2/\text{ml}$

Espacement des armatures : $St=100/n_b = 100/4 = 25$ cm

Remarque : Les mêmes calculs seront refaits pour le reste des tranches avec la pression des terres P_a correspondante et donc les moments en travée et en appui correspondants. Le tableau 4.3 résume les valeurs des pressions des terres et des moments ainsi que le ferraillage adopté. Pour les armatures de répartition, on prendra celles qui sont adoptées pour le cas le plus défavorable, à savoir des **6** avec un espacement de 20 cm.

Tableau 4.2 Valeurs des pressions des terres, des moments et efforts tranchants et du ferraillage adopté.

	Efforts (a ELU)			Ferraillage/Espacement	
Tranche N ^o	P _a (kN/ml)	M _t (kN.ml)	M _a (kN.ml)	En travée	En appui
1	22,82	17,89	11,18	5T10/ St=20	5T10/ St=20
2	16,97	13,30	8,31	5T10/ St=20	5T10/ St=20
3	11,12	8,72	5,45	4T10/ St=25	4T10/ St=25
4	5,27	4,13	2,58	4T10/ St=25	4T10/ St=25
5	1,17	0,92	0,57	3T10/ St=16	3T10/ St=16

2- Ferraillage de la semelle

On suppose que la semelle repose uniquement sur le rideau et la bêche. Elle est soumise aux efforts indiqués sur la figure 4.11 qui illustre également le modèle de calcul.

Figure 4.11 Semelle de mur avec contrefort.

2-1 Calcul des efforts appliqués sur la semelle

2-1-1 Poids propre du rideau

 $P_r = 25 x (0,20 x 4,40) x1 = 22,00 kN$

2-1-2 Poids propre du contrefort (forme triangulaire) :

 $P_c = 25x [1/2x (1,70) x 0,20 x 4,40] = 18,70 kN$

Transformation de la charge concentrée du contrefort en charge équivalente répartie par mètre

 $P_{ce} = 18,70 / 2,80 \text{ x1} = 6,68 \text{ kN}$

2-1-3 Poids propre du remblai

V= $x h_r x b_2 x 1 = 16 x 4,40 x 1,70 x 1 = 119,68 kN$

2-1-4 Poids propre de la semelle

 $P_s = 25 \times 0.2 \times 2.50 \times 1 = 12,50 \text{ kN}$

2-2 Calcul des contraintes max et min

On calcul au préalable la poussée des terres et le poids propre de la bêche

2-2-1 Poussées des terres : Pour une tranche de 1ml

 $P_a = 1/2x \quad x K_a x h_r^2 x 1$

Parement du mur vertical lisse et surface de remblai horizontale, donc :

 $K_a = \tan^2(/4-/2) = \tan^2(/4-35/2) = 0,271$

 $P_a = 1/2 \times 16 \times 0.271 \times 4.40^2 \times 1 = 41.97 \text{ kN}$

2-2-2 Poids propre de bêche :

 $P_b=25 \ge 0.3 \ge 0.3 \ge 0.3 \ge 12$

2-2-3 Calcul de l'excentricité : e= M_{GS} /N

Détermination de M_{GS} (Moment de tous les efforts par rapport au centre de gravité de la semelle) et N (somme de tous les efforts verticaux)

 $M_{GS} = M_{GS} = 1,35 \times M(P_a) + 1,35 \times M(P_r) + 1,35 \times M(P_s) - M(V) - M(P_b) - M(P_{ce})$

Le tableau suivant résume les valeurs des efforts et de leur bras de leviers

Effort (kN)	Bras de levier (m)	Moment M/ _{GS} (kN.m)
$P_a = 41,97$	$h_r/3 + e_2 = 4,40/3 + 0,2 = 1,667$	69,96
$P_s = 12,50$	0	0
$P_r = 22,00$	$b/2 - b_1 - e_0/2 = 2,50/2 - 0,60 - 0,20/2 = 0,55$	12,10
$P_b = 2,25$	$b/2-e_b/2 = 2,50/2-0,30/2 = 1,10$	2,47
$P_{ce} = 6,68$	$b/2-2/3b_2 = 2,50/2-2/3x1,70 = 0,117$	0,78
V=119,68	$b/2 - b_2/2 = 2,50/2 - 1,70/2 = 0,40$	47,87

$$\begin{split} M_{GS} &= 1,35 \text{ x } 69,96 + 1,35 \text{ x } 12,10 - 47,87 - 2,47 - 0,78 = 59,66 \text{ kN.m} \\ N &= 1,35 \text{ x}(P_s + P_r + P_b + P_{ce} + V) = 1,35 \text{ x}(12,50 + 22,00 + 2,47 + 6,68 + 119,68) = 220,49 \text{ kN} \end{split}$$

e = 59,66/220,49 = **0,271 m**

$$\max = \frac{\frac{220,49}{2,50} \times (1 + \frac{6\times0}{2,50})}{\max = 145,55 \text{ kN/m}} \qquad \min = \frac{220,49}{2,50} \times (1 - \frac{6\times0}{2,50})$$

2-3 Calcul des contraintes 'g, "g, 'et "

On a :

$$\begin{cases} \ '=1,35x(P_{ce}+P_{s}+V) - \min \\ \ ''=1,35x(P_{ce}+P_{s}+V) - 1 \\ \text{Avec} \quad 1 \text{ donnée par}: \quad 1 = \min + 0 \\ 0 = [(\max - \min)x \ b_{2}/b] = [(145,55 - 30,83) \ x \ 1,70/2,50] = 78,01 \ \text{kN/m} \\ \text{donc}: \quad 1 = 30,83 + 78,01 = 108,84 \ \text{kN/m} \\ \\ \left\{ \begin{array}{l} \ '=1,35x(P_{ce}+P_{s}+V) - \min = 1,35x(6,68+12,50+119,68) - 30,83 = 156,63 \ \text{kN/m} \\ \ ''=1,35x(P_{ce}+P_{s}+V) - 1 = 1,35x(6,68+12,50+119,68) - 108,84 = 78,62 \ \text{kN/m} \\ \ ''=1,35x(P_{ce}+P_{s}+V) - 1 = 1,35x(6,68+12,50+119,68) - 108,84 = 78,62 \ \text{kN/m} \\ \text{et:} \\ \\ \left\{ \begin{array}{l} \ 'g = \max -P_{s} = 145,55 - 12,50 = \ 133,05 \ \text{kN/m} \\ \ ''g = \max -[(\max - \min) \ x \ b_{1}/b] -P_{s} = 145,55 - [(145,55 - 30,83) \ x \ 0,60/2,50] - 12,5 \\ = 105,52 \ \text{kN/m} \end{array} \right. \end{cases}$$

Ainsi, on a :

2.3 Semelle gauche

2.3.1 Calcul du moment d'encastrement (M_{max} au point B)

 $R_{BG} = 1/2 (b_1) x ('_g + "_g) = 1/2 (0,60) x (133,05 + 105,52) =$ **71,57 kN** $M_{BG} = b_1^2/6 x (2x "_g + '_g) = 0,60^2/6 x (2 x 105,52 + 133,05) =$ **20,65 kN.m**

$$A \xrightarrow{B} M_{BG}$$

$$g=133,05 \xrightarrow{G} 60 \xrightarrow{G} 60 \xrightarrow{C}$$

2.3.2 Ferraillage longitudinal :

Section de calcul : (b'x e_2) = (1,00 x 0,20) m² soumise à une flexion simple. Le moment maximal est situé à l'encastrement de la semelle dans le rideau et vaut : 20,65 kN.m

Situation ultime donc :
$$_{b}=1,5$$
 $_{s}=1,15$
 $F_{bu} = 0.85 x f_{c28} / _{b} = 0.85 x 25 / 1.5 = 14,16 MPa$, $f_{su}= Fe / _{s} = 400 / 1.15 = 348 MPa$
On suppose $d=0.9 x e_{2} = 0.9 x 200 = 180 mm$, $b'=1m=1000 mm$

 $\mu = M_{max} / [b'x d^2 x F_{bu}] = 0.045$

On est en pivot A et donc pas d'armatures comprimées A'=0

=
$$1 - \sqrt{1 - 2\mu} = 0,046$$
 et Z= d(1-0,5)=175,86 mm
A_{st =} M_{max}/[Zx f_{su}] = 20,65 x10⁶ / [176,67 x348] = 337,42 mm²/ml
Soit A_{st} (calculée) =**3,37 cm²/ml**

Armatures minimales

 $A_{min} = 0,23xb'x d x f_t/Fe = 2,17 cm^2/ml$

La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (3,37; 2,17) = 3,37 cm²/ml

Soit :
$$A_f = 2,69 \text{ cm}^2/\text{ml}$$

Choix des armatures : 5 T10 /ml section qui correspond à $A_a(adoptées) = 3,93 \text{ cm}^2/\text{ml}$

<u>Espacement des armatures</u> : St=100/n_b (nombre de barres)=100/5=20 cm

2.3.3 Armatures de répartition : Elles sont données par

Ar $A_a/4 = 3,93/4 = 0,98 \text{ cm}^2/\text{ml}$

Choix des armatures : **4T 8** /ml section qui correspond à 2,01 cm²/ml

Espacement des armatures : $S_t=100/n_b=100/4=25$ cm

2.4 Semelle droite

2.4.1 Calcul du moment maximal :

La valeur du moment maximal sollicitant la semelle de droite est déterminée en étudiant le système isostatique représenté sur le schéma suivant :

M_{max} = 52,81 kN.m et R_C=123,18 kN

2.4.2 Ferraillage longitudinal Section de calcul : (b'xe₂) = (1,00 x 0,20) m² soumise à une flexion simple. Le moment maximal vaut : 52,81 kN.m Situation ultime donc : $_{b}=1,5$ $_{s}=1,15$

$$\begin{split} F_{bu} &= 0,85x \; f_{c28} / \ _{b} = \; 0,85x25 / 1,5 = 14,16 \; MPa \; \; , \qquad f_{su} = Fe / \ _{s} = 400 / 1,15 = 348 \; MPa \\ \text{On suppose } d = 0,9xe_2 = 0,9x200 = 180 \; mm \; \; , \qquad b' = 1m = 1000 \; mm \\ \mu &= M_{max} / \; [b'xd^2 x \; F_{bu}] = 0,115 \\ \text{On est en pivot A et donc pas d'armatures comprimées A'} = 0 \end{split}$$

=
$$1 - \sqrt{1 - 2\mu} = 0,122$$
 et Z= d(1-0,5) = 169,02 mm
A_{st =} M_{max} / [Z x f_{su}] = 52,81 x10⁶ / [167,67 x 348] = 897,84 mm²/ml
Soit A_{st} (calculée) = **8,97 cm²/ml**

Armatures minimales

 $A_{min} = 0,23xb'x d x f_t/Fe = 2,17 cm^2/ml$

La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (8,97; 2,17) = 8,97 cm²/ml

Soit : $A_f = 8,97 \text{ cm}^2/\text{ml}$

Choix des armatures : **6T 14** /ml section qui correspond à $A_a(adoptées) = 9,23 \text{ cm}^2/\text{ml}$

Espacement des armatures : $St=100/n_b$ (nombre de barres) = 100/6 = 16,66 cm

Choix final : T 14 avec $S_t = 16 \text{ cm}$

2.4.3 Armatures de répartition : Elles sont données par

Ar $A_a/4 = 9,23/4 = 2,31 \text{ cm}^2/\text{ml}$

Choix des armatures : **6T 8** /ml section qui correspond à $3,01 \text{ cm}^2/\text{ml}$

Espacement des armatures : $St=100/n_b = 100/6 = 16,66$ cm

Choix final : T8 avec $S_t = 16$ cm

3. Ferraillage de la bêche

3.1 Modèle de calcul

Consiste en une poutre encastrée à ses extrémités aux contreforts et soumise à une charge q linéaire égale à la réaction de la semelle de droite ($R_C = 123,18$ kN/ml)

3.2 Calcul des moments et réactions

Les moments sont donnés par :

En travée $M_t = 0.8 M_0$

En appui $M_a = 0,5 M_0$

Avec : $M_0 = q.L^2/8 = 123,18 \text{ x } 2,80^2/8 = 120,71 \text{ kN.m}$

Alors : $M_t = 0.8 M_0 = 96,57 \text{ kN.m}$

En appui M_a = 0,5 M_0 =60,35 kN.m

En raison de la symétrie, les réactions R_D et R_E sont données par :

 $R_D = R_E = q \times 1 / 2 = 123,18 \times 2,8 / 2 = 172,45 \text{ kN}$

3.3 Calcul du ferraillage de la bêche

3.3.1 Ferraillage en travée

Section de calcul : $(bxh) = (30 \times 50) \text{ cm}^2$ soumise à une flexion simple.

d=0.9xh=0.9x500=450 mm,

$$\mu = M_t / [bx d^2 x F_{bu}] = 0,112$$

$$= 1 - \sqrt{1 - 2\mu} = 0,119$$
 et Z= d(1-0,5) = 423,20 mm

 $A_{st} = M_t / [Zx f_{su}] = 104,05 x 10^6 / [323,20 x 348] = 655,71 mm^2$

Soit A_{st} (calculée) =6,56 cm²

Armatures minimales

 $A_{min} = 0.23 \text{ xbx } \text{ d x } \text{ f}_t/\text{Fe} = 1.63 \text{ cm}^2$

La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (6,56; 1,63) = 6,56 cm²

Soit : $A_f = 6,56 \text{ cm}^2$

Choix des armatures : **6T12** section qui correspond à $A_a(adoptées) = 6,78 \text{ cm}^2$

3.3.2 Ferraillage en appui

Section de calcul : $(bxh) = (30 \times 50) \text{ cm}^2$ soumise à une flexion simple.

d=0.9xh=0.9x500=450 mm ,

 $\mu = M_a / [bxd^2F_{bu}] = 0,070$

$$= 1 - \sqrt{1 - 2\mu} = 0.073$$
 et Z= d(1-0.5) = 433.61 mm

 $A_{st} = M_a/[Zx f_{su}] = 60,35 \text{ x}10^6 \text{ (N.mm)} / [433,61 \text{ x}348] = 399,93 \text{ mm}^2$

Soit
$$A_{st}$$
 (calculée) =**3,99 cm**²

Armatures minimales

 $A_{min} = 0,23xbx d x f_t/Fe = 1,63 cm^2$

La section 'A_f' retenue est A_f max (A_{st}, A_{min}) = max (3,99; 1,63) = $3,99 \text{ cm}^2$

Soit : $A_f = 3,99 \text{ cm}^2$

Choix des armatures : **3T12** section qui correspond à A_a (adoptées) = 4,36 cm²

3.3.3 Vérification de l'effort tranchant

 $= V_D/(b.d) = 172,45 \ 10^3/(500x450) = 0,77 \ MPa$

Fissuration non préjudiciable, donc :

 $_{adm} = min (0,2. f_{c28}/_{b}; 5 MPa) = min (0,2. 25/1,5; 5 MPa) = 3,33 MPa$

< adm les cadres et étriers droits

Diamètre des armatures transversales :

4. Ferraillage du contrefort

4.1 Modèle, section, charge de calcul et moment d'encastrement

Le contrefort est calculé comme une console verticale encastrée à sa base dans la semelle et soumis latéralement aux efforts transmis par le rideau sur une largeur l correspondant à la distance entre axes des contreforts.

La section de calcul est en forme de Té dont la table de compression est représentée par le rideau.

 $M_{enc} = 1,35x (h_r/3.P_a')$ $M_{enc} = 1,35x[4,40/3x(1/2 x0,271 x16 x4,40^2) x2,80] = 232,70 kN.m$

4.2 Calcul du ferraillage longitudinal du contrefort

Moment de la table M_{tb}

$$M_{tb} = \sigma_{bc}. b. h_0. \left(d - \frac{h_0}{2} \right)$$

Avec :

d= 190-4 =186 cm b= 1,18 m h₀= 20 cm $M_{tb} = 14,16 \times 10^3 \times 1,18 \times 0,20 \times (1,86 - 0,2/2) = 5881,49 \text{ kN.m}$ $M_{tb} > M_{enc}$ Axe neutre dans la table, calcul d'une section rectangulaire (bxh) $\mu = M_{enc} / [bxd^2xF_{bu}] = 0,004$ On est en pivot A et donc pas d'armatures comprimées A'=0 $= 1-\sqrt{1-2\mu} = 0.004 \text{ et } Z = d(1-0.5) = 185.63 \text{ cm}$

$$A_{st} = M_{max} / [Zx f_{su}] = 232,70 \text{ x} 10^3 \text{ (N.m)} / [1,8563 \text{ x} 348 \text{ x} 10^6] = 3,60 \text{ cm}^2$$

Soit : **2T16** = 4,02 cm²

Armatures de répartition

 $Ar > 4,02/4 = 1,00 \text{ cm}^2$ on choisi $4T8 = 2,01 \text{ cm}^2$

4.3 Calcul du ferraillage transversal du contrefort

4.3.1 Détermination de l'effort tranchant (ELU)

 $T_u=1,35 P_a = 1,35 x 117,52 = 158,66 kN$

La contrainte tangentielle est alors :

 $_{\rm u} = T_{\rm u}/(b_0 x d) = 158,66 \ 10^3/ \ (200x1860) = 0,43 \ {\rm MPa}$

 $\lim_{lim} = \min (0,2 \text{ } f_{c28}/1,5 \text{ }; 5\text{MPa}) = 3,33 \text{ } \text{MPa}$

On a bien : $_{\rm u} < _{\rm lim}$

Espacement des armatures transversales : On prend un espacement constant de $S_t = 15$ cm

Section des armatures transversales

$$\frac{A_t}{S_t} \ge \frac{(\tau_u - 0.3 f_{t28}) \cdot b \cdot \gamma_s}{0.9 f_e} = \frac{(0.43 - 0.3 \cdot 2.1) \times 20 \times 1.15}{0.9 \times 235} = -0.021 \ cm^2/cm$$

Soit: A_t 0

Pourcentage minimal des armatures transversales

 $\frac{A_t}{S_t} \ge \frac{0.4 \cdot b.\gamma_s}{f_e} = \frac{0.4x \ 20 \ x \ 1.15}{235} = 0.039 \ cm^2/cm$ Soit : A_t 0.039 x 15 = 0.58 cm² Au final: A_t max (0 ; 0.58) = 0.58 cm²

Diamètre maximal des armatures transversales :

min (
$$_1$$
; h/35; b₀/10) = min (12; 5,42; 20) on considérera un cadre de =8 mm
Ainsi : A_t = 2 8 = 1,05 cm² > 0,58 cm²

Références bibliographiques

[1] Schlosser, F. Techniques de l'Ingénieur : Murs de soutènement. Traité construction Volume C 244-2. P23, Paris.

[2] Bieth Emmanuel, M. Murs de soutènement : Cours de Mécanique des sols appliqués. ENTPE année 2009/2010

[3] http://www.dunepierrelautre.com/la-pierre-seche.html

[4] https://maconnerie.bilp.fr/guide-mur-soutenement/part-1-generalite/typologie.

[5] https://www.batirama.com/article/1878-mur-de-soutenement-pas-d-improvisation.html.

[6] http://www.terre-armee.fr/TA/wtaf_fr.nsf/sb/techniques.terre-armee.

[7] G. Philipponnat et B. Hubert. Fondations et ouvrages en terre Edition Deuxième tirage 2000Eyrolles. 61, boulevard Saint-Germain, 75005 Paris 1987 www.GCAlgerie.com.

[8] http://public.iutenligne.net/genie-civil/geotechnique/fauqueux/parois_moulees/14.html.

[9] A.Bouafia. Conception et calcul des ouvrages géotechniques, éditions SAB Alger, 2009, 367p

[10] http://www.eccomarhaiti.com/2013/01/quai-palplanches-lmh-2008.html.

[11] http://lycee-cherioux.fr/Mooc/soutenements/enterre/~gen/publi/enterre_25.html

[12] https://monmacon.pro/construire-mur-en-beton-arme/.

[13] A. ANNANE. Mur de soutènement en zone sismique. Mémoire de Magister, Université Hadj Lakhdar-Batna 2013

[14] https://fr.twiza.org/article/129/le-pneu-materiau-de-construction.

[15] F. Schlosser. Techniques de l'Ingénieur : Ouvrages de soutènement - Poussée et butée. Traité Construction Volume C 242-2. 17p, Paris.

[16] A.Bouafia. Introduction à la réglementation géotechnique. Tome 2 : Murs et écrans de soutènement. Calcul parasismique. Office des Publications Universitaires Alger 2015, 66p.

[17] H. Khelafi Cours de projet en béton armé. Master 2, Département de Génie Civil, Université des Sciences et de la Technologie Mohamed Boudiaf d'Oran, 2014/2015

[18] A.Bouafia. Calcul des ouvrages géotechniques Problèmes résolus. Polycopié, Université Saâd Dahleb de Blida 2018, 59 pages.

[19] Eurocode 7 (NF EN 1997) : Calcul géotechnique (Juin 2005) ;

[20] J. costet et G. Sanglerat. Cours pratique de mécanique des sols, Paris, 1982. Dunod

[21] RPA : Règlement parasismique algérien. 1999/V2003.

[22] Règles BAEL 91 révisées 99 : (DTU P18-702) : Règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites.

[23] https://maconnerie.bilp.fr/guide-mur-soutenement/types/bloc-bancher/drainage

[24] http://lycee-cherioux.fr/Mooc/soutenements/apparent/~gen/apparent.publi/20.html.