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I. Introduction 

This document is not intended to be a course of all numerical methods, just a course on 

matrices. The idea is to give at the very beginning of this document the essentials on matrices. 

To treat the methods of resolution of the systems of linear algebraic equations thereafter. 

Certainly, in the literature many methods exist, there are direct methods and iterative 

methods. We will approach in this support only the direct methods which will allow us to 

solve the systems of linear algebraic equations. 

The most commonly used direct methods are direct elimination, Cramer's rule, Gaussian 

elimination, Gauss-Jordan elimination, matrix inversion and matrix factorization. At the 

beginning, this course intended for the third year license aimed to inculcate for students the 

programming techniques, particular the programming language FORTRAN and MATLAB. 

Noting huge gaps in our students, in particular matrix operations and numerical methods, the 

content of this course has been improved and adapted for the training needs of this course. In 

order to provide the student with course materials, this handout was produced and mainly 

inspired by the book “Numerical Methods for Engineers and Scientists” by author Joe D. 

Hoffman. The latter is devoted solely to the part of matrix operations and numerical methods 

for solving systems of linear equations. 
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II. Properties of matrices and determinants 

Systems of linear algebraic equations can be well expressed in terms of matrix notation. 

Methods for solving systems of linear algebraic equations can be developed in a very compact 

way using matrix algebra. Therefore, the elementary properties of matrices and determinants 

are presented in this section. 

III. Matrix Definition 

A matrix is a rectangular array of elements (numbers or symbols), which are arranged in 

ordered rows and columns. Each element of the matrix is distinct with separation.  The 

location of an element in the matrix is important. The elements of a matrix are generally 

identified by an indexed double lowercase letter, for example, aij, such that the first index i 

identifies the row of the matrix and the second index j identifies the column of the matrix. The 

size of the matrix is indicated by the product of the number of rows by the number of 

columns. A matrix with n rows and m columns is said to be n by m or nxm matrix. Arrays are 

usually represented by either a bold uppercase letter, e.g., A, or the element in square 

brackets, e.g., [aij], or the full range of elements, as shown in the equation: 

           

       

   
       

                                               

This notation is used throughout this handout for a simpler appearance. When the general 

element ai,j is considered, the indices i and j are separated by a comma. When a specific 

element is used, for example, a14, the subscript 1 and 4, which denote the element in row 1 

and column 4, will not be separated by a comma, except for i or j greater than 9. For example, 

an a68 denotes the item in row 6 and column 8, while a14,5 denotes the item in row 14 and 

column 5. 

1. Matrix vector 

Vectors are a special type of matrix that only has one column or one row. Vectors are 

represented by either a bold lowercase letter, e.g., x or y, the item in square brackets [xi] or 

[yi] denotes the full column or full row of items. The column vector is an n × 1 matrix: 
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The row vector is a matrix of 1× n: 

              
                                                                       

Unit vectors, i, are special vectors that have a unity magnitude: 

       
    

      
                                                                                          

Where the notation ‖i‖ denotes the length of vector i, orthogonal system for unit vector, in 

which all elements are zero, except one, and which are used to define coordinate systems. 

2. Square matrix 

There are several types of special matrices. A square matrix S is a matrix that has the same 

number of rows and columns (m = n): 

11 1

1

... ...

                                                                                      (5)

... ...

n

n nn

a a

S

a a

 
 
 
 
 
 

M O M

M O M
 

S is an n x n square matrix. Our interest will be devoted entirely to square matrices. The 

descending left-to-right line of elements from a11 to ann is called the diagonal of the matrix. 

3. Diagonal matrix 

A diagonal matrix is a square matrix whose coefficients outside the main diagonal are zero. 

The diagonal coefficients may or may not be zero. Any diagonal matrix is also a symmetric 

matrix. For example D is a diagonal matrix of 4 x 4. 
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11

22

33

44

0 0 0

0 0 0
                                                                                   (6)

0 0 0

0 0 0

d

d
D

d

d

 
 
 
 
 
 

 

D is a diagonal matrix if and only if it satisfies: 

                          

As a diagonal matrix is entirely determined by the list of its diagonal elements, the following 

more concise notation is often adopted: 

 

1

2

1 2

0 0

0
( , ,..., )                                                               (7)

0

0 0

n

n

a

a
diag a a a

a

 
 
 
 
 
 

L

O M

M O O

L

 

 

Diagonal matrices appear in almost all areas of linear algebra. The multiplication of diagonal 

matrices is very simple; also, if an interesting matrix can somehow be replaced by a diagonal 

matrix, then calculations involving it will be faster and the matrix easier to store in memory. 

A process for making certain matrices diagonal is diagonalization. 

A diagonal matrix of order n naturally has eigencolumns which are coordinates of n 

orthonormal vectors and its diagonal coefficients are exactly the associated eigenvalues. 

See also the singular value decomposition, according to which any matrix is unitarily 

equivalent to a zero-bounded positive diagonal matrix. 

 

In other words, for all diagonal matrices                   and 

                   we have : 

 For everything 
2( , ) ,  D E F        with 

1
(( ) )

i i i n
F diag d e 

 
   

 DE = ED = G with 
1

(( ) )
i i i n

G diag d e
 

   

A consequence of this is that raising a diagonal matrix D to a certain power amounts to raising 

the coefficients of the diagonal of D to that power: 
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, ,
( ) ( )k k k

i j i j
D diag d diag d 

 

4. Scalar matrix 

These are the diagonal matrices whose all diagonal coefficients are equal. For example: 

0 0 0

0 0 0
                                                                                                 (8)

0 0 0

0 0 0









 
 
 
 
 
 

 

The determinant of a diagonal matrix is equal to the product of its diagonal elements: 

1

2

1 2
1

0 0

0
det( ( , ,..., ))                                             (9)

0

0 0

n

n k
k

n

a

a
diag a a a a

a



 
 
  
 
 
 



L

O M

M O O

L

 

 

A diagonal matrix is invertible if and only if its determinant is nonzero, that is, if and only if 

all of its diagonal elements are nonzero. In this case, the inverse of a diagonal matrix is a 

diagonal matrix where the diagonal coefficients are the inverses of the diagonal coefficients of 

the starting matrix. 

Indeed, if: 

1

2

1 2

0 0

0
( , ,..., )                                                       (10)

0

0 0

n

n

a

a
D diag a a a

a

 
 
  
 
 
 

L

O M

M O O

L

 

So 

1

21

1 2

1 0 0

0 11 1 1
( , ,..., )                                          (11)

0

0 0 1

n

n

a

a
D diag

a a a

a



 
 
  
 
 
 

L

O M

M O O

L
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Because

1 1

1 0 0

0 1
. .                                                              (12)

0

0 0 1

n
D D D D I 

 
 
   
 
 
 

L

O M

M O O

L

 

Let the identity matrix 

5. Identity matrix 

The identity matrix or unit matrix is a square matrix with 1s on the diagonal and 0s 

everywhere else. It can be written diag(1, 1, …, 1). 

Since matrices can be multiplied only if their types are compatible, there are unit matrices of 

any order. In is the unit matrix of order n and is therefore defined as a diagonal matrix with 1 

on each entry of its main diagonal.  

So: 

 1 2 3

1 0 0
1 0 0

1 0 0 1
1 ,   ,   0 1 0 ,  ... ,                    (13)

0 1 0
0 0 1

0 0 1

n
I I I I

 
   

              
    

 

L

O M

M O O

L

 

Concerning the product of the matrices, the unit matrices verify that for all p, n non-zero 

natural integers and for any matrix A with n rows and p columns, 

InA = AIp = A,  

This shows that the product by a unit matrix has no effect on a given matrix. This can be 

demonstrated by direct computation or by noticing that the identity map (which it represents 

in any basis) has no effect by composition with a given linear map. 

In particular, In is the neutral element for the product of square matrices of order n. 

It is also possible to denote the coefficients of the unit matrix of order n with the Kronecker 

symbol; the coefficient of the i-th row and j-th column is written: 

      
           
           

  

And therefore the unit matrix I is equal to: 
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If the order is not specified, or it is trivially determined by the context, we can simply write it 

down I. 

6. The null matrix 

It is the not necessarily square matrix of which all the coefficients are zero. It is denoted 0n; p 

or 0n p if it has n rows and p columns. For example: 

     
   
   

                                                                                                               

7. Triangular matrix 

Triangular matrices are square matrices in which a triangular part of the values, bounded by 

the main diagonal, is zero. 

By definition, an upper triangular matrix with real coefficients is a square matrix whose 

values under the main diagonal are zero: 

1,1 1,2 1,

2,2 2,

 

,

0

( )                                                               (15)

0 0

n

n

i j

n n

a a a

a a

U a

a

 
 
 
  
 
 
 
 

L L

M O O M

M O O M

L L
 

 

A is upper triangular "U" if and only if: 

               

By definition, a lower triangular matrix with real coefficients is a square matrix whose values 

above the main diagonal are zero: 
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1,1

2,1 2,2

, 

,1 ,2 ,

0 0

( )                                                               (16)

0

i j

n n n n

a

a a

L a

a a a

 
 
 
  
 
 
 
 

L L

O M

M O O M

M O

L L

 

A is lower triangular "L" if and only if: 

               

8. Triangular matrices properties 

 A triangular matrix that is both lower and upper is a diagonal matrix. 

 The sum of two lower (respectively upper) triangular matrices and their opposites are 

lower (respectively upper) triangular matrices.  

 If we left or right multiply a lower (respectively upper) triangular matrix by a scalar, 

the result is again a lower (respectively upper) triangular matrix.  

 The product of two lower (respectively upper) triangular matrices is a lower 

(respectively upper) triangular matrix. 

 The identity matrix is a diagonal matrix and therefore both an upper triangular and a 

lower triangular matrix. 

 The transpose of an upper triangular matrix is a lower triangular matrix, and vice 

versa. 

 If A = (ai,j)i,j and B = (bi,j)i,j are upper triangular matrices with n rows and n columns 

with real coefficients, the i-th diagonal coefficient of AB is ai,i bi,i. In other words, the 

diagonal of the product AB is the product of component by component of the 

diagonals of A and B. 

 Let A be an upper (respectively lower) triangular matrix of size n, if all the diagonal 

coefficients of A are invertible, the matrix A is invertible. In this case, its inverse is 

also an upper (respectively lower) triangular matrix. It follows that the diagonal 

coefficients of the inverse of A are then the inverses of the diagonal coefficients of A. 

9. Transposed matrix  

The transpose matrix (we also say the transpose) of a matrix A M_(m,n) (K) is the matrix 

denoted A
T
, obtained by exchanging the rows and columns of A. 

If B = 
t
A then                                    . 
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Example:  

If        
   
   

        then        
  
  
  

  . 

 The “transposition” map is linear: 

t
(A+B) = 

t
A + 

t
B, 

t
(αA) = α

t
A 

 The transpose of 
t
A is A.  

 The transpose of the product of two matrices is equal to the product of the transposes 

of these two matrices, but in reverse order: 

t
(AB) = 

t
B

t
A 

 If a square matrix A is invertible, then its transpose is also, and the transpose of the 

inverse of A is equal to the inverse of its transpose: 

t
(A

-1
) = (

t
A)

-1 

 If A denotes a square matrix of size n and B its transpose, then A and B have the same 

main diagonal (and therefore the same trace): 

   bii = aii 

 In particular, any diagonal matrix is symmetric, that is to say equal to its transpose. 

 More generally, two square matrices transposed from each other have the same 

characteristic polynomial and therefore the same eigenvalues, the same trace but also 

the same determinant. 

IV. Matrix operations 

1. Sum and difference  

The sum or difference between two matrixes is a very simple operation. It is simply noted + 

or – and we have the following definition: 

Let A and B be two matrixes having the same size, then if we have: 

1    
1    

1    
1    

 

 

( )

( )

i n
j p

i n
j p

i j

i j

A a

B b

 
 

 
 




 

So   

A + B = (aij + bij)  
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You see that the definition is precise. The addition of two matrixes is only possible provided 

that the two matrixes have the same size i.e. the same number of rows and the same number 

of columns. Otherwise, the sum is not possible. 

Example:  

Either       
  
  
  

                        
  
    
  

   

These two matrixes both have the same size. The addition is therefore possible and we have: 

      
  
  
  

    
  
    
  

   
      

            
      

   
  
  
  

  

You can see that the sum of two matrixes is commutative A + B = B + A, it is also associative 

(A + B) + C = A + (B + C) 

However: 

      
  
  
  

    
  
    
  

   
  
  
   

  

And  

      
  
    
  

    
  
  
  

   
    
    
  

  

So                  

2. Product of a scalar by a matrix 

We can multiply a matrix by a scalar α, that is to say an element of the set of real. 

Consider a matrix A such that A = (aij) and a scalar α; 
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11 1

  

 1  

( )                                      (17)

p

i ji j

n n p

a a

aA a

a a

 

 

 

 
 
 
  
 
 
 
 

L L

M O M

M O M

L L

 

Either  

   
  
  

  

And   α = 7 then 

    
      
      

    
   
    

  

Several remarks on this operation: 

 It is possible not to write · the multiplication; so we write αA rather than α · A 

 The scalar is always written on the left, so we write 7A but not A7. 

 In the same way we write 1/7 A but not 
 

 
 

 The product of a scalar by a matrix is an external law. 

 α (A + B) = α A + αB 

 (α + β)A = α A + β A 

 α (β A) = (α β)A 

3. Product of two matrix 

a) Product of a row matrix by a column matrix 

Or                a line matrix and     
  

 
  

     a column matrix (note that the row 

matrix and the column matrix have the same number of elements). The product of A by B, 

noted AB is matrix 1x1 which is a scalar C: 
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Example: 

The product of                  by   
 
  
 

       is 

                    
 
  
 

                    

b) Product of a matrix by a column matrix 

Let A be a matrix of n rows and p columns and B a column matrix of p rows; note for the 

product to be possible, the matrix A must have as many columns as B has rows. 

The product of A by B, denoted AB, is the n × 1 column matrix whose row number i is the 

scalar resulting from the product of row number i of A with column B for each row number i 

between 1 and n : 

 

 

 

1

11 1

11 1 11 1 1

1 1

1 1 11

1 1

1

1

...

...

p

p

p p p

i ip i ip pi ip

p p

n np n

n np

p

b

a a

b

a a a b a b

b b

a a a b a ba a

b b

a a a b

b

a a

b

  
  
  
  

  
    
  

     
             
         

  
  
 

  
  
  
    

L M

L M

M M M

L M L M

M M M

L M

L M

1

            (18)

... np pa b

 
 
 
 
 
 
 

  

 

 

Example: 

Let the matrix    
   
    

   to multiply by the column matrix    
 
 
 
  : 
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c) Product of a matrix by a matrix 

To multiply two matrices A and B, so that this operation becomes feasible: it should be noted 

that A has as many columns as B has rows. 

The product of A[n,p] by B[p,q] is the matrix C[n,q] whose column number j is the product of 

A by column number j of B for each column number j between 1 and q: generally speaking, if 

the two matrices 1    
1    

 ( )    i n
j p

i jA a  
 

 1    
1    

 et  ( )    i p
j q

i jB b  
 

  

So for everything           and all            ;    
1

 : 
p

i j i k k j
k

C A B c a b


     

Example:   

We want to produce the product of    
   
    

      by     
 
  
 

 
 
 
      

 
 
 

 
 
 
 
 . 

Let's start by noticing that A has three columns and B has three rows: the product can be 

calculated. Furthermore, A has 2 rows and B 4 columns, the product matrix C will therefore 

be of size [2, 4]. 

       

       

2 0 1 0

2 0 1 1 2 0 1 1 2 0 1 3 2 0 1 1
2 0 1 0

0 1 0 22 0 1
1 1 3 1

3 1 2 2 0 1 0
0 1 0 2

3 1 2 1 3 1 2 1 3 1 2 3 3 1 2 1

0 1 0 2

C

        
        

        
                                                 

            
                

 

(2 2 0 ( 1) 1 0) (2 0 0 1 1 1) (2 1 0 3 1 0) (2 0 0 1 1 2)

(3 2 ( 1) ( 1) 2 0) (3 0 ( 1) 1 2 1) (3 1 ( 1) 3 2 0) (3 0 ( 1) 1 2 2)
C

                     
  

                           

 

4 1 2 2

7 1 0 3
C

 
  
 
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The product of matrix A and B is only defined if the number of columns of A is equal to the 

number of rows of B. 

The following properties can be demonstrated computationally using the expression 

   
1

 : 
p

i j i k k j
k

C A B c a b


      

Let A, B and C be such that 

 The number of columns in A is equal to the number of rows in B (so we can calculate 

AB); 

 The number of columns in B is equal to the number of rows in C (so we can calculate 

BC). 

Then the operation of the matrix product is associative (AB)C = A(BC). 

The matrix product is not commutative. This is obvious when we can calculate AB but not 

BA (which happens if the number of columns of A is equal to the number of rows of B but the 

number of columns of B differs from the number of rows of A) but we can also have AB≠BA 

when A and B are two square matrices of the same order. So, for 

   
  
  

             
  
  

  

We have        
  
  

     but     
  
  

  

If A is a matrix of n rows and p columns, we have 

AIp = A et InA = A. 

If A, B and C are three matrixes such that A and B have the same number of rows and the 

same number of columns and the number of rows of C is equal to the number of columns of A 

(and therefore of B), then 

(A+ B)C = AC+ BC. 

If A, B and C are three matrixes such that B and C have the same number of rows and the 

same number of columns and the number of columns of A is equal to the number of rows of B 

(and therefore of C), then 

A(B+ C) = AB+ AC. 

If A and B are two matrixes such that the number of columns of A is equal to the number of 

rows of B and if  is a real coefficient, then 

 (AB) = (A)B = A(B). 
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The product of two matrixes can be zero while neither matrix is zero. For example, if 

   
  
  

            
   
   

  

So AB=0 but A≠0 et B≠0. 

4. Power 

We define the power k of the square matrix A of size n for the integer k ≥ 0 as follows:

{
1

 fois

                    si k=0

...   si k 1

n
k

k

k

I
A A A A A


   


 

Example:   

Supposedly    
   
     
      

     then 

        
         
         
         

    
            
               
               

  

Let A be a square matrix, let k and l be two integers 

           

           

            

5. Inverse of a square matrix 

If x is a non-zero real, it admits an inverse: it is a real y = 1/x such that xy = 1 and by 

commutativity, yx = 1. Since multiplication is not commutative in Mn(K), it Precautions must 

first be taken. 

Let A be a square matrix of order n. A square matrix B of order n is called right inverse of A if 

AB = In and left inverse of A if BA = In. 

If a matrix A admits a right inverse B and a left inverse C then B = C and we can therefore say 

that B is an inverse of A without ambiguity. Let's show it by calculating CAB in two ways 

thanks to the associativity of the matrix product: (CA)B = C(AB) therefore InB = CIn then B = 

C. 
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Furthermore, if a matrix A admits an inverse on the right and on the left, this inverse is 

unique. Suppose that B and C are two inverses to the right and to the left: AB = BA = In and 

AC = CA = In. Then B = C because 

C = CIn = C(AB) = (CA)B = InB = B. 

A square matrix is said to be invertible if it admits an inverse on the right and on the left. Its 

inverse is then unique. We notice A
-1

 the inverse of the invertible matrix A. 

If A a square matrix of order n, we have AA
-1

 = A
-1

A = In. 

Let A an invertible matrix and  any coefficient: 

 The matrix A
-1

 is invertible from inverse A. 

 The matrix A is invertible from inverse  
 


   . 

Let A and B be two invertible square matrices of the same size. Then the product AB is 

invertible and its inverse is (AB)
-1

 = B
-1

A
-1

. 

Be careful of changing the order of multiplication when taking the inverse of a product. 

If a square matrix admits an inverse on the left, and admits an inverse on the right, it is 

therefore invertible. Given a square matrix A, if we find a matrix of the same size B such that 

AB = I then BA = I and B = A
-1

.  

We can then speak of negative powers of an invertible matrix. If A is invertible then A
k
 is 

invertible for any integer k ≥ 0 with inverse        .  

Then we pose                    . 

Let A be a square matrix of size n. We construct a matrix with n rows and 2n columns (A│I) 

by writing the identity matrix of order n to the right of A. By applying elementary operations, 

we transform the matrix A into the identity matrix. We apply the same operations to I. We 

transform A into I, The same elementary operations transform I into A
-1

.  

Example:   

We seek to invert the matrix     
   
    
     

   . We are therefore working on 
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So we have 

       
   
    
     

 

  

  

 
 
 
 
 
  

    
  

 
    

  

      
 
 
 
 

 

Example:   

We seek to invert the matrix     
   
   
    

 . We are therefore working on 
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Before arriving at the identity matrix, the last row of the matrix is zero, so matrix A is not 

invertible. Each square matrix is associated with a number to allow us to determine if the 

matrix is invertible, this number is called determinant. 

6. Determinant 

We associate with each square matrix a number allowing us to determine whether it is 

invertible: the determinant. The determinant of a matrix is only defined if the matrix is square. 

Let A be a square matrix of size n. The determinant of A, denoted det(A), is a real number 

defined by “descent” as follows: 

a) if n = 1 then A = (a11) and det(A) = a11 ; 

b) if n ≥ 2, then A = (ai j )1≤ i; j ≤n and 

det(A) = a11∆11 –  a21∆21 + a31∆31 –  … + (–1)
n-1

an1∆n1 

Where ∆i1 is the determinant of the matrix of size n –1 obtained by removing row numbers i 

and the first column from A. 

We consider the matrix     
  
  

  , we calculate the determinant of A: 

           
  
  

                            

The matrix A is invertible if and only if the quantity ad – bc is non-zero. 

Example:   

We calculate 

    
   
   
   

        
  
  

        
  
  

        
  
  

  

                                      

We can calculate the determinant in another way, especially for the case of a matrix of size n 

≥ 3, we add additional columns to our matrix, more exactly n–1 columns. The added columns 

are just the columns of our matrix, starting with the first column up to column n–1, placing 

them after the last column, so that the new matrix becomes rectangular with n rows and 2n–1 

columns. 
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For the case of a square matrix A of size n=3, by adding the 2 columns we find a matrix of 

size 3×5 so as to have 3 diagonals which are connected by a blue line and 3 anti-diagonals 

which are connected by dashes in red: 

11 12 13 11 12

21 22 23 21 22

31 32 33 31 32

a a a a a

a a a a a

a a a a a

 
 
 
    

                                                                 

Example:   

Let's calculate the determinant of the following square matrix using the diagonal method: 

   
        
        
         

  

By adding the first two columns, we increase our matrix as follows: 

   
        
        
         

  
     
     
      

 

det(A) = (80)(40)(130) + (–20)( –20)( –20) + (–20)( –20)( –20)  

 – (–20)(40)( –20) – (–20)( –20)(80) – ( 130)( –20)( –20) 

= 416000 – 8000 – 8000 – 16000 – 32000 – 52000  

= 300000 

The determinant of a triangular coefficient matrix in R is the product of its diagonal 

coefficients: 

1,1 1,2 1, 1,1

2,2 2, 2,1 2,2

 , 

, ,1 ,2 ,

0 0

0

( )    ou ( )

0

0 0

n

n

i j i j

n n n n n n

a a a a

a a a a

A a A a

a a a a

   
   
   
      
   
   
   
   

L L L L

O M

M O O M M O O M

M O O M M O

L L L L

 

 , ,, 1,
1

det(( ) )
n

i j i ii j n
i

a a





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Example:   

We calculate the determinant of the matrix      
   
   
   

   

              

The identity matrix In its determinant equal to 1, if any matrix has a row (respectively a 

column) made up of zero elements then its determinant is zero. 

The diagonal method of evaluating determinants only applies to matrices of size 2x2 and 3x3. 

It is no longer valid for matrices of size 4x4 or larger. In general, the expansion by a factor of 

nxn is the sum of all possible products formed by the choice of one and only one element of 

each row and each column of the matrix, with a sign more or less determined by the number 

of permutations of the row and column elements. 

A formal procedure for evaluating determinants is called minor extension, or the cofactor 

method. In this procedure, there is an «n!» product to add them, where each product has n 

elements. So expanding by a factor of 10 x 10 requires adding "10!" products (10! = 

3628800), where each product involves 9 multiplications (the product of 10 elements). 

That's a total of 32,659,000 multiplications and 3627999 additions, not counting the work 

needed to keep track of the signs. 

Consequently, the evaluation of determinants by the cofactor method is not possible, except 

for very small matrices. Although the cofactor method is not recommended for any type of 

matrix larger than 4x4, it is helpful to understand the concepts.  

The minor Mi j is the determinant of the sub matrix (n - 1).(n - 1) of the nxn matrix A obtained 

by deleting row i and column j, The cofactor Ai j associated with the minor Mi j is defined as: 

Ai j = (–1)
i+j

 Mi j  

Using cofactors, the determinant of matrix A is the sum of the products of the elements in a 

row or column, multiplied by their corresponding cofactors. Thus, by expanding along any 

fixed line i 

                    

 

   

                 

 

   

 

Alternatively, developing calculations down the fixed columns j 
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Each cofactor expansion reduces the order of the determinant by one, so there are n matrixes 

of order n-1 to evaluate their determinants. By repeated application, the cofactors are finally 

reduced to 3 × 3 determinants which can be evaluated by the diagonal method. 

The volume of work can be reduced by choosing the expansion row or column with as many 

zeros as possible. 

If the value of the determinant of the matrix is equal to zero, the matrix is said to be singular. 

There non-singular or invertible matrix has the determinant that has a non-zero value. If a row 

or column of a matrix consists of zero elements, this matrix is singular.  

The determinant of an upper triangular or lower triangular matrix is the product of the 

elements of the main diagonal. It is possible to transform any invertible matrix into a 

triangular matrix, such that the value of the determinant remains unchanged, no matter how 

many operations are necessary for this transformation. This method involves transforming the 

matrix into an upper triangular matrix or a lower triangular matrix. The value of the 

determinant of the triangular matrix can then be evaluated quite easily by the product of the 

elements of the main diagonal. 

V. Systems of linear algebraic equations 

Systems of equations arise in all branches of engineering and science. This part is devoted to 

the solution of systems of linear algebraic equations of the following form:  

 

                             

                             
 

                             

                                                        

Where xj (j = 1, 2 ..... n) denotes the unknown variables to be determined, ai, j (i, j = 1, 2 ..... n) 

denotes the constant coefficients of the unknown variables, and bi (i = 1, 2 ..... n) the column 

matrix, denotes the non-homogeneous terms, is called the second member of the system. For 

the coefficients ai, j, the first index, i, denotes equation i and the second index, j, denotes 

variable xj. The number of equations can vary from two to hundreds, thousands, or even 

millions. 
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In the general case, the number of variables does not have to be the same as the number of 

equations. However, in most practical problems, they are the same, namely the case 

considered in this handout. When the number of variables is the same as the number of 

equations, a single solution may exist, as illustrated by the example of a system of two 

algebraic linear equations: 

 
              

              
                                                                                                      

If the second member of the system (20) B = 0, the system is said to be a system of 

homogeneous linear equations. Systems of homogeneous linear equations always admit at 

least one solution: the null column matrix. 

There are two fundamentally different approaches to solving algebraic linear equations (19):  

 Direct elimination methods 

 Iterative methods 

Direct elimination methods are systematic procedures based on algebraic elimination, which 

obtain the solution in a finite number of operations. Direct elimination methods include: 

Gauss elimination, Gauss-Jordan elimination, inverse matrix method and LU factorization.  

On the other hand, iterative methods obtain the solution asymptotically by an iterative 

procedure. A test solution is assumed, the test solution is replaced in the system of equations 

to determine the mismatch or error, in the test solution, and an improved solution is obtained 

from the inadequate data. Iterative methods are the Jacobi iterative method, the Gauss-Seidel 

iterative method and successive-on-relaxation (SOR). 

Although there are no strict application rules, direct elimination methods are generally used 

when one or more of the following conditions are met:  

a)  The number of equations is small (100 or less),  

b)  Most coefficients in the equations are nonzero,  

c)  When the system of equations is not diagonally dominant or  

d)  The system of equations is poorly conditioned.  
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Iterative methods are used when the number of equations is large and most coefficients are 

zero (i.e., a hollow matrix). Iterative methods generally diverge unless the system of equations 

is diagonally dominant. 

VI. Direct elimination Methods 

There are a number of methods for the direct resolution of systems of linear equations. One of 

the best known methods is the Cramer rule, which requires the determinant calculation. 

Methods based on the elimination concept are also recommended.  

Elimination rules and methods are presented in this section. After the presentation of the 

Cramer rule, Gauss elimination, Gauss-Jordan elimination and matrix inversion; these 

concepts are extended to the LU factorization and three-dimensional systems of equations in 

the following sections. 

1. The Rule of Cramer  

Although it is not an elimination method; the Cramer rule is a direct method for solving 

systems of algebraic linear equations. Consider the system of equations, Ax = b, which 

represents n equations A square matrix of size n. The Cramer rule states that the solution for 

xj (j = 1 ..... n) is given by 

   
        

       
                                                                                                 

Where A
j
 is the matrix of size n obtained by replacing column j of matrix A by column 

b. For example, consider the system of two equations (20), applying the Cramer rule: 

   
    

     

     
 

    
      

      
 
 

   
    

     

     
 

    
      

      
 
 

The determinants can be evaluated by the diagonal method described above. For systems 

containing more than three equations i.e. matrix of size n ≥ 4, the evaluation of the 
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determinant requires another method of calculation called cofactors process, also described 

earlier. 

The number of operations required by this method is phenomenal (For a relatively small 

system containing 10 equations, the number of operations is 360,000,000, which is a huge 

number of calculations). This is obviously ridiculous to use the diagonal method for systems 

of equations of n ≥ 4. 

The preferred method for the evaluation of determinants, large matrices, is the elimination 

method in order to transform the matrix into upper or lower triangular matrix, which 

significantly reduces the number of operations. 

The number of operations required by the elimination method or any matrix transformation 

method into a triangular matrix is about 1090 for n = 10. It is obvious that the elimination 

method is a less expensive method, and therefore the preferred. 

Let us now illustrate the steps of the Cramer rule by solving the three-equation system: 

 

                      
                    
                   

                                                                                 

First, calculating the determinant of A: 

           
        
        
         

          

Subsequently, calculating the determinants of matrices A
1
, A

2
 and A

3
, these matrixes are 

obtained by changing the columns of A by the values of b: 
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This makes it possible to find the values of the three unknowns very easily by the Cramer rule 

   
       

       
  

       

       
      

   
       

      
  

       

       
   

   
       

       
  

       

       
      

2. Elimination Method 

The elimination methods aim to solve a system of linear equations by solving an equation, 

which is the first equation, for one of the unknowns, which is x1, in terms of the remaining 

unknowns, x2 to xn, and then replacing the expression of x1 in the (n-1) equations to 

determine n - 1 equations involving x2 to xn. This elimination procedure is performed n - 1 

times until the last step results in an equation involving only xn. This process is called 

elimination. 

The value of xn can be calculated from the final equation of the elimination procedure. Then 

xn-1 can be calculated from the modified equation n - 1, which contains only xn, and xn-1. Then 

xn-2 can be calculated from the modified equation n-2, which contains only xn, xn-1, xn-2. This 

procedure is executed n - 1 times for the calculation of xn-1, at x1. This process is called the 

return substitution. 

3. Line operations 

The elimination process uses the repetitive operations, which are: 

1. 1.  Any line can be multiplied by a constant. 

2. 2.  The order of the lines can be changed (swiveling). 

3. 3.  Any line may be replaced by a weighted linear combination of that line with one of 

the lines.  

These operations on the lines, which change the values of the elements of the matrix A and b, 

do not change the solution x for the system of equations.  

The first line operation is used at the line scale, if necessary. The second Line operation is 

used to avoid divisions by zero and reduce rounding errors. The third line operation is used to 

implement the elimination process. 
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4. Elimination example  

Let us illustrate the method of elimination by solving the equation system (22): 

Solve the first equation for xl as follows: 

                           

By replacing the value of x1 in the second equation of the system, we find 

                                          

This can be simplified to give 

             

Similarly, by replacing the value of x1 in the third equation of the system, we find  

                                           

This can be simplified to give 

               

Repeating the same operations for the second unknown x2: 

                   

By replacing the value of x2 in the last equation, we find 

                              

At the end, we discover the final equation that concludes the elimination process. 

   

 
   

   

 
 

This equation allows us to easily find the value of x3. 

By replacing by returning the value of x3, the value of x2 is determined and then that of x1. 

x3 = 300/750 = 0.40 
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x2 = [25 – (–25)(0.40)]/35 = 1.00 

x1 = [20 – (–20)(1.00) – (–20)(0.40)]/80 = 0.60 

I am currently working on solving the equation system (22) in a standardized manner. The 

idea is to eliminate the coefficients of x1 for equations two and three while keeping the 

coefficient of x1 in the first equation, which is called the pivot. A multiplier is chosen to 

eliminate the coefficients below the pivot.  

 

                     
                    
                     

               

              

 

After the first elimination, our system becomes to eliminate the new coefficient of x2 from the 

third equation. 

 

                     
                      
                     

 
              

 

So the result after the second elimination is:   

 

                                  
                                 
                           

  

This process continues until all coefficients below the main diagonal are eliminated. In our 

example with three equations, this process is now complete; the last system is the final result. 

This is the elimination process. 

At this point, the last equation contains only one unknown, x3, which can be solved. Using 

this result, the penultimate equation can be solved for x2. Using the results of x3 and x2, the 

first equation can be solved for x1.  

x3 = 300/750 = 0.40 

x2 = [25 – (–25)(0.40)]/35 = 1.00 

x1 = [20 – (–20)(1.00) – (–20)(0.40)]/80 = 0.60 

This is the return substitution process. Thus, extending the elimination procedure for n 

equations is simple. 
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5. Simple elimination 

The elimination procedure is illustrated in the above example involves the handling of 

coefficient of matrix A, and the non-homogeneous vector b. The components of vector X are 

fixed at their location in the set of equations. As long as the columns are not interchangeable, 

column j corresponds to xj.  

Therefore, the xj notation does not need to be performed throughout the operations. Only the 

numerical elements of A and b should be considered. Thus, the elimination procedure can be 

simplified by increasing the matrix A by the vector of b and performing operations on the 

lines of the elements of the matrix A increased to complete the elimination process, then 

perform the return substitution process to determine the solution vector. This simplified 

elimination procedure is illustrated by the same example. 

         
                  
                  
                  

  

Perform line operations to reach the elimination process: 

 
                  
                  
                  

              

             

 

 
                  
                    
                    

 
             

 

 
                  
                    
                          

         
       
       
       

 

The return substitution step is presented next to the triangular matrix at the end of the 

elimination process. 

6. Pivoting  

The element of the main diagonal is called the pivot. The method of pivoting is necessary 

only if the first pivot a11 is equal to zero. The procedure also fails if a subsequent pivot ai i is 

null. Although there may be no zeros on the main diagonal of the original matrix, the 
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elimination process can create zeros on the main diagonal. The simple elimination procedure 

described so far should be modified to avoid zeros on the main diagonal.  

This result can be done by rearranging the equations, allowing equations (rows) or variables 

(columns), before each elimination step to put the element of the highest value on the 

diagonal. This process is called pivot or failover. By swapping rows and columns is called 

pivot method. The total pivot is quite complicated, and therefore it is rarely used. By 

exchanging only the lines one defines partial pivot. Only partial pivoting is considered in this 

handout.  

The pivot method eliminates zeros in pivot locations during the elimination process. This 

method also reduces rounding errors, as the pivot value is a divisor during the elimination 

process, and dividing by a large number gives small rounding errors than dividing by a small 

number. When the procedure is repeated, rounding errors can be serious. This problem 

becomes more and more serious when the number of equations increases. 

Let’s use partial pivot elimination to solve the following system of linear equations, Ax = b: 

 
         
       
     

  

  

  

  

   
    
  
    

  

Let’s apply the elimination procedure by increasing A with b. The first pivot element is zero, 

so that pivoting is necessary. The largest value in the first column under the pivot is the 

second row. Thus, by allowing the first and second row, as well as the new second row 

already has a zero under the pivot, the elimination process is done just for the third row. 

 
                 
                     
                 

 
           

 

When performing elimination operations, one finds: 

 
                 
                     
                       

  

Although the new pivot in the second row is different from zero, but it is not the largest 

element of the second column. So a swivel is done again. Note that the swivel is based only 

on the lines below the swivel. The lines above pivot have already been processed by the 
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elimination process. Using one of the lines above the pivot would destroy the elimination 

already accomplished. Using the elimination multiplier, evaluate the new values after 

exchanging the second and third lines. 

 
                 
                     
                        

 
          

 

Performing elimination operations, the following are: 

 
                
                       
                      

             
      
       
       

 

The results obtained by the return replacement are presented next to the augmented triangular 

matrix.  

7. Scaling  

The elimination process described so far can attract significant rounding errors when the 

values of pivot elements are smaller than the values of other elements in the equations 

containing pivot elements. In such cases, scaling is used to select pivot elements. After 

pivoting, elimination is applied to the original equations. Scaling is used only to select pivot 

elements.  

Scale swivel is performed as follows; before applying elimination on the first column, all 

elements of the first column are scaled (i.e. normalized) by the largest elements in the 

corresponding rows. Pivoting is implemented based on the scaled elements in the first 

column, and elimination is applied to obtain null elements in the first column below the pivot 

element.  

Before applying the elimination to the second column, all the elements from 2 to n in the 

second column are scaled, the pivoting is performed, and the elimination is applied to obtain 

null elements of the second column below the pivot element. The procedure is applied on the 

remaining lines from 3 to n - 1. The replacement by return is then applied to obtain x. 

Let us look at the advantage of extension (mantissa) by solving the following linear system: 
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Which has exact solution x1 = -1.0, x2 = 1.0, et x3 = 1.0. The effect of rounding can be 

enhanced by only including three significant figures in our calculations. For the first column, 

pivoting is not necessary, the matrix A increased and the first set of operations on the rows are 

given by: 

 
                
              
                    

             

            

 

which gives: 

 
                
                   
                      

 
             

 

Pivoting is not required for the second column. After the indicated elimination, the triangular 

matrix is obtained 

 
                
                   
                  

  

When performing the return replacement, we find x3 = 0.997, x2 = 0.924, and x1 = -0.844, 

which are not in very good agreement with the exact solution x3 = 1.0, x2 = 1.0, and x1 = -1.0. 

Rounding errors due to three-digit accuracy disrupted the accuracy of the solution. The effects 

of rounding can be reduced by scaling equations before pivoting. Scaling should be used only 

to determine if pivoting is necessary. All calculations must be done before scaling. 

Let’s try to take the last system that requires scaling to determine if a swivel is required. The 

first step in the disposal procedure is to remove all items from the first column under item a11. 

To make this step more efficient, divide all elements of the first column by the largest element 

in each row. The result is: 

     

     
     
   

   
      
      
      

    

With a1 is the notation of the vector that contains the division of the elements of the first 

column of the matrix A. The third element of the vector a1 is the largest of the elements in a1, 

a change between the first row and the third row is necessary. The elimination operations 

indicated are as follows:  
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The results obtained are indicated as follows with the new disposal operation:  

 
                
             
             

 
          

 

Dividing the second and third elements of the second column as follows: 

     

 
     
     

   

 
       
       

  

Therefore, the pivoting is not indicated, the results are: 

 
                
              
                   

  

Thus by proceeding to the replacement by return, we find x1 = 1.00, x2 = 1.00 and x3 = -1.00, 

which corresponds to the exact solution. Following this procedure, the effect of rounding was 

avoided.  

8. Gauss elimination 

The elimination procedure described in the previous section, including swivel scaling, is 

commonly referred to as Gauss elimination. It is the most important and useful direct 

elimination method for solving systems of algebraic linear equations. The Gauss-Jordan 

method, the inverse matrix method and the LU factorization method are all modifications or 

extensions of the Gauss elimination method. The pivot is an essential element of Gauss 

elimination. In cases where all elements of the A matrix are of the same order of magnitude, 

scaling is not required. However, the pivoting rule to avoid zero in pivot is necessary in an 

elimination procedure.  

The pivoting scaling method is used to reduce rounding errors, although highly desirable in 

general, it may be subject to a risk to the accuracy of the solution. When removing Gauss by 

hand, decisions about pivoting can be made on a case-by-case basis. When writing a computer 

program of the general-purpose Gauss elimination method for systems of equations, however, 

the method of pivoting scaling is an absolute necessity.  
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The Gauss elimination procedure, in a suitable format for computer programming, is 

summarized as follows:  

1. Define an nxn size matrix consisting of the coefficients of the linear equation system.  

2. From the first column, we look for the largest element in this column and we put this 

coefficient in the pivot position (pivot or permutation of rows). 

3. For column k (k = 1, 2 ..... n - 1), we apply the procedure of elimination of rows i (i = 

k + 1, k + 2 ..... n) in order to create zeros in the column below the pivot ak,k, so that 

our matrix turns into a triangular matrix as follows: 

           
    

    
                                 

       
    

    
                             

4. After step 3 was applied to all columns of k, (k = 1.2 ..... n - 1), the input matrix A the 

original became a superior triangular matrix. The resolution of our system is done by a 

feedback. Thus we have: 
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9. Gauss-Jordan Elimination  

Gauss-Jordan elimination is a variant of Gauss elimination, in which the elements above the 

main diagonal are eliminated (make them null) as well as the elements below the main 

diagonal, to convert the matrix A to a diagonal matrix. The lines are scaled to make the 

diagonal elements equal to 1, which transforms the matrix A to an identity matrix. Vector b is 

then transformed into solution vector x. The number of multiplications and divisions for 

Gauss-Jordan elimination is about 50 percent larger than for Gauss elimination. Therefore, the 

elimination of Gauss is preferable. 

Let’s work on the same example discussed before, this example does not require a pivoting, 

so the augmented matrix is: 
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The division of the first line by 80 is carried out to make the pivot a11=1 

 
                    
                  
                 

           

          

 

Applying the deletions of the two elements below the pivot with the following changes on the 

second and third row: 

 
                 
                
               

       

Let’s divide the second line by 35 to make the new pivot a22=1 

 
                 
                 
               

 

           

          

 

Let’s apply the elimination both below and above the second line: 

 

             
             
               

 
          

 

Let’s divide the third line by 750/7 to make the last pivot a33=1 

 

             
             
                  

 
           

            

Applying the elimination above the third line results in: 
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The matrix A thus became an identity matrix and the vector b became a solution vector: X = 

[0.60  1.00   0.40]. 

10. Matrix  Inversion   

The inverse of a square matrix A is the matrix A
-1

 such that AA
-1

 = A
-1

A = I. Gauss-Jordan 

elimination can be used to determine the inverse of a matrix A by increasing A with the 

matrix identity I. Applying the Gauss-Jordan algorithm, the matrix A is transformed to an 

identity matrix I, and the identity matrix is transformed to an inverse matrix, A
-1

. Thus, the 

application of the Gauss-Jordan elimination allows writing: 

L'inverse d'une matrice carrée A est la matrice A
-1

 tel que AA
-1

 = A
-1

A = I. L’élimination de 

Gauss-Jordan peut être utilisée pour déterminer l'inverse d’une matrice A en augmentant A 

avec la matrice identité I. En appliquant l'algorithme de Gauss-Jordan, la matrice A est 

transformée à une matrice d'identité I, et la matrice d'identité est transformée en matrice 

inverse, A
-1

. Using the Gauss-Jordan elimination application, you can write: 

              

The Gauss-Jordan elimination procedure, in a suitable format for computer programming, can 

be developed, modifying the first step. Increase the matrix A of nxn by combining the matrix 

identity I of nxn. Steps 2 and 3 of the method are the same, adapting the pivot to the unit by 

dividing all the elements in the row by the value of the pivot. The elimination is carried out 

above, as well as below the pivot. At the end, matrix A will be transformed into identity 

matrix, and the input identity matrix will be transformed into inverse matrix A
-1

. 

Let’s evaluate the inverse matrix of matrix A used in the Gauss-Jordan elimination section. At 

the beginning, increase the matrix A by the matrix identity I, as follows: 

         
           
           
         

       
   
   

   
   
   

  

Using the Gauss-Jordan elimination method, the augmented matrix is transformed into the 

following augmented matrix: 
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So the inverse matrix of A is: 

     

               
              
               

  

If we multiply the matrix A with the inverse matrix A
-1

 we find the identity matrix. An 

equation system can be solved using the matrix inversion method A
-1

. A linear equation 

system is written: 

A x = b 

By multiplying the two parts on the left by A
-1

, we have: 

A
-1 

A x = A
-1 

b  

I x = A
-1 

b  

This allows us to: 

x = A
-1 

b  

Thus, when the inverse matrix A
-1

 of the matrix A of the equation system is known, the 

solution (the vector x) is simply the product of the inverse matrix A
-1

 by the vector b. The 

square matrixes are not all invertible. The singular matrix is a matrix whose determinant is 

zero, does not have an inverse matrix. The corresponding system of equations has no single 

solution. 

Using the inverse matrix method, our equation system is solved by multiplying the inverse 

matrix obtained by vector b as follows: 

         

               
              
               

  
  
  
  

  

This results in: 
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11. Factorization Method   

A matrix (such as a scalar) can be factored into two other matrices so that their product gives 

the original matrix as follows:  

A = BC  

When B and C are lower and upper triangular matrices, respectively, the expression A 

becomes  

A = LU  

By specifying the diagonal elements of L or U, the factorization becomes unique. Two 

processes exist, the first considers that the elements of the main diagonal of L are all equal to 

one (the process is called the Doolittle method). The second considers that the elements of the 

main diagonal of U equal to one (the process is called the Crout Method). 

The factorization method of a matrix is used to reduce the work required for the Gauss 

elimination method when several unknown b vectors are to be considered. The Doolittle LU 

process is accomplished by defining 'em' elimination multipliers determined in the elimination 

step of the Gauss elimination method as elements of the L matrix. The U matrix is defined as 

the upper triangular matrix determined by the elimination step of the Gauss elimination 

method. In this way, multiple b vectors can be processed through the elimination step using 

the L matrix and through the return substitution step using elements of the U matrix.  

Consider the linear system Ax = b, either the matrix A factored into the product of two 

matrices LU, the linear system becomes: 

LUx = b 

Multiplying by L
-1

 equality becomes: 

L
-1

LUx = L
-1

b 

Ux = L
-1

b 

Posing a new vector bꞌ such as:  

bꞌ = L
-1

b 
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Ux = bꞌ 

Multiplying by L, equality becomes: 

Lbꞌ = LL
-1

b 

Lbꞌ = b 

To solve our starting system Ax = b, we must solve both subsystems: the first Lbꞌ = b, 

knowing that L is a lower triangular matrix. By substitution by return the elements of the 

vector bꞌ will be determined, the system unknowns can be easily calculated with the second 

system Ux = bꞌ. Solving our system of the previous example will allow us to better understand 

the factorization method.  

Or the following system of linear equations: 

 
                  
                  
                 

  

With factorization, our initial matrix A is transformed into two matrices as follows: 

   

      
      
         

                    
           
              
                 

  

To begin with, bꞌ is determined by the resolution of: 

Lbꞌ = b 

 

      
      
         

  

  
 

  
 

  
 
   

  
  
  

  

We find: 

 

  
                                                                               

  
                                                      

  
                                

  

Now, with the vector bꞌ the unknowns of the system Ux = bꞌ are determined as follows: 

 
           
              
                 

  

  

  

  

   
  
  

     
  

By replacing the back, the vector x is: 



 

41 

 

  

  

  

   
    
 

    
  

The LU factorization method, in an appropriate format for computer programming, is 

summarized as follows:  

1. Perform the same steps in the Gauss Removal Method described in the previous 

section. Store swivel information in an order vector. Store the “em” elimination 

multipliers at the location of the eliminated items. The results of this step are the L and 

U matrices.  

2. Calculate the vector bꞌ in the order of the elements of the control vector using the 

substitution before: 

  
            

 

   

   

                    

With li k are the matrix elements L.  

3. Calculate vector x using the back substitution: 

     
         

 

     

                             

With ui k and ui i are the elements of the U matrix. 

Finally, the LU factorization method can be used to determine the inverse matrix.  The inverse 

matrix is calculated column by column to use the unit vector instead of b to solve Lbꞌ = b as 

follows: 

For comparison purposes, the same matrix is used:  

 
           
           
           

  

After factorization, we have: 

   

      
      
         

                    
           
              
                 

  

First determine     
  by the resolution of      

      : 
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Calculate         
  to determine x1 as follows: 

 
           
              
                 

  

  

  

  

   

 
   
   

         

     
     
     

  

The result obtained which is vector x1, represents the first column of the matrix A
-1

. 

Identically, with     
 
 
 
            

     
    
     

          
 
 
 
            

     
     
     

   

In the end, A
-1

 is: 

              

               
              
               

  

This is the same result obtained by the Gauss-Jordan elimination method. 
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