République Algérienne Démocratique et Populaire

وزارة التعليم العالي والبحث العلمي

 Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE d’ORAN -Mohamed BOUDIAF

Faculté de chimie

Département de Chimie Organique Industrielle

Polycopié de cours

Structure de la matière

REALISE par:

BOUKRAA YAMINA

MAITRE DE CONFERENCES B, à L’USTOMB

Année universitaire : 2017/2018
Avant-propos

Le présent polycopié de cours est destiné avant tout aux étudiants en sciences techniques (ST), sciences de la matière (SM), Hydraulique…(1re année LMD ST et SM) Il s'adresse aussi aux étudiants qui reçoivent un enseignement général de chimie de différentes spécialités confondues.

Le contenu de ce polycopié résume tout ce qu'un étudiant doit connaître sur la structure de la matière qui fait une partie essentielle de la chimie générale.

Il porte essentiellement sur les notions fondamentales de la structure de la matière. Ce polycopié comprend six chapitres.

Le premier chapitre est consacré aux rappels de quelques notions fondamentales (les états de la matière les atomes, des molécules et les solutions)

Le deuxième chapitre traite les principaux constituants de la matière, donc de l’atome, de quelques propriétés physiques de la masse et de la charge.

Dans ce même chapitre, nous avons décrit les expériences qui ont mis en évidence : l’électron, le proton, le neutron (Expérience de Crookes, J.J.Thomson, Millikan, et de Goldstein) et la fin de ce chapitre concerne la structure de l’atome et les isotopes ainsi que leurs séparations et leurs stabilités.

Dans le troisième chapitre j’ai décrit le processus de la radioactivité, les réactions nucléaires, la loi de décroissance radioactive, etc….

Le quatrième chapitre décrit de façon, simple, claire et facile la structure électronique de l’atome et traite de la quantification de l’énergie dans le modèle semi-atomique (dualité onde-corpuscule de la lumière, spectre optique de l’hydrogène, modèles classiques de l’atome et les spectres des ions hydrgénoïdes)

Ce chapitre prépare la transition vers le modèle quantique de l’atome où est introduite une théorie nécessaire à la description rigoureuse des propriétés de l’atome, la mécanique ondulatoire, (hypothèse de Louis de De Broglie, principe d’incertitude d'Heisenberg, l’équation de Schrödinger et configurations électroniques)
Le cinquième chapitre est consacré à la classification périodique des éléments dans lequel, j’ai décrit le principe de la classification et la répartition du tableau périodique moderne (lignes et groupes), les familles chimiques, l’évolution et périodicité des propriétés physico-chimiques des éléments (le rayon atomique, ionique, l’énergie d’ionisation, l’affinité électronique et l’électronégativité).

Le sixième chapitre est réservé à la liaison chimique dans lequel, différentes liaisons ont été traitées : covalente dans la théorie de Lewis, la liaison covalente polarisée, moment dipolaire et caractère ionique partiel de la liaison, géométrie des molécules : théorie de Gillespie ou VSEPR, la liaison chimique dans le modèle quantique: théorie des orbitales moléculaires (méthode LCAO), formation et nature des liaisons et diagramme énergétique des molécules. L’étude des molécules polyatomiques ou théorie de l’hybridation des orbitales atomiques est présentée de façon simple est claire. Les notions de chaque chapitre sont illustrées par des exemples.

Ce polycopié de cours représente une synthèse d’expérience en tant qu’enseignante de cours de structure de la matière que j’ai assuré au sein de plusieurs départements à l’université de l’USTO (Technologie, ST, SM).

Dr. Boukraa Yamina, MCB
TABLE DES MATIÈRES
TABLE DES MATIÈRES

Avant-propos ... 1

Table des matières .. 3

Introduction .. 12

CHAPITRE I: NOTIONS FONDAMENTALES .. 14

I-1-Etats et caractéristiques macroscopiques des états de la matière ... 15

I-1-1 Les états de la matière .. 15
 I-1-1-a Les solides .. 15
 I-1-1-b Les liquides .. 15
 I-1-1-c Les gaz: .. 15

I-1-2 Les grandeurs caractéristiques de la matière et de ses états ... 15
 I-1-2-1 Le volume et la masse .. 15

I-1-2-2 La pression et la température ... 16

I-2-1 Les différents changements d’état ... 16

I-2-2 Les caractéristiques des changements d’état .. 16
 I-2-2-1 La fusion .. 17
 I-2-2-2 La solidification .. 17
 I-2-2-3 La sublimation .. 17
 I-2-2-4 La liquéfaction .. 17
 I-2-2-5 La vaporisation .. 17

I-3- Notion d'atome ... 17
 I-3-a Structure de l’atome ... 17
 I-3-b Caractéristiques de ces particules ... 18

I-3-1 Molécules ... 18

I-3-2 Mole .. 18

I-3-3 Nombre d’Avogadro \(N_A \) ... 19

I-4- Unité de masse atomique (uma) ... 19

I-4-1 Masse molaire atomique ... 19

I-4-2 Masse molaire moléculaire .. 19

I-4-3 Le volume molaire ... 19

I-5-Lois pondérales: .. 20

I-5-1 Loi de LAVOISIER ... 20

I-5-2 loi des proportions définies (loi de PROUST) .. 21

I-5-3 Loi de proportion multiple ... 21

I-5-4 L’hypothèse atomique de Dalton et ses conséquences : ... 21

Une première vision de l’atome ... 21
TABLE DES MATIERES

I-6- Aspect qualitatif de la matière ... 22
 I-6-1 Les corps purs: ... 22
 I-6-2 Les corps purs simples ... 22
 I-6-3 Les corps purs composés .. 22
 I-6-4 Les mélanges ... 22
 I-6-4-1 Les mélanges liquide-liquide .. 22
 I-6-4-2 Mélange hétérogène ... 23
 I-6-4-2 Les mélanges liquide-solide ... 23
 I-6-5-Les solutions ... 24
 I-6-5-1 Le solvant .. 24
 I-6-5-2 Le soluté .. 24
 I-6-6 Solution aqueuse ... 24
 I-6-6-1 Solution aqueuse, soluté et solvant ... 24
 I-6-6-2 Saturation d’une solution ... 24
 I-6-6-3 Dilution d’une solution .. 25

I-7- Aspect quantitative de la matière .. 25
 I-7-1 Quantité de matière ... 25
 I-7-2 Nombre de mole .. 25
 I-7-3 Concentration molaire ou molarité .. 26
 I-7-4 Molalité .. 26
 I-7-5 Concentration massique (Concentration pondérale) 26
 I-7-6 Fraction pondérale ou massique .. 26
 I-7-7 Titre ... 27
 I-7-8 La fraction molaire x_i .. 27
 I-7-9 Concentration normale ou Normalité .. 27
 I-7-10 Masse volumique .. 28
 I-7-11 Densité ... 28
 I-7-11-1 Densité d’un liquide .. 29
 I-7-12 Les lois des solutions diluées : Lois de Raoult 29
 I-7-12-1 Ebulliométries (1ère Loi de Raoult) .. 29
 I-7-12-2 Cryométrie (2ème Loi de Raoult) .. 29

CHAPITRE II: PRINCIPAUX CONSTITUANTS DE LA MATIERE 30

II-1 Introduction : ... 31
 II-2 Expérience de Faraday : relation entre la matière et l’électricité 31
 II-2-1 La découverte de l’électron ... 31
 II-3 Mise en évidence des constituants de la matière et donc de l’atome et quelques propriétés physiques (masse et charge) ... 32
 II-3-1 Electron: .. 32
 II-3-1-1 Expérience de Crookes et caractéristiques des rayonnements cathodiques ... 32
 II-3-1-2 Expérience de J.J.Thomson : Détermination du rapport e/m_e 33
TABLE DES MATIERES

II-3-1-3 Expérience de Millikan : Détermination de la charge |e| de l’électron et déduction de sa masse...35
II-3-2 Proton:..36
II-3-3 Neutron: ..37
 II-3-3-1 expérience de Chadwick : mise en évidence du neutron existant dans le noyau ..37
II-4 Modèle planétaire de Rutherford..38
 II-4-1 Découverte Du noyau ...38
 II-4-1-1 Expérience de la feuille d’or ..38
II-5 Présentation de l’atome ..39
 II-5-1 L’atome ..39
 II-5-1-1 Nomenclature: ..39
 II-5-2 Caractéristiques de l’atome ...40
II-6 Isotopie et abondance relative des différents isotopes40
 II-6-1 Les isotopes ..40
 II-6-1-1 L’abondance naturelle des isotopes (AN) ..41
II-7 Séparation des isotopes et détermination de la masse atomique et de la masse moyenne d’un atome : ..41
 II-7-1 Spectrométrie de masse...41
 II-7-1-1 Description d’un spectromètre de masse42
 II-7-1-1-1 Spectrographe de Bainbridge ...42
II-8 Energie de liaison d’un noyau ...43
 II-8-1 Défaut de masse d’un noyau ...43
 II-8-2 L’énergie de liaison ..44
 II-8-3 Energie de cohésion des noyaux ..45
 II-7-3-1 Unité de l’énergie de cohésion ..45
II-9 Stabilité des noyaux : Détermination de l’énergie de cohésion par nucléon46
 II-9-1 L’énergie de liaison par nucléon ...46
 II-9-1-1 Variation de l’énergie de liaison par nucléon avec le nombre de masse A:
 La courbe d’Aston ...46
 II-9-1-2 Stabilité et nombre de nucléons : courbe nombre de neutrons = f (Z : nombre de protons) ...47

CHAPITRE III: RADIOACTIVITE-REACTIONS NUCLEAIRES49

III-Introduction ..50

III-1 Radioactivité naturelle ..50
III-2 Loi de Soddy et Fajans...50
III-3 Rayonnements radioactifs : ...50
 III-3-1 Rayonnement α ...50
 III-3-2 Rayonnement β ..51
TABLE DES MATIERES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-3-3</td>
<td>Rayonnement β^+</td>
<td>51</td>
</tr>
<tr>
<td>III-3-4</td>
<td>Rayonnement γ</td>
<td>51</td>
</tr>
<tr>
<td>III-5-1</td>
<td>Transmutation par Hélium</td>
<td>53</td>
</tr>
<tr>
<td>III-5-1-1</td>
<td>Libération de proton : réaction (α, p)</td>
<td>53</td>
</tr>
<tr>
<td>III-5-1-2</td>
<td>Libération de neutrons : réaction (α, n)</td>
<td>53</td>
</tr>
<tr>
<td>III-5-1-3</td>
<td>Réaction sans capture</td>
<td>53</td>
</tr>
<tr>
<td>III-5-1-4</td>
<td>Transmutation par Capture de protons</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-4-1</td>
<td>Emission d’hélium : réactions (p, α)</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-4-2</td>
<td>Emission de neutrons : réactions (p, n)</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-4-3</td>
<td>Réaction (p, D)</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-5</td>
<td>Transmutation par neutrons</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-5-1</td>
<td>Captures de neutrons : Réactions (n, p)</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-5-2</td>
<td>Emission de protons : Réactions (n, p)</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-5-3</td>
<td>Réaction de fission nucléaire</td>
<td>54</td>
</tr>
<tr>
<td>III-5-1-6</td>
<td>Réaction de Fusion nucléaire</td>
<td>55</td>
</tr>
<tr>
<td>III-6</td>
<td>Cinétique de la désintégration radioactive :</td>
<td>56</td>
</tr>
<tr>
<td>III-6-1</td>
<td>Loi de décroissance radioactive</td>
<td>56</td>
</tr>
<tr>
<td>III-6-2</td>
<td>La constante radioactive λ</td>
<td>57</td>
</tr>
<tr>
<td>III-6-3</td>
<td>Activité radioactive A</td>
<td>57</td>
</tr>
<tr>
<td>III-6-4</td>
<td>La période radioactive ou temps de demi vie T (ou $t_{1/2}$)</td>
<td>57</td>
</tr>
<tr>
<td>III-7</td>
<td>Applications de la radioactivité :</td>
<td>58</td>
</tr>
<tr>
<td>III-7-1</td>
<td>Principe de la datation</td>
<td>59</td>
</tr>
<tr>
<td>III-8</td>
<td>Dangers de la radioactivité</td>
<td>59</td>
</tr>
</tbody>
</table>

CHAPITRE IV: STRUCTURE ELECTRONIQUE DE L’ATOME

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-1</td>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>IV-2</td>
<td>Dualité onde-corpuscule</td>
<td>61</td>
</tr>
<tr>
<td>IV-2-1</td>
<td>Aspect ondulatoire de la lumière: onde électromagnétique ou lumineuse et spectre électromagnétique</td>
<td>61</td>
</tr>
<tr>
<td>IV-2-2</td>
<td>Aspect corpusculaire de la lumière</td>
<td>63</td>
</tr>
<tr>
<td>IV-2-2-1</td>
<td>Effet photoélectrique</td>
<td>63</td>
</tr>
<tr>
<td>IV-3</td>
<td>Interaction entre la lumière et la matière</td>
<td>65</td>
</tr>
<tr>
<td>IV-3-1</td>
<td>Spectre d’émission de l’atome d’hydrogène</td>
<td>66</td>
</tr>
<tr>
<td>IV-3-2</td>
<td>Relation empirique de Balmer-Rydberg</td>
<td>67</td>
</tr>
<tr>
<td>IV-3-3</td>
<td>La formule de RITZ-RYDBERG</td>
<td>67</td>
</tr>
<tr>
<td>IV-3-4</td>
<td>Notion de série de raies</td>
<td>68</td>
</tr>
<tr>
<td>IV-4</td>
<td>Modèle classique de l’atome</td>
<td>69</td>
</tr>
<tr>
<td>IV-4-1</td>
<td>Modèle de Rutherford</td>
<td>69</td>
</tr>
<tr>
<td>IV-4-1-1</td>
<td>Application à l’atome d’hydrogène</td>
<td>69</td>
</tr>
<tr>
<td>IV-4-2</td>
<td>Modèle atomique de Bohr : atome d’hydrogène</td>
<td>70</td>
</tr>
</tbody>
</table>
TABLE DES MATIERES

IV-4-2-1 Les postulats de Bohr ... 71
IV-4-2-2 Rayon des orbites stationnaires .. 72
IV-4-2-3 Energie de l’électron sur une orbite stationnaire 73
IV-4-2-4 Quantification de l’énergie de l’atome d’hydrogène 75
IV-4-2-5 Applications aux hydrogénoïdes ... 76
IV-4-2-6 Insuffisance du modèle de Bohr .. 77
IV-5 L’atome d’hydrogène en mécanique onduculaire 78
IV-5-1 Dualité onde-corpuscule et relation de De Broglie 78
IV-5-2 Principe d’incertitude d’Heisenberg ... 79

CHAPITRE V: LA CLASSIFICATION PERIODIQUE DES ELEMENTS 82
V-1 Classification périodique de D. Mendeleïev 83
V-2 Principe de la classification périodique .. 83
V-3 Description des lignes (périodes) ... 83
V-4 Analyse du tableau périodique .. 84
V-4-1 Blocs des groupes ... 84
V-4-2 Description des colonnes (groupes chimiques) 85
V-4-2-1 Sous groupes A .. 85
V-4-2-2 Sous groupes B .. 85
V-4-3 Famille des groupes .. 86
V-5 Evolution périodique de quelques propriétés 87
V-5-1 Rayon atomique (rayon covalent \(r_c \)) .. 87
V-5-2 Le rayon ionique ... 88
V-5-3 Energie d’ionisation (\(E_I \)) .. 89
V-5-4 Affinité électronique ... 90
V-5-5 L’électronégativité .. 91
V-5-5-1 Echelle de MILLIKAN ... 91
V-5-5-2 Echelle de PAULING ... 91
V-5-5-3 Echelle d’ALLRED-ROCHOW .. 92
V-6 Calcule des énergie des polyélectroniques par la règle de slater 93
V-6-1 Généralités sur la méthode de Slater ... 93
V-6-2 Calcul de la charge effective ... 93
V-6-2-1 Exemples de calculs de charges effectives 94
V-7 Application au calcul de l’énergie d’atomes légers polyélectroniques (non-
hydrogénoïdes) .. 95
V-7-1 Généralités ... 95
V-7-2 Calcul des énergies d’ionisation ... 96

CHAPITRE VI : LES LIAISONS CHIMIQUES ... 97
TABLE DES MATIERES

Introduction .. 98
 VI-1 Conception classique de la liaison atomique ... 98
 VI-1-1 Couche de valence .. 98
 VI-2 Les différents types de liaisons ... 99
 VI-2-1 La liaison covalente .. 99
 VI-2-2 La liaison dative ... 99
 VI-2-3 La liaison ionique ... 99
 VI-2-4 La liaison polaire ... 100
 VI- Diagramme de LEWIS .. 101
 VI-1 Diagramme de Lewis des molécules ... 101
 VI-1-1 Règle de l’octet .. 101
 VI-2 Diagramme de LEWIS des ions moléculaire. .. 102
 VI-3 Moment dipolaire et caractère ionique partiel de la liaison 102
 VI-4 Géométrie des molécules : théorie de Gillespie ou VSEPR 103
 VI-4-1 Principe de la méthode : ... 104
 VI-4-1-1 Molécules de type AX_n avec liaisons simples 104
 VI-4-1-2 Molécules de type AX_n avec liaisons multiples. 105
 VI-4-1-3 Molécules de types AX_nE_p .. 106
 VI-5 La liaison chimique dans le modèle quantique : 108
 VI-5-1 Principe ... 108
 VI-5-2 Formation et nature des liaisons : ... 108
 VI-5-2-1 liaison σ ... 108
 VI-5-2-2 liaison π ... 109
 VI-6 Théorie des orbitales moléculaires (T.O.M) (méthode LCAO) 111
 VI-6-1 Principe ... 111
 VI-6-2 Aspect énergétique .. 112
 VI-6-2 Recouvrement des orbitales atomiques 112
 VI-6-3 Ordre de liaison .. 113
 VI-6-4 propriétés magnétiques ... 114
 VI-7 Diagramme des niveaux d’énergie ... 114
 VI-8 Théorie de l’hybridation des orbitales atomiques 118
 VI-8-1 Principe d’hybridation ... 118
 VI-8-2 Les différents types d’hybridation ... 119
 VI-8-2-1 L’hybridation sp _1 ... 119
 VI-8-2-2 L’hybridation sp _2 ... 120
 VI-8-2-3 L’hybridation sp _3 ... 122
 Références bibliographiques ... 123
TABLE DES MATIERES

Annexes .. 125

<table>
<thead>
<tr>
<th>Annexes</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexe 1 Constantes physique fondamentales</td>
<td>126</td>
</tr>
<tr>
<td>Annexe 2 Constantes physiques SI</td>
<td>127</td>
</tr>
<tr>
<td>Annexe 3 Les unités de base du SI</td>
<td>128</td>
</tr>
<tr>
<td>Annexe 4 Tableau périodique des éléments</td>
<td>134</td>
</tr>
<tr>
<td>Annexe 5 Configurations électroniques des éléments</td>
<td>135</td>
</tr>
<tr>
<td>Annexe 6 Symbole et nom des éléments</td>
<td>136</td>
</tr>
<tr>
<td>Annexe 7 Les valeurs des premières énergies d'ionisation des éléments en eV</td>
<td>137</td>
</tr>
<tr>
<td>Annexe 8 Les valeurs des rayons covalents des éléments chimiques</td>
<td>138</td>
</tr>
<tr>
<td>Annexe 9 Les valeurs de l'électronégativité des éléments chimiques de l'échelle Pauling</td>
<td>139</td>
</tr>
</tbody>
</table>
INTRODUCTION
Introduction

L’objet de la chimie générale et précisément la structure de la matière consiste en l’étude des notions de chimie qui permettent de décrire sommairement la composition de la matière et de comprendre la nature des réactions chimiques. Ces notions qui permettent de prédire la plupart des propriétés des atomes et la manière dont ils s’associent pour former des molécules, et parmi ces notions c’est surtout la distribution des électrons autour du noyau atomique qui détermine les propriétés des atomes.

Le domaine de la chimie générale est très vaste et composé de divers sujets. Ces concepts sont souvent abstraits et il est important de faire exposer graduellement le contenu de ce polycopié afin de faire ressortir les liens qui les unissent. Ce polycopié de cours réunit l’essentiel des notions fondamentales de la chimie pour donner un bon aperçu sur le premier modèle atomique et les travaux qui lui ont donné naissance. La présentation du modèle atomique moderne et les propriétés des éléments qui en découlent ont été décrit avec des explications et précisions de certaines notions. Dans ce polycopié on traite le développement de la théorie électromagnétique de la lumière, puis de l’hypothèse de son caractère discontinu.

Les connaissances sur l’arrangement électronique des atomes découlent de la théorie électromagnétique de la lumière puis de l’hypothèse de son caractère discontinu.

La relation entre le rayonnement électromagnétique émis par des atomes et l’énergie des électrons qui les composent a conduit ensuite N. Bohr à émettre l’hypothèse de la discontinuité des niveaux d’énergie: les électrons suivent des orbites fixes. Il est possible d’associer un rayonnement électromagnétique à l’énergie des électrons, puisque leur distance précise du noyau atomique pouvait être calculée à partir de leur énergie. Le modèle de Rutherford, selon lequel les électrons ont des orbites aléatoires, est alors abandonné.

Avec l’hypothèse de Broglie selon laquelle des particules matérielles présentent un caractère ondulatoire, le modèle de Bohr déboucha sur la théorie quantique de l’atome.

La dualité onde-corpuscule de l’électron conduit à l’équation de Schodinger, équation de la théorie quantique.

Le concept d’orbitale, qui représente les régions de probabilité de trouver l’électron, a émergé de cette théorie.
Désormais, on ne décrit plus l’électron seulement comme une particule: on lui attribue aussi des caractéristiques ondulatoires; on peut l’associer à un nuage électronique de densité variable.

La résolution de l’équation de Schrödinger a aussi débouché sur les nombres quantiques qui donnent des informations précises sur l’état d’un électron, désigné par l’état quantique. La distribution des électrons dans des cases quantiques ordonnées selon leur niveau d’énergie, eux-mêmes dépendant des valeurs des nombres quantiques ont été décrit par un système simple.

Il en découle des expressions des configurations électroniques propres à chaque élément, à partir desquelles on peut prédire un grand nombre de propriétés.

La structure électronique d’une espèce chimique, élaborée à partir du modèle atomique a été donné clairement dans ce polycopié. La description des différents modèles de liaisons chimiques a été élaborée à partir du modèle atomique moderne. La théorie de l’hybridation des orbitales atomiques est expliquée de façon simple, claire et facile.
CHAPITRE I: NOTIONS FONDAMENTALES
I-1-Etats et caractéristiques macroscopiques des états de la matière

La matière est la substance qui compose tout corps ayant une réalité tangible. La matière est tout ce qui possède une masse et occupe un espace. Ainsi, en physique, tout ce qui a une masse est de la matière. Tous les objets, l’air, l’eau, l’huile…sont de la matière, ce sont des corps. Ces corps peuvent exister sous différents aspects appelés états physiques de la matière. Ils peuvent être solides, liquides, gazeux suivant la plus ou moins grande cohésion des molécules qui les constituent.

I-1-1 Les états de la matière

Du point de vue macroscopique les états de la matière sont :

L'état solide, l’état liquide et l’état gazeux

I-1-1-a Les solides : Ils ont une forme qui peut changer quand on exerce une pression sur eux. Les solides ont une forme propre car, il l’on exerce aucune action sur eux, ils conservent la même forme.

I-1-1-b Les liquides : Ils n’ont pas de forme propre, ils prennent toujours la forme du récipient dans lequel ils se trouvent. Leur surface libre au repos est plane et horizontale.

I-1-1-c Les gaz : Les gaz n’ont pas de forme propre. Ils occupent tout le volume qui leur est offert.

I-1-2 Les grandeurs caractéristiques de la matière et de ses états

Il ya quatre grandeurs caractéristiques de la matière et de ses états :

I-1-2-1 Le volume et la masse

Le volume et la masse sont deux grandeurs caractéristiques d’un corps. La place prise par chaque corps, c’est-à-dire l’espace occupé, est déterminée par une mesure du volume alors que la lourdeur ou la légèreté d’un corps est déterminée par sa masse.

I-1-2-1-a Le volume : Détermine la place occupée par un corps.

Symbole de la grandeur : V. Unité : le mètre cube de symbole m3 (Système métrique international), mais aussi le litre (L). Appareil de mesure : récipient gradué.

La mesure d’un volume d’un solide dépend de la forme du solide. S’il possède une forme géométrique connue, on peut directement utiliser les formules mathématiques pour déterminer son volume. En revanche, si le solide possède une forme quelconque, on utilise des récipients gradués (éprouvette contenant un liquide). Le volume du
solide correspond alors au volume du liquide contenant le solide (V_2) diminué du volume du liquide seul (V_1).

I-1-2-1-b La masse : La masse d’un corps, qu’il soit solide ou gazeux, mesure sa quantité de matière

Symbole de la grandeur : m. Unité : le kilogramme de symbole kg (Système métrique international). Appareil de mesure : balance.

I-1-2-2 La pression et la température

I-1-2-2-a La pression : notée p, correspond au rapport d’une force (F) sur l’aire de la surface (S) sur laquelle elle s’applique.

 Symbole de la grandeur : p. Unité : le pascal de symbole Pa (Système métrique international). Appareil de mesure : nanomètre, baromètre...

I-1-2-2-b La température : correspond au degré d’agitation des molécules. Plus la température est élevée, plus les molécules sont agitées et plus elles se dispersent, augmentant le désordre moléculaire. La température ambiante est la température de l’environnement.

I-2-Changement d’état de la matière

I-2-1 Les différents changements d’état

Un corps peut passer d’un état à un autre suivant un processus que l’on nomme changement d’état. Les changements d’état peuvent s’effectuer en influant sur la température ou sur la pression, voire sur les deux.

Exemples :

La solidification, opération au cours de laquelle un liquide passe à l’état solide, peut se faire par refroidissement, par augmentation de la pression, ou bien par une combinaison des deux. La vaporisation consiste à passer de l’état liquide à l’état gazeux, peut s’effectuer de manière rapide avec formation de bulles ou alors de manière lente sans formation de bulles.

I-2-2 Les caractéristiques des changements d’état

Lors d’un changement d’état d’un corps, il y a conservation de la masse mais pas du volume. Durant ce changement d’état, les molécules sont conservées ; seul leur agencement les unes par rapport aux autres est modifié.
Figure I-1: Schéma de variation de l’état de matière

I-2-2-1 La fusion est le passage de l’état solide vers l’état liquide. Exemple: laisser fondre un glaçon.

I-2-2-2 La solidification est le passage de l’état liquide à solide. Exemple: l’eau qui se transforme en glaçon dans le congélateur.

I-2-2-3 La sublimation est le passage de l’état solide à gazeux et inversement. La glace peut s’évaporer de la même façon que l’eau.

I-2-2-4 La liquéfaction est le passage de l’état gazeux à l’état liquide. La condensation est une liquéfaction sous forme de gouttelettes. Exemples : l’eau qui chauffe dans une casserole, la buée sur les vitres.

I-2-2-5 La vaporisation est un phénomène général du passage de l’état liquide à l’état gazeux.

I-3- Notion d’atome
Le mot atome vient du grec atomos qui signifie indivisible, insécable. L'atome est une notion ancienne datant du 3ème siècle avant J.-C., développée par Démocrite et Leucipe de Milet. Repris par Dalton, c'est au cours du XIXème siècle que s'est précisée la notion d'atome et il faut attendre le début du XXème siècle pour avoir les premières notions sur sa structure : celle d'un noyau atomique entouré d'un nuage électronique.

I-3-a Structure de l’atome
L’atome est constitué de deux parties :
- le noyau contenant des neutrons (électriquement neutres) et des protons (chargés positivement) : le noyau est donc globalement chargé positivement.
CHAPITRE I: NOTIONS FONDAMENTALES

- Le cortège électronique formé d’électrons (chargé négativement) en mouvement autour du noyau.

I-3-b Caractéristiques de ces particules

Le tableau suivant permet de comparer ces différentes caractéristiques :

<table>
<thead>
<tr>
<th></th>
<th>Masse (kg)</th>
<th>charge (C.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>1,67 x 10^{-27}</td>
<td>1,6 x 10^{-19}</td>
</tr>
<tr>
<td>Electron</td>
<td>9,1 x 10^{-31}</td>
<td>- 1,6 x 10^{-19}</td>
</tr>
<tr>
<td>Neutron</td>
<td>1,67 x 10^{-27}</td>
<td>0</td>
</tr>
</tbody>
</table>

I-3-1 Molécules

Une molécule est une particule microscopique qui compose la plupart des matières. Une molécule correspond à un regroupement d’atomes liés entre eux. Ces atomes ne peuvent se séparer spontanément : seule une transformation chimique peut modifier la composition d’une molécule. Une molécule est représentée par une formule chimique qui indique la nature des atomes ainsi que le nombre d’atomes en indice présents dans la molécule.

Exemple :
- La molécule d’eau contient 2 atomes d’hydrogène et un atome d’oxygène.
 Sa formule chimique qui la caractérise est H₂O
- Ba(OH)₂ contient 1 atome de baryum, 2 atomes d’oxygène et 2 atomes d’hydrogène

I-3-2 Mole

La mole est la quantité de matière d’un système contenant N entités identiques. Elle est aussi définie comme le nombre d’atomes de carbone 12 contenu dans 12 g de carbone 12. Une mole d’atome correspond à 6,023 10^{23} atomes,

\[1 \text{ mole} = \frac{12g}{1,9926 \times 10^{-23}} = 6,023 \times 10^{23} \text{ atomes} \]

Exemple: Déterminer le nombre d’atomes contenu dans 12g de carbone 12, sachant que la masse d’un atome de carbone 12 est de 1,9926 10^{-26}Kg (cette masse est déterminée à l’aide d’un spectromètre de masse).

Solution :

1 mole contient 12g contient N atomes de \text{^{12}\text{C}}

\[1,9926 \times 10^{-23}g \rightarrow 1 \text{ atome} \]
12g de 12C \rightarrow N atomes $\Rightarrow N$ atomes de $C = \frac{12}{1,9926 \times 10^{-23}} = 6,023 \times 10^{23}$ atomes qui est égale à une mole

I-3-3 Nombre d’Avogadro N_A
Le nombre d’atomes dans une mole est appelé Nombre d’Avogadro : $N_A=6,023 \times 10^{23}$ atomes

I-4- Unité de masse atomique (uma)
L’unité de masse atomique est le $1/12$ de la masse d’un atome de carbone 12.

\[1\text{uma} = \frac{1}{12} m(^{12}C) = \frac{1}{12} \times \frac{M(^{12}C)}{N_A} = \frac{1}{12} \times \frac{12}{N_A} = \frac{1}{N_A} = \frac{1}{6,023 \times 10^{23}} =
\]
\[1,6605 \times 10^{-24} \text{g} = 1,6605 \times 10^{-27} \text{Kg}\]

I-4-1 Masse molaire atomique
Est la masse d’une mole d’atomes de l’élément. Car les masses des atomes sont toutes très petites (entre 10^{-24} et 10^{-26} kg)

Exemple :

Calcule de la masse atomique du sodium Na

Sachant que la masse de l’atome de sodium est de $3,8 \times 10^{-23}$ g

\[\Rightarrow M(\text{Na}) = m (\text{atome de sodium}) \times N_A = m \times N_A = 3,8 \times 10^{-23} \times 6,023 \times 10^{23}
\]

\[= 22,8874 \approx 23 \text{ g}.
\]

I-4-2 Masse molaire moléculaire

Puisque 1 molécule d’eau renferme un 1 atome d’oxygène et 2 atomes d’hydrogène, pour réaliser 1mole de H$_2$O, il faut : 1 mole d’atomes d’oxygène et2 moles d’atomes d’hydrogène, en conséquence, La masse molaire moléculaire de la molécule H$_2$O est la somme de la masse molaire atomique de l’oxygène et 2 fois la masse molaire atomique de l’hydrogène

\[\text{MM(H}_2\text{O)} = \text{MM(O)} + 2 \text{ MM(H)} = 16 + 2 \times 1 = 18 \text{ g/mole}
\]

I-4-3 Le volume molaire

Le volume molaire V_m d'un gaz est le volume qu'occupe toujours une mole de ce gaz dans des conditions définies de température et de pression.
Les conditions de Température et de Pression définies sont les conditions Normales de Température et de Pression (CNTP)

\[T = 0 \, ^\circ C, \, P = 1 \, atm \; ; \; V_m = 22.4 \, l.mol^{-1} \]

Les conditions Standarts de Température et de Pression (CSTP)

\[T = 25^\circ C, \, P = 1 \, atm \; ; \; V_m = 24.79 \, l.mol^{-1} \]

Exemples :

Une mole de \(O_2 \) ou de \(CO_2 \) occupera toujours un volume de 22.4 L dans les conditions NTP et un volume de 24.79 L dans les conditions STP.

I-5-Lois pondérales:

Lois pondérales de la chimie sont les lois sont les relatives aux pesés et par conséquent au masse

I-5-1 Loi de LAVOISIER

C’est les lois de la conservation des matières. Il est à l’origine une étude quantitative de toute réaction chimique. Il développe l’étude des bilans massiques des réactions chimiques grâce à des pesés des réactifs et des produits. Cette loi annonce que la masse totale des produits formés est égal à la masse totale des réactifs consommés

\[\sum \text{ de la masse des réactifs} = \sum \text{ de la masse des produits} \]

-Dans une réaction chimique, les éléments se conservent et la masse des réactifs disparus est égale à la masse des produits formés.

Exemple :

Une équation chimique doit donc toujours être pondérée(bien équilibrée) pour traduire correctement le phénomène chimique réel.

Réactifs (R) → Produit (formé) (P)

\[8 \, Fe + S_8 \rightarrow 8 \, FeS \]

soit 8 atomes de Fe et 8 atomes de S associés d'une certaine façon donnent toujours 8 atomes de Fe et 8 atomes de S mais associés autrement
CHAPITRE I: NOTIONS FONDAMENTALES

I-5-2 loi des proportions définies (loi de PROUST)

Lorsque des corps simples s’unissent pour former un corps composé défini, le rapport entre les masses de chaque réactif qui ont été consommées dans la réaction chimique est constant.

Exemple :

<table>
<thead>
<tr>
<th>Masse avant réaction(g)</th>
<th>Masse après réaction(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnésium</td>
<td>Oxygène</td>
</tr>
<tr>
<td>50</td>
<td>32,9</td>
</tr>
<tr>
<td>70</td>
<td>46,1</td>
</tr>
</tbody>
</table>

\[
\frac{\text{masse de magnésium consommé}}{\text{masse d'oxygène consommé}} = 1,52
\]

I-5-3 Loi de proportion multiple

Lorsque deux corps simples peuvent former plusieurs composés. Les masses de l’un des constituants s’unissent à une même masse de l’autre sont toujours dans des rapports des nombres entiers

Exemple :

<table>
<thead>
<tr>
<th>Masse avant réaction(g)</th>
<th>Masse après réaction(g)</th>
<th>Rapport des masse(g) d'oxygène</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnésium</td>
<td>Oxygène</td>
<td>Produit de réaction</td>
</tr>
<tr>
<td>50</td>
<td>66,7</td>
<td>116,67</td>
</tr>
<tr>
<td>50</td>
<td>133,33</td>
<td>183,33</td>
</tr>
</tbody>
</table>

I-5-4 L’hypothèse atomique de Dalton et ses conséquences :

Une première vision de l’atome

Toute matière est constituée de particules élémentaires indivisibles lors des transformations chimiques. Ces particules macroscopiques simple, qui ne peuvent être fractionnées indestructible, sont appelées atomes. De cette hypothèse découle la première théorie atomique et qui a donné plusieurs propositions :

Tout les corps sont constitués d’atomes

IL existe divers sorte d’atomes et par conséquent l’apparition de la notion d’élément (H pour l’hydrogène, C pour le carbone ...)
CHAPITRE I: NOTIONS FONDAMENTALES

I-6- Aspect qualitatif de la matière

I-6-1 Les corps purs: Le corps contient un seul type de constituant. Un corps est dit pur lorsqu’il est constitué d’une seule sorte de molécules.

Exemple : l’eau distillée (ou déminéralisée) est un corps pur car elle est constituée uniquement de molécules d’eau (H₂O).

Parmi les corps pur, une distinction est faite entre les corps purs simples et les corps purs composés.

I-6-2 Les corps purs simples: un corps pur simple est constitué de molécules formées d’atomes identiques.

Exemple : Le dioxygène (O₂) formé de deux atomes d’oxygène et le diazote (N₂) formé de deux atomes d’azote sont des corps purs simples.

I-6-3 Les corps purs composés: un corps pur composé est constitué de molécules formées d’atomes différents.

Exemple : L’eau distillée, corps pur contenant des molécules composées de deux types d’atomes (hydrogène et oxygène) est un corps pur composé.

I-6-4 Les mélanges

Si après agitation, les corps ne peuvent pas être distingués les uns des autres, le mélange est dit : mélange est homogène c’est une solution homogène.

Si après agitation, les corps mis en présence peuvent être distingués les uns des autres, le mélange est hétérogène.

I-6-4-1 Les mélanges liquide-liquide

I-6-4-1-1 Mélange homogène

I-6-4-1-1-1 La miscibilité

Quand les liquides mis en présence se mélangent, c’est-à-dire quand ils ne se distinguent plus les uns des autres, il y a une seule phase, le mélange est dit homogène. Les liquides sont alors miscibles entre eux.

Exemple : L’eau et le vinaigre,
I-6-4-2 Mélange hétérogène

Quand les liquides ne se mélangent pas entre eux, c’est-à-dire lorsqu’ils se distinguent les uns des autres, il y a plusieurs phases, le mélange est dit hétérogène. Les liquides sont dits non miscibles entre eux.

Exemple : L’eau et l’huile ou bien encore l’huile et le vinaigre ne sont pas miscibles entre eux. Dans ce cas, on observe très souvent avant la séparation des deux liquides une émulsion, c’est-à-dire des gouttelettes d’un liquide dans un autre liquide.

I-6-4-2 Les mélanges liquide-solide

I-6-4-2-1 La dissolution

Un solide mis dans un liquide donne après agitation soit une seule phase, soit deux phases.

Lorsque le solide ne se distingue plus du liquide, il y a une seule phase. Le mélange est, homogène c’est une. Le solide s’est dissous dans le liquide. Dans ce cas, le solide est appelé soluté et le liquide est appelé solvant. Si le liquide est l’eau, la solution est dite aqueuse.

Exemple : Le sel qui se dissout dans l’eau permet, après mélange, d’obtenir une solution aqueuse saline.

Lorsqu’il y a une phase solide et une phase liquide. Le solide ne s’est pas dissous dans le liquide. Le mélange est hétérogène.

Exemple : le sable ne se dissout pas dans l’eau.

Ce n’est pas parce qu’un solide se dissout dans un liquide qu’il va se dissoudre dans un liquide différent.

Exemple : le sel se dissout bien dans l’eau, il ne se dissout pas dans l’huile.

I-6-4-3 Les autres mélanges

I-6-4-3-1 Les mélanges solide-solide

Les solides ne se mélangent pas entre eux, ils peuvent toujours être distingués les uns des autres. Ceci s’explique par le fait que, dans les solides, les molécules sont fortement liées.

I-6-4-3-2 Les mélanges gaz-gaz

Les gaz se mélangent toujours entre eux dans la mesure où leurs molécules ne sont pas liées.

Exemple : L’air sec est un mélange de 78% de diazote (N_2), 21% de dioxygène (O_2) et de 1% d’autres gaz (dioxyde de carbone (CO_2), méthane (CH_4), ozone (O_3))...
I-6-5-Les solutions

Une solution est un mélange liquide homogène dans lequel un des constituants (le solvant) est en gros excès par rapport aux autres constituants du mélange (les solutés).

Les quantités de chacune des espèces chimiques présentes dans une solution sont caractérisées par leur concentration : il s'agit alors le plus souvent de la quantité de matière par unité de volume

I-6-5-1 Le solvant est toute substance liquide qui a le pouvoir de dissoudre d’autres substances.

I-6-5-2 Le soluté est une espèce chimique (moléculaire ou ionique) dissoute dans un solvant.

Le solvant est toujours en quantité très supérieure au(x) soluté(s).

I-6-6 Solution aqueuse

Le mélange homogène, solvant et soluté, est appelé solution aqueuse si le solvant est l’eau.

I-6-6-1 Solution aqueuse, soluté et solvant

La substance en question est qualifiée de soluté et l’eau est qualifiée de solvant. Lorsque l’on atteint la limite à la quantité de soluté que l’eau peut dissoudre, on parle de solution aqueuse saturée.

Parmi les solutions aqueuses les plus simples et les plus connues, on peut citer l’eau sucrée. Dans ce cas, le soluté est tout simplement constitué de sucre. L’eau minérale est également une solution aqueuse dans laquelle les solutés sont les sels minéraux : calcium, potassium, magnésium, etc.

I-6-6-2 Saturation d’une solution

Dans le cas des solutions donc des mélanges homogènes, il existe une quantité limité à partir de laquelle le solide ne peut plus se dissoudre dans le liquide, c’est la limite de solubilité. La solution est alors une solution saturée.

Exemple : la limite de solubilité du sucre dans l’eau est de 2000g/L à 20°C. Cela signifie qu’à 20°C, on peut dissoudre jusqu’à 2000 g de sucre dans un litre d’eau.

Cette limite de solubilité peut être repoussée en chauffant la solution. Ainsi, à 80°C, la limite de solubilité du sucre est repoussée à 4000 g/L.
I-6-6-3 Dilution d’une solution

Diluer une solution, c’est obtenir une nouvelle solution moins concentrée que la solution initiale, en ajoutant du solvent. La solution initiale se nomme solution mère et la solution diluée se nomme la solution fille. Au cours d’une dilution, la quantité de matière de l’espèce chimique dissoute ne varie pas : \(n_{\text{mère}} = n_{\text{fille}} \) avec : \(n_{\text{mère}} = c_0 V_0 \);

\[n_{\text{fille}} = c_1 V_1 \Rightarrow c_0 V_0 = c_1 V_1 \]

On appelle aussi la dilution le fait de diminuer la valeur de la concentration d’un constituant d’une solution en ajoutant à cette solution soit un certain volume de solvant pur, soit une certaine quantité d’une autre solution moins concentrée.

Exemple : Pour préparer un volume \(V_1 = 100 \text{ml} \) d’une solution d’hydroxyde de potassium de concentration de \(2,5 \times 10^{-3} \text{ mol/l} \) à partir d’une solution d’hydroxyde de potassium de concentration \(5 \times 10^{-2} \text{ mol/l} \), il faut prélever un volume \(V_1 \) de la solution initiale ou mère.

\[n_0 = n_1 \Rightarrow V_0 c_0 = V_1 c_1 \Rightarrow V_0 = \frac{V_1 c_1}{c_0} = \frac{2,5 \times 10^{-3} \times 100^{-3}}{5 \times 10^{-2}} = 5 \times 10^{-3} \text{ l} = 5 \text{ ml} \]

I-7- Aspect quantitative de la matière

I-7-1 Quantité de matière

La notion de quantité de matière est la notion fondamentale de la chimie quantitative. Une quantité de matière est décrite en mole. Cette notion permet de passer du microscopique au macroscopique.

I-7-2 Nombre de mole

La définition de la mole repose sur le nombre d'Avogadro. En effet, il est impossible de travailler en chimie avec un nombre précis d'atomes mais il sera plus commode de travailler avec des paquets d'atomes. Il faut donc choisir le nombre d'atomes, ou d'ions, ou de molécules que le mettra dans ce paquet, appelé la mole. La convention choisie est la suivante :

Dans une mole d'atomes, il y a autant d'atomes que dans 12 grammes de carbone 12. Expérimentalement, on calcule que dans 12 grammes de carbone 12 (\(^{12}\text{C}\)) on trouve \(6,022.10^{23} \) atomes de carbone 12.

Le paquet, la mole, vaut donc \(6,022 \times 10^{23} \) ce qui définit le nombre d'Avogadro :

\[N_A = 6,022 \times 10^{23} \text{ mol.} \]

Ce nombre permet d'effectuer des bilans de matière dans des réactions chimiques.
Pour travailler avec un nombre de moles \(n(\text{mol}) \) précis, on effectue une pesée. Il est nécessaire de connaître pour ceci la masse molaire \(M \) (g.mol\(^{-1}\)) du composé. La masse à peser \(m \) (g) est :
\[
 m = n \times M
\]

Le nombre de mole \(n \) est :
\[
 n = \frac{m}{M}
\]

1-7-3 Concentration molaire ou molarité

La concentration molaire est le nombre de moles de soluté par litre de solution.

\[
 C(\text{mol/l}) = \frac{\text{nombre de mole de soluté}}{\text{Volume de la solution en litre}} = \frac{n(\text{mole})}{V(l)}
\]

La concentration molaire est encore appelée molarité. Une solution qui contient 1 mol de soluté par litre de solution est dite 1 molaire, ce qui s’écrit 1M.

1-7-4 Molalité

La molalité s’exprime en moles par kilogramme (unité : mol/kg). La molalité (concentration molale) représente la quantité de soluté exprimé mole par unité de soluté exprimé en kg.

\[
 \text{Molalité} \left(\frac{\text{mol}}{\text{kg}} \right) = \frac{\text{nombre de mole de soluté (mole)}}{\text{masse de soluté (Kg)}} = \frac{n_{\text{soluté(mole)}}}{n_{\text{solvant(Kg)}}}
\]

Exemple :

Calculer la molalité d’une solution d’acide nitrique (HNO\(_3\)) qui est préparé en dissolvant 12,6 g de soluté dans 50ml d’eau.

Masse de solvent : 50g = 0,05Kg

Nombre de mole de soluté \(n = 12,6/63 = 0,2 \) mol \(\Rightarrow \) Molalité = 0,2/0,05 = 4 mol/Kg

1-7-5 Concentration massique (Concentration pondérale)

La concentration massique d’une substance chimique en solution est la masse de soluté présente par litre de solution. La concentration massique se note \(C_m \), elle s’exprime en g.L\(^{-1}\).

\[
 C_m(\text{g}.\text{L}^{-1}) = \frac{m_{\text{solute en gramme}}}{\text{Volume de la solution en litre}}
\]

La somme des concentrations massiques des composants est égale à la masse volumique \(\rho \) (densité massique) du mélange.

1-7-6 Fraction pondérale ou massique

La fraction massique \(w_i \) du composant \(i \) est le rapport de la masse \(m_i \) de ce composant à la masse totale \(m_{\text{tot}} \) du mélange.

\[
 w_i = \frac{m_i}{m_{\text{tot}}}
\]
CHAPITRE I: NOTIONS FONDAMENTALES

Exemple :

Une solution de masse de 1025g contient 89,2g de nitrate de sodium. Calculer la fraction massique en nitrate de sodium.

\[w_i = \frac{m_i}{m_{\text{tot}}} \Rightarrow w_i = \frac{89.2}{1025} = 0.0871 \]

I-7-7 Titre

Le titre (T) il se calcule en utilisant la masse du soluté (m) exprimée en grammes divisée par le volume de la solution (V) exprimé en litres:

\[T = \frac{m(g)}{V(l)} \]

Ainsi une solution qui contient quinze grammes de soluté par litre de solution a un titre ou une concentration de 15 g/litre

I-7-8 La fraction molaire \(x_i \)

La fraction molaire (x) ou le pourcentage molaire (x%) est une grandeur utilisée pour exprimer la composition d'un mélange.

La fraction molaire d'un constituant i est égale au rapport du nombre de moles de ce constituant i sur le nombre total de moles du mélange. Elle est donc une grandeur sans dimensions.

\[x_i = \frac{n_i}{\Sigma n_T} \]

La somme des fractions molaires des constituants du mélange est égale à l'unité.

\[\Sigma x_i = 1 \]

Exemple :

Calculer les fractions massiques et molaires d'une solution composée de 10 g d'éthanol et 70 g d'eau. L'eau H\(_2\)O a une masse molaire de 18 g.mol\(^{-1}\) et l'éthanol C\(_2\)H\(_5\)OH de 46 g.mol\(^{-1}\).

\[n_{H_2O} = \frac{m_{H_2O}}{M_{H_2O}} = \frac{70}{18} = 3.889\,\text{mol}, \quad n_{\text{ethanol}} = \frac{m_{\text{ethanol}}}{M_{\text{ethanol}}} = \frac{10}{46} = 0,217\,\text{mol} \]

d'où le nombre total de moles de mélange : \(n_T = 4,106 \), les fractions molaires sont :

\[x_{H_2O} = \frac{n_{H_2O}}{n_T} = \frac{3.889}{4,106} = 0,947, \quad x_{\text{ethanol}} = \frac{n_{\text{ethanol}}}{n_T} = \frac{0,217}{4,106} = 0,053 = 1 - x_{H_2O} \]

I-7-9 Concentration normale ou Normalité

Concentration normale (ou normalité \(N \)): Elle est reliée au nombre d'équivalent-gramme de soluté de solution et au type de réaction chimique considérée. Un équivalent-gramme d'acide est la fraction de mole qui correspond à un proton (H\(^+\) ou H\(_3\)O \(^+\)) (une mole pour HCl, une demi-mole pour H\(_2\)SO\(_4\)). Un équivalent-gramme de
base est la fraction de mole qui correspond à un ion hydroxyde OH\(^-\) [une mole pour NaOH, une demi-mole pour Ca(OH)\(_2\)], alors que dans les réactions d’oxydo-réductions, il s’agit du nombre d’électrons. La normalité N est donnée par le nombre d’équivalent-grammes de soluté par litre de solution (éq.g/l).

Il existe une relation entre la normalité (N) et la molarité (C ou M) tel que :

\[N = P \cdot M \]

\(P \) : nombre de protons dans le cas des bases (H\(^+\) ou H\(_3\)O\(^+\)) et représente le nombre de OH\(^-\) dans le cas des bases

Pour les monoacides et les monobases on a \(N = C \) ou \(N = M \). Pour les diacides (dibases) et les triacides (tribases) on a : \(N = 2M \); \(N = 3M \).

Exemple :

Calculer la normalité d’une solution d’acide phosphorique qui contient 6 moles de soluté par 3000cm\(^3\)

L’acide phosphorique est triacide \(\Rightarrow N = 3M \)

\[M = \frac{n}{V} = \frac{6}{3} = 2 \text{ mol/l} \Rightarrow N = 3 \times 2 = 6N \]

I-7-10 Masse volumique

La masse volumique est la masse d’une substance par unité de volume à une température donnée.

\[\rho = \frac{\text{masse de la solution}}{\text{volume de la solution}} \quad \text{unité SI Kg.m}^{-3} \quad \text{usuellement : g.L}^{-1} \]

Exemple : Sachant que la masse de 10 ml de cyclohexane est de 7,8g, calculer la masse volumique du cyclohexane

\[\rho = \frac{m}{v} = \frac{7,8}{10} = 0,78 \text{ g/ml} \]

I-7-11 Densité

La densité d’une substance est égale à la masse volumique de la substance divisée par la masse volumique du corps de référence à la même température. Pour les liquides et les solides, l’eau est utilisée comme référence, pour les gaz, la mesure s’effectue par rapport à l’air. Elle est notée d et n’a pas d’unité (grandeur physique sans dimension).

\[d_{\text{substance}} = \frac{\rho_{\text{substance}}}{\rho_{\text{eau}}} \]
I-7-11-1 Densité d'un liquide
Nombre sans unité, exprimant le rapport de la masse d’un certain volume d’un corps à celle du même volume d’eau. \(d_{\text{corps}} = \frac{\rho_{\text{corps}}}{\rho_{\text{eau}}} \)

Exemple : Sachant que dans des conditions normales de pression et de température la masse volumique de l’eau est de 1g/m1, calculer la densité du cyclohexane.

\[d_{\text{cyclohexane}} = \frac{\rho_{\text{cyclohexane}}}{\rho_{\text{eau}}} = \frac{0.78}{1} = 0.78 \]

I-7-12 Les lois des solutions diluées : Lois de Raoult

Cryométrie, ébulliométrie ces deux techniques permettent de mesurer des masses molaires du corps dissous ainsi que la concentration de la solution.

I-7-12-1 Ébulliométries (1ère Loi de Raoult)
C’est l’augmentation de la température d’ébullition du solvant entre solvant pur (T°) et la solution diluée (T). \(\Delta T_e = T - T° > 0 \) (car T > T°)

\(\Delta T_e = K_e \frac{n_{\text{soluté}}}{m_{\text{solution}}} \)
\(m_{\text{solution}} = m_{\text{solvant}} + m_{\text{soluté}} = m_{\text{solvant}} \text{ puisque } m_{\text{soluté}} \ll m_{\text{solvant}} \)

\(\Delta T_e = K_e \frac{n_{\text{soluté}}}{m_{\text{solution}}} = \frac{n_{\text{soluté}}(\text{mol})}{m_{\text{solvant}}(Kg)} = K_e \frac{m_{\text{soluté}}}{M_{\text{soluté}} \times m_{\text{solvant}}} = K_e \cdot C_m \)

\(K_e \) constante d’ébulliométrie, \(C_m \) la molalité de la solution

I-7-12-2 Cryométrie (2ème Loi de Raoult)
C’est la diminution de la température de solidification (congélation) du solvant entre solvant pur (T°) et la solution diluée (T). \(\Delta T_f = T - T° < 0 \) (car T < T°)

\(\Delta T_f = K_f \frac{n_{\text{soluté}}}{m_{\text{solution}}} = \frac{n_{\text{soluté}}(\text{mol})}{m_{\text{solvant}}(Kg)} = K_f \cdot C_m = K_f \frac{m_{\text{soluté}}}{M_{\text{soluté}} \times m_{\text{solvant}}} \)

\(K_f \) = Constante cryométrique du solvant
La loi de Raoult n’est pas valable que pour les solutions diluées et volatiles

Exemple :
0,5g d’un composé ont été dissous dans 50g de benzène. Cette solution se congèle à 0,44°C plus bas que le benzène pur. Quelle est la masse molaire de ce composé?

Donnée :

Constante cryométrique du benzène \(K_f = 4,9^{\circ}\text{Kg/mol} \)

\[M_{\text{soluté}} = \frac{K_f m_{\text{soluté}}}{\Delta T_f m_{\text{solvant}}} = \frac{4,9 \times 0.5}{0.44 \times 50 \times 10^{-3}} = 111.36 \text{ g/mol} \]
CHAPITRE II: PRINCIPAUX CONSTITUANTS DE LA MATIERE
II-1 Introduction :

L'étude expérimentale des réactions chimiques fut la première méthode d'investigation des propriétés des éléments. Des expériences simples telles que la mesure des poids des éléments qui se combinent les uns aux autres, mais dont la précision était soigneusement discutée, ont conduit à cette notion physique fondamentale qu’est l’atome. Bien que le mot ait été inventé par les Grecs, ce n’est que vers le milieu du XIXe siècle que le concept d’atome a réellement porté ses fruits. Depuis le début de ce siècle, le développement de la technologie a permis l’étude des particules élémentaires constitutives des atomes et des molécules. Ces entités ont pu être isolées et l’action de forces extérieures a permis de mettre en évidence leurs propriétés et leur structure. C’est la découverte des rayons X par Rontgen en 1895 puis la radioactivité par Henri Becquerel en 1896 et Pierre Marie Curie à partir de 1896 qui a permis de comprendre la structure des atomes.

II-2 Expérience de Faraday : relation entre la matière et l’électricité

II-2-1 La découverte de l’électron

Faraday, établit en 1833 les lois de l'électrolyse, qui voulaient que dans une solution d'eau avec une solution de sel, chaque atome ou chaque fragment moléculaire ait une charge électrique fixe.

Figure II-1: Expérience de faraday – Electrolyse de l’eau

La formulation des lois de l'électrolyse a constitué un atout majeur pour la théorie atomique, tout au long du XIXe siècle, jusqu'à la mise en évidence de l'électron à la fin du siècle.
La découverte de l'électron. En étudiant la décomposition de solutions par le courant électrique, Faraday avait établi que, pour une même quantité d'électricité, le poids de matière déposée par les ions varie dans des rapports semblables à ceux qui interviennent dans les réactions chimiques.

Exemple: l'électrolyse d'eau : \(\text{H}_2\text{O} \rightarrow \text{H}_2 + 1/2 \text{O}_2 \)

à l'anode + : \(\text{O}^2 \rightarrow 1/2 \text{O}_2 + 2\text{e}^- \)
à la cathode - : \(2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2 \)

Quand \(2N \) électrons traversent le circuit, \(N \) molécules d'hydrogène se dégagent. \(N \) \(\text{e}^- \) constituent \(1 \) mole d'électrons et la quantité équivalente d'électricité est de \(96500 \) coulomb.

II-3 Mise en évidence des constituants de la matière et donc de l’atome et quelques propriétés physiques (masse et charge)

II-3-1 Electron:

II-3-1-1 Expérience de Crookes et caractéristiques des rayonnements cathodiques

Tube de Crookes (ou tube à décharge, tube à gaz ou tube à cathode froide), contient un gaz résiduel (air, hélium ou néon) à très faible pression. Ce tube est simplement une ampoule de verre comportant deux électrodes à ses extrémités : une cathode métallique, en aluminium, et une anode, qui sert de cible aux électrons. Une bobine d'induction est utilisée pour fournir une haute tension de \(15000 \) volt. L'écran de vient fluorescent.

![Figure II-3](image)

Figure II-3 : Tube de l’expérience de Crookes

On met en évidence le fait que la fluorescence est due à un rayonnement cathodique constitué de particules chargées négativement ; il s’agit d’électrons.

- Un objet placé sur le trajet, forme d’une ombre sur l’écran ; le rayonnement, issu de la cathode se propage en ligne droite, ces rayonnements cathodiques ont une trajectoire rectiligne.
- Un moulin très fin, placé sur la trajectoire du rayonnement, se met en mouvement : le rayonnement est constitué de particules ayant une énergie cinétique et par conséquent une masse.
- Rayonnement est dévié par un champ magnétique ; les particules sont chargées électriquement ; le signe de leur charge est négatif. Ce sont les électrons arrachés à la cathode

II-3-1-2 Expérience de J.J.Thomson : Détermination du rapport $\frac{|e|}{m_e}$
Thomson soumet un faisceau de rayons cathodique à l’action d’un champ électrique entre les plaques du condenseur selon l’expérience suivante :

![Figure III-4 : Expérience de J.J.Thomson](image)

a) Constitutions de l’expérience

C : cathode, A : anode, F : écran fluorescent, P_1 et P_2 : plaques d’un condenseur, entre les quelles règne un champ électrique \vec{E}.

S : section des pièces polaires d’un électro-émant entre les quelles règne un champ d’induction magnétique \vec{B}.

L : domaine d’action commun aux champs \vec{E} et \vec{B}.

b) Expérience

b-1) Action du champ électrique

Le faisceau d’électrons est dévié vers la plaque positive : trajectoire (1), sous l’action de la force $F_1 = e. E = m_e \gamma : e$: charge de l’électron, m_e: sa masse, γ : accélération qui lui est communiquée par la force F_1

b-2) Action du champ magnétique

Le faisceau d’électrons est dévié vers le bas du trajectoire (2), sous l’action de la force :

$F_2 = B.e.v$ v : vitesse des électrons
CHAPITRE II : PRINCIPAUX CONSTITUANTS DE LA MATIERE

Action simultanée des champs électrique et magnétique

En combinant leurs intensités, le faisceau d’électrons peut ne pas être dévié de sa trajectoire initiale. Ceci aura lieu lorsque:
\[eE = B = \frac{E}{B} \]

c) Calcul de la valeur de \(\frac{|e|}{m_e} \)

Dans l’expérience de J.J.Thomson, on réalise la déviation d’un faisceau d’électrons à l’aide d’un champ électrique \(E \) et on mesure la déviation \(Y \) sur l’écran. La déviation du faisceau électronique est annulée par l’action d’un champ magnétique \(B \) qui agit dans le même espace que \(E \).

Le déplacement de l’électron est la supposition de deux mouvement:

- Suivant \(ox \) : mouvement rectiligne uniforme \(\gamma_x = 0, v_x = v_0 \)

\[Y_x = \frac{d^2x}{dt^2} = 0 \Rightarrow \frac{dx}{dt} = v_0 \Rightarrow x = v_0 t \Rightarrow t = \frac{x}{v_0} \]

- Suivant \(oy \) : mouvement uniforme accéléré \(\gamma_y \neq 0 \), l’électron est soumis à une force électrostatique: \(F_1 = eE = m_e y \Rightarrow \gamma_y = \frac{e}{m_e} E ; \gamma_y = \frac{d^2y}{dt^2} \Rightarrow \frac{dy}{dt} = \frac{e}{m_e} E \cdot t \Rightarrow \)

\[y = \frac{1}{2} \frac{e}{m_e} E \cdot t^2 \Rightarrow y = \frac{1}{2} \frac{e}{m_e} E \cdot \frac{x^2}{v^2} \text{ à la sortie du condenseur} : x = a ; y = Y \]

\[\Rightarrow Y = \frac{1}{2} \frac{e}{m_e} E \cdot \frac{a^2}{v^2} \Rightarrow Y = \frac{1}{2} \frac{e}{m_e} E \cdot B^2 \Rightarrow \frac{e}{m_e} = \frac{2Y.E}{a^2B^2} \]

Connaissant la vitesse des électrons et les données géométriques de l’appareil, J.J.Thomson a pu déterminer la valeur de \(\frac{e}{m_e} \), la valeur actuellement admise est:

\[\frac{e}{m_e} = 1,7589.10^{11} \text{ coulomb/ Kg quelque soit les intensités des champs} \ E \text{ et} B \]
II-3-1-3 Expérience de Millikan : Détermination de la charge $|e|$ de l’électron et déduction de sa masse

L’expérience de Millikan contient un pulvérisateur P produit des gouttelettes d’huile dans l’enceinte supérieur. Le microscope M permet de suivre l’évolution les gouttelettes lorsqu’elles ont pénétré entre les plateaux du condenseur. Un faisceau de rayons X irradiant l’espace situé entre les plateaux crée des ions qui se fixent sur les gouttelettes.

Figure II-4: Expérience de Millikan

Les forces qui s’exercent sur une gouttelette chargée :

- Forces de Stocks F_{st} qui s’opposent au déplacement de la gouttelette : $F_{st} = 6\pi \eta r v$

 v : vitesse de la gouttelette, η coefficient de viscosité de l’air, r : rayon de la gouttelette.

- Forces F_e due au champ \vec{E} régnant entre les plateaux du condenseur : $F_e = qE$

 q étant la charge portée par la gouttelette.

- Force de pesanteur P : $P = mg = \frac{4}{3} \pi r^3 \rho$ masse volumique de l’huile

 Poussé d’archimède $F_A = m'g$ (négligeable) : $\rho_{air} \ll \rho_{huile}$

 a) *En absence du champ électrique ($F_e=0$)*

 $F_{st} + \vec{P} = \vec{0}$ \implies \ $P - F_{st} = 0$ \implies $P = F_{st}$ la gouttelette va atteindre une vitesse maximale

 $v = v_0 \implies 6\pi \eta r . v_0 = \rho \frac{4}{3} \pi r^3 \implies r = \sqrt{\frac{9.\eta v_0}{2\rho g}}$
b) *Sous l’effet du champ électrique*

\[
\overline{F_{st}} + \overline{P} + \overline{F_e} = 0
\]

Le mouvement de gouttelette est une montée et atteint une nouvelle vitesse \(v\)

\[
\Rightarrow \overline{P} + \overline{F_{st}} = \overline{F_e}
\]

\[
\Rightarrow m\overline{g} + 6\pi \eta r \cdot v = q \cdot \overline{E} \quad \Rightarrow \quad q = \frac{m \cdot \overline{g} + 6\pi \eta r \cdot v}{\overline{E}}
\]

Les valeurs de \(q\) ainsi déterminé, sont toujours des multiples d’une certaine valeur \(e\) qui est la plus petite charge électrique que peut porter une gouttelette d’huile chargée.

Il s’agit de la charge électrique élémentaire \(e\) avec : \(e = 1,602 \text{.} 10^{-19} \text{ Coulomb}

Connaissant la valeur \(\frac{e}{m_e}\) et \(e\), on en déduit la masse de l’électron : \(m_e = 9,108 \text{.} 10^{-31} \text{ Kg}\)

II-3-2 Proton:

II-3-2-1 Expérience de Goldstein : mise en évidence de la charge positive du noyau

Dans un tube à décharge, on place une cathode percé des canaux. Un rayonnement est mis en évidence sur l’écran fluorescent : ce sont les rayons canaux, il s’agit d’ions positifs obtenus en arrachant des électrons aux molécules des gaz contenues dans l’enceinte. Les ions positifs attirés par la cathode et animés d’une énergie cinétique suffisante et traversent le canal et frappent l’écran fluorescent d’où la mise en évidence l’existence de particules positifs du noyau. Ce sont des protons.

Figure II-5: Expérience de Goldstein
II-3-3 Neutron:

II-3-3-1 expérience de Chadwick : mise en évidence du neutron existant dans le noyau

Il a été mis en évidence par James Chadwick (1932).

Le bombardement d'une cible de béryllium par des noyaux d'hélium émet des neutrons : \(\frac{2}{3}He + \frac{3}{4}Be \rightarrow \frac{12}{6}C^* + n \)

Ceux-ci n'ont pu être détectés que suite à leur action sur de la paraffine : cela provoquait l'expulsion de protons détectés.

Le rayon issu du béryllium n'étant pas dévié par des champs électriques et magnétiques il ne pouvait s'agir que d'un rayonnement électromagnétique ou d'un faisceau de particules neutres. Lors d'une expérience où il bombardait du béryllium avec des particules alpha, il a remarqué une radiation inconnue qui éjectait les protons du noyau. Chadwick a conclu que ces radiations étaient composées de particules de masse approximativement égale au proton mais sans charge électrique; les neutrons.

Figure II-6: L'expérience de Chadwick de la découverte du neutron
II-4 Modèle planétaire de Rutherford

II-4-1 Découverte Du noyau

II-4-1-1 Expérience de la feuille d’or

Rutherford bombarde une feuille d’or de très faible épaisseur (0,6µm) par des particules α émise par une source de radium. Les taches qui apparaissent sur un écran fluorescent lui permettent de connaître la trajectoire suivie par les particules Rutherford constate alors que la grande majorité d’entre elles traversent la feuille d’or sans être dévié, la tache lumineuse observée sur l’écran garde en effet la même intensité avec ou sans la feuille d’or. Quelques impacts concentrés montrent que quelques unes sont déviées d’autres (1 sur 20 000 à 30 0000) semblent renvoyé vers l’arrière (Figure II-7)

![Figure II-7 : L’expérience de la feuille d’or bombardé par des particules α](image)

Il a déduit que l’atome est constitué d’un noyau chargé positivement, autour duquel des électrons chargé négativement, sont en mouvement et restent à l’intérieur d’une sphère. Le noyau est 10^4 à 10^5 fois plus petit que l’atome et concentre l’essentiel de sa masse. L’atome est donc essentiellement constitué de vide

A la lumière de ces résultats Rutherford propose son modèle : La matière est rassemblée dans un noyau de très petite dimension, environ 10^{-14} m de rayon, chargé d’électricité positive. Les électrons de l’atome se déplacent autour de ce noyau tels des planètes autour du Soleil, et la force électrique attractive (la charge - de l’électron attirant la charge + du noyau) joue le rôle de la force de gravitation pour les planètes; d’où le nom de modèle d’atome planétaire. L’électron ne subit que la force électromagnétique (Figure II-8)
Donc l'existence du noyau est prouvée. Modèle planétaire de l'atome : au centre, un noyau, charge positivement et autour, des électrons négatifs qui gravitent comme les planètes autour du soleil.

Figure II-8 : atome de Rutherford (1911). Les électrons gravitent autour du noyau.

II-5 Présentation de l’atome

Les atomes sont les particules qui composent la matière. Au centre de l'atome, il y a un noyau, composé de neutrons et de protons. Autour de ce noyau se trouvent des particules en mouvement très rapide, les électrons. Dans un atome, il y a autant de protons, chargés positivement, que d'électrons, chargés négativement : un atome est électriquement neutre. Le nombre de protons est le numéro atomique Z. La somme des protons et des neutrons est le nombre de masse A.

II-5-1 L’atome

Un Atome est un ensemble électriquement neutre caractérisé par un nombre d'électrons qui gravitent autour du noyau et par un nombre de nucléons A qui constituent son noyau.

L’atome est constitué d’un noyau et d’électrons le noyau est constitué de proton et de neutrons. Chaque atome est défini par son numéro atomique, qui correspond au nombre de protons présents dans le noyau.

II-5-1-1 Nomenclature:

On convient de représenter le noyau d'un atome par le symbole: $\frac{Z}{A}$: A : nombre de protons ou nombre de masse ; Z : **Numéro de charge** ou numéro atomique (nombre atomique) Il est très important car il caractérise l’élément chimique ; X : symbole chimique de l’élément par exemple : $X = O$: oxygène, $X = Cl$: chlore.

$X = N$ azote.

Si l'on note N le nombre de **neutrons** du noyau on a : $A = Z + N$.

39
Exemple : $^{12}_{6}C ; \ 16_{8}O ; \ 1_{1}H$

II-5-2 Caractéristiques de l’atome

L’atome est composé d’un nuage électronique de 100 pm (10^{-10} m ou 1A°) ainsi que d’un noyau de 10^{3} pm (10^{-15}m), le noyau correspond à la masse de l’atome.

![Figure II-9 : L’atome dans le modèle de Rutherford](image)

II-5-2-1 Le noyau

Le noyau renferme deux types de particules :

- **Le proton** qui a une charge de $+1,60 \times 10^{-19}$ Coulomb ce qui correspond à la charge élémentaire pour une masse de $1,673 \times 10^{-27}$ Kg.
- **Le neutron** qui a pour une charge nulle pour une masse de $1,675 \times 10^{-27}$ Kg

Le noyau a une charge positive. Les neutrons et les protons constituent les nucléons qui sont maintenus ensemble par interaction forte.

L’électron un électron a une charge de $-1,60 \times 10^{-19}$ C sa charge est négative et opposé à celle du proton et une masse de $9,109 \times 10^{-31}$ Kg, il est donc 1800 fois moins lourd que le proton. La masse d’un atome est donc sensiblement la même que la masse de son noyau.

Un atome comporte autant d’électrons que de protons, sa charge globale est nulle.

II-6 Isotopie et abondance relative des différents isotopes

II-6-1 Les isotopes.

On appelle atomes isotopes les ensembles d'atomes caractérisés par le même numéro atomique Z et des nombres de nucléons A différents. Ce sont donc des ensembles d'atomes qui ne diffèrent que par le nombre de leurs neutrons.

Exemple : isotopes de carbone $^{12}_{6}C$ $^{14}_{6}C$ $^{13}_{6}C$
CHAPITRE II : PRINCIPAUX CONSTITUANTS DE LA MATIERE

II-6-1-1 L’abondance naturelle des isotopes (AN)

On désigne par abondance naturelle le pourcentage en nombre d'atomes de chacun des isotopes présents dans le mélange naturel.

Tableau : Les isotopes de plomb en fonction de leurs AN

<table>
<thead>
<tr>
<th>Isotope</th>
<th>204Pb</th>
<th>206Pb</th>
<th>207Pb</th>
<th>208Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN (%)</td>
<td>1,4</td>
<td>24,1</td>
<td>22,1</td>
<td>52,4</td>
</tr>
</tbody>
</table>

Cette abondance est équivalente à la fraction molaire de chaque isotope stable. Comme un élément est constitué d'un mélange de divers isotopes et que les proportions de ces divers isotopes sont constantes on va pouvoir définir pour chaque élément une masse molaire moyenne qui tiendra compte de sa composition :

Masse Molaire de l'élément :

$$M = \sum x_i M_i ; \sum x_i = 1$$

x_i désignant l'abondance naturelle de l'isotope i de ; masse molaire M_i

Exemple :

Soit dans l'exemple du Carbone :

On pourra assimiler les masses molaires de chacun des isotopes à leur nombre de masse.

$$M(C) = 0,9889 \times M(^{12}C) + 0,011 \times M(^{13}C)$$

$$M(C) = 0,9889 \times 12 + 0,011 \times 13 = 12,02 \text{ g mol}^{-1}$$

II-7 Séparation des isotopes et détermination de la masse atomique et de la masse moyenne d’un atome :

II-7-1 Spectrométrie de masse

Le spectromètre de masse permet de séparer et de mesurer la masse des isotopes du même élément. Il existe de nombreux types de spectromètres de masse :

- Spectromètre de masse d’ASTON
- Spectromètre de masse de DEMPSTER
- Spectromètre de masse de BAINBRIDGE

Les isotopes sont soumis à l’effet des champs électrique et magnétique

La méthode la plus pratique consiste à mesurer le rapport q/m :

q : la charge de l’isotope ; m : la masse de l’isotope
II-7-1-1 Description d’un spectromètre de masse

Appareil dans lequel des ions sont produit à partir d’un échantillon où ils seront :
-Détectés et séparés selon leur rapport (Charge/masse)
-Exprimés en fonction de leur abondance relative

II-7-1-1-1 Spectrographe de Bainbridge

Ce spectrographe comprend quatre parties :
1- La source d’ions
2- Le filtre de vitesse
3- L’analyseur
4- Le détecteur d’ions

L’application de ce spectrographe est la détermination précise des masses atomiques et concentration atomiques dans une solution.

La source d’ions : Un jet d’électrons émis par un filament chauffé ionisé positivement les atomes d’un gaz.

Le filtre de vitesse : reçoit des ions animés de vitesse différentes les ions sont soumis à l’action simultanée d’un champ électrique et d’un champ magnétique orthogonaux entre eux. Les forces appliquées sur cet ion sont :

La force électrique : $F_E = q \overrightarrow{E}$

La force magnétique : $\overrightarrow{F_m} = q \overrightarrow{v_0} \times \overrightarrow{B}$
Les ions qui sortent du filtre de vitesse ont la même vitesse

- Dans le filtre de vitesse : $F_B = F_A \Rightarrow qE = qB_0v_0 \Rightarrow v_0 = \frac{E}{B_0}$

- Dans l’analyseur les ions pénètrent de la même vitesse v_0 et décrivent des trajectoires circulaires crées par le champ magnétique \vec{B}

Figure II-11: Schéma des trajectoires circulaires des ions dans l’analyseur

$$F_m = m\gamma = m\frac{v^2}{R} = qB_0v_0 \Rightarrow R = \frac{mv_0}{qB} \Rightarrow m = \frac{RqB}{v_0}$$

- Isotope 1 : $R_1 = \frac{m_1v_0}{qB}$
- Isotope 2 : $R_2 = \frac{m_2v_0}{qB}$,
- $R_i = \frac{d_i}{2}$, $m_2 > m_1 \Rightarrow$

$$d = 2(R_2 - R_1) = \frac{2v_0}{qB}(m_1 - m_2)$$

on a :
- $m_1 = \frac{R_1qB}{v_0}$,
- $m_2 = \frac{R_2qB}{v_0}$ et $v_0 = \frac{E}{B_0}$

$$\Rightarrow \frac{q}{m} = \frac{E}{R.B.B_0}$$

- $M_1 = m_iN_A$, M_i: masse moléculaire , m_i masse de l’isotope ; N_A : nombre d’Avogadro

$$\Rightarrow M_1 = \frac{N_AqBR_1}{v_0}, \quad M_2 = \frac{N_AqBR_2}{v_0}$$

Le détecteur d’ions : L’ion ainsi dévié impressionne la plaque photographique où est détecté par une électrode qui joue le rôle de collecteurs d’ions

II-8 Energie de liaison d’un noyau

II-8-1 Défaut de masse d’un noyau

On considère, en mesurant la masse des noyaux, que la masse atomique au repos est toujours inférieure à la somme des masses des nucléons qui le constituent pris séparément au repos. Pour le noyau $\frac{A}{2}X$ on a, quel que soit le noyau :
CHAPITRE II : PRINCIPAUX CONSTITUANTS DE LA MATIERE

\[m_{\text{noyau}} < Z \cdot m_p + (A - Z) m_n \]

Où \(m_p \) est la masse d’un proton et \(m_n \) celle de neutron.

La quantité : \(\Delta m = Z \cdot m_p + (A - N) m_n - m_{\text{noyau}} \) est toujours positive. On lui donne le défaut de masse du noyau considéré.

Exemple : considérons un noyau d’hélium \({^4}_2He \) : il contient 2 protons et 2 neutrons. Sa masse, \(m_{\text{noyau}} = 6,6447 \cdot 10^{-27} \text{ Kg} \).

La masse totale des nucléons qui le constituent est :
\[2m_p + 2m_n = 2 \times 1,6726 \cdot 10^{-27} + 2 \times 1,6750 \cdot 10^{-27} = 6,6952 \times 10^{-27} \text{ Kg} \]

Lors de la transformation :
\[2p + 2n \rightarrow {^4}_2He \]

Il existe donc une variation de masse \(\Delta m \) (masse finale – masse initiale) :
\[\Delta m = -5,05.10^{-29} \text{ Kg} \]

Le défaut de masse du noyau d’hélium est donc \(|\Delta m| = +5,05.10^{-29} \text{ Kg} \).

Ce défaut de masse, bien que très petit, est à l’origine de l’énergie liant les nucléons d’un noyau

II-8-2 L’énergie de liaison

Dans sa théorie de la relativité restreinte de A.Einstein a montré que la masse est une forme de l’énergie. Cela signifie que tout système matériel de masse \(m \), au repos une énergie, encore appelé énergie de masse tel : \(E = m \cdot c^2 \)

Où \(c \) est la vitesse de la lumière dans le vide : \(c = 3.10^8 \text{ m/s} \)

C’est la relation d’Einstein traduisant l’équivalence entre la masse et l’énergie

Nous pouvant donc attribuer une énergie de masse \(E \) à un noyau de masse \(m \) :
\[E = m_{\text{noyau}} c^2 \] et une énergie de masse \(E’ \) aux nucléons séparés de ce noyau
\[E’ = [Z \cdot m_p + (A - Z) m_n] c^2 \]

Puisque \(m_{\text{noyau}} < Z \cdot m_p + (A - Z) m_n \), on a : \(E < E’ \); l’énergie de masse du noyau est inférieur à celle des nucléons séparés.
La conservation de l’énergie implique qu’une nouvelle énergie E_l est apparue, telle que $E+E_l = E'$ soit $E_l = E'-E > 0$

Cette énergie E_l assure la cohésion du noyau ; elle est appelée **énergie de liaison du noyau**

$$E_l = \Delta mc^2 = [Z.m_p+(A-N).m_n - m_{noyau}]c^2$$

L’énergie de liaison d’un noyau E_l est l’énergie qu’il **faut fournir** à un noyau $\frac{A}{2}X$ aux repos pour le **dissocier** en nucléons isolés et immobiles

Exemple :

L’énergie de liaison de l’hélium $\frac{4}{2}He$ vaut :

$$E_l = \Delta mc^2 = 5,05.10^{-29} (3 .10^8)^2 = 4,545.10^{-12} \text{ J} \quad \text{Ou} \quad E_l = \frac{4,545.10^{-12}}{1,60.10^{-19}} = 2,84.10^{7} \text{ eV}$$

= 28,4 MeV. Il faut donc fournir une énergie de 28,4 MeV au noyau $\frac{4}{2}He$ pour dissocier ses nucléons

II-8-3 Énergie de cohésion des noyaux

Si on considère la formation d’un noyau d’hélium (He) à partir des nucléons selon la réaction:

$$2\frac{1}{2}P + 2\frac{1}{2}n \rightarrow \frac{4}{2}He$$

Cette réaction s’accompagne d’une perte de masse Δm qui se transforme en énergie ΔE (conservation de la matière) : $\Delta E = -E_l = \Delta mc^2$; Avec : E_l : énergie de formation (toujours négative) $\Delta m = m_{finale} - m_{initiale}$

C : célérité (vitesse) de la lumière $= 3 \times 10^8 \text{ m/s}$. On définit l’énergie de cohésion ($\Delta E = -E_l$) comme étant l’énergie nécessaire pour détruire un noyau en neutrons et en protons (elle est toujours positive).

II-7-3-1 Unité de l’énergie de cohésion

Les principales unités utilisées sont : le joule, l’eV (1 eV=$1,6.10^{-19}$ J) et le MeV (1 MeV=10^6 eV).

L’électron volt est l’énergie d’un électron soumis à une différence de potentiel (ddp) de 1 volt (1eV=$1,6.10^{-19}$ Jx1V=$1,6.10^{-19}$ J).
II-9 Stabilité des noyaux : Détermination de l’énergie de cohésion par nucléon

II-9-1 L’énergie de liaison par nucléon

La stabilité de noyaux est mesuré par l’énergie de cohésion par nucléon (en MeV) qui est défini par la relation: \(\Delta E'(\text{MeV/nucléon}) = -\frac{\Delta E}{A} = \frac{E_l}{A} \). Plus \(\Delta E' \) est grande, plus le noyau est stable. L’énergie de cohésion par nucléon \(-\frac{\Delta E}{A} \) est inférieure à 8,9 MeV quelque soit l’élément considéré.

Pour comparer la stabilité de différents noyaux, il en effet confronter les énergies de liaison par nucléon, soit \(E_l/A \).

L’énergie de liaison par nucléon \(E_l/A \) d’un noyau est le rapport de l’énergie du noyau par son nombre de masse \(A \). On l’exprime en MeV/nucléon.

Un noyau est autant plus stable que son énergie de liaison par nucléon est élevée.

Exemple : \(^{56}\text{Fe} : 8,79\ \text{MeV/ nucléon.}\)

\(^{238}\text{U} : 7,57\ \text{MeV/ nucléon.}\)

Le fer (\(^{56}\text{Fe}\)) est plus stable que l’uranium (\(^{238}\text{U}\))

II-9-1-1 Variation de l’énergie de liaison par nucléon avec le nombre de masse \(A \):

La courbe d’Aston

Lorsqu’on étudie les valeurs numériques de l’énergie de liaison par nucléon \(E_l/A \) en fonction de \(A \) pour l’ensemble des nucléides, on obtient les résultats suivantes :

- Pour \(1 < A < 20 \) \(E_l/A \) augmente avec \(A \), de manière discontinue, de 1MeV par nucléon à 8 MeV par nucléon (valeurs approximatives)

- Pour \(20 < A < 190 \) \(E_l/A \) devient, de nouveau inférieur à 8 MeV/nucléon et décroit lorsque \(A \) augmente.

Ces résultats nous montrent :

1- L’énergie de liaison par nucléon des noyaux stables est supérieure à 8 MeV/nucléon

2- Les noyaux stables sont ceux dont le nombre de masse : \(20 < A < 190 \)

La courbe Figure II-12, appelée courbe d’Aston, représente les variations de \(-E_l/A \) en fonction de \(A \). Les noyaux les plus stables, qui ont les plus grandes valeurs de \(E_l/A \), apparaissent dans la partie la plus basse de la courbe.

L’allure de la courbe d’Aston permet d’envisager deux façons de faire diminuer l’énergie de masse d’un système, donc de faire apparaître de l’énergie sous une forme susceptible d’être exploitée.
Lorsque deux noyaux légers et instables, de nombre de masse $A < 20$, s’associent pour former un noyau plus lourd, celui-ci est plus stable que le système formé par les deux noyaux plus lourd, celui-ci est plus stable que le système formé par les deux noyaux légers, car il ya augmentation de l’énergie moyenne de liaison par nucléon. C’est le phénomène de la **fusion nucléaire**.

De même, lorsqu’un noyau lourd et instable, de nombre de masse $A > 190$ se fragmente pour donner des noyaux plus légers, le système formé par ces noyaux plus légers est plus stable que le noyau lourd initial, car il ya augmentation de l’énergie moyenne de liaison par nucléon. C’est le phénomène de la **fission nucléaire**.

La courbe d’Aston ($-E_l/A$) en fonction du nombre de masse (A), représentée par la figure II-12. Cette courbe permet de visualiser facilement les noyaux les plus stables. Ceux-ci correspondent aux plus basses valeurs de $-E_l/A$ de la courbe.

![Figure II-12 : Courbe d’Aston](image)

- Les atomes dont l’énergie de liaison moyenne est faible ($E_l/A < 7,5$ MeV) tendent à se stabiliser et à se rapprocher de la zone de stabilité maximale vers $58 < Z < 80$
- Deux processus différents sont possibles:
 - Les atomes légers donnent des réactions nucléaires de fusion et les atomes lourds des réactions de fission.

II-9-1-2 Stabilité et nombre de nucléons : courbe nombre de neutrons = f (Z : nombre de protons)

La courbe de stabilité des nucléides indique l’allure du nombre de neutrons en fonction du nombre de protons pour les quelque 1500 nucléides stables connus. En principe les noyaux stables entourent la courbe de près tandis que les noyaux radioactifs s’en écartent davantage. Les noyaux ont tendance à se rapprocher de la courbe de stabilité par l’émission de rayonnements radioactifs.
Figure II-13 : Diagramme de stabilité neutron en fonction du nombre de proton $N = f(Z)$

Ce diagramme peut être résumé comme suite :

Augmentation de Z et N, on s’éloigne de la première bissectrice

Augmentation de Z on aura des noyaux stables $N > Z$

- **Noyaux instables par excès de protons**

Sous la ligne de stabilité

- Réaction nucléaire interne

 $1p \rightarrow 1n$

émission de particules β^+ (positon)

- **Noyaux instables par excès de neutrons**

Au dessus de la ligne de stabilité

- Réaction nucléaire interne

 $1n \rightarrow 1p$

émission de particules β^- (émission d’un électron)

- **Noyaux lourds $A > 140$**

Excès de nombre de neutron N et de masse Z

- fission spontanée avec émission de particule α (noyau d’hélium He)
CHAPITRE III: RADIOACTIVITÉ-REACTIONS NUCLEAIRES
III-Introduction

Découverte par Henri Becquerel en 1896

Les noyaux de certains atomes sont susceptibles de transformations, appelées transmutations. Il y a passage d’un élément à un autre présentant des propriétés physiques et chimiques différentes. Les transmutations peuvent être :

Spontanées (naturelles) : désintégrations radioactives

Provoquées : réactions nucléaires

III-1 Radioactivité naturelle

Il existe certaines substances naturelles comme l’uranium (U) ou le radium (Ra) qui se désintègrent spontanément en émettant de rayonnement capables d’ioniser un gaz ou d’impressionner une plaque photographie. Ce rayonnement ne peut être modifié par aucune intervention des paramètres extérieurs comme la température et la pression. Ce qui le caractérise d’une réaction chimique. Le radioisotope instable subit une transformation spontanée en émettant des particules conduisant à la formation d’un nouveau isotope stable mais le plus souvent, le noyau formé se désintègre à son tour se qui rend que les substances radioactives sont des mélanges des isotopes radioactifs.

III-2 Loi de Soddy et Fajans

Dans une transformation radioactive il y a conservation du nombre total de nucléons et de la charge globale.

\[^{\frac{4}{2}}X \rightarrow ^{\frac{A-4}{Z-2}}Y + ^{\frac{4}{2}}He \]

III-3 Rayonnements radioactifs :

III-3-1 Rayonnement α

Les noyaux émetteurs α (noyau d’hélium) ont des nombres de masse et de charge élevés (A > 200 ; Z > 82) ; ce sont des noyaux trop lourds et donc instables et possède une basse énergie de liaisons. La désintégration α permet la transformation de ces nucléides en nucléides plus légers avec une énergie de liaison plus forte.

\[^{\frac{4}{2}}X \rightarrow ^{\frac{A-4}{Z-2}}Y + ^{\frac{4}{2}}He \]

Exemple : le thorium 232 est émetteur de particule α (hélium)

\[^{232}_{90}Th \rightarrow ^{228}_{90}Ra + ^{4}_{2}He \]
Le rayonnement α est très ionisant donc dangereux, très énergétique et peu pénétrant sont arrêtées par quelques centimètres d'air ou par une feuille de papier.

III-3-2 Rayonnement β⁻

Ce rayonnement concerne les isotopes qui possèdent un excès de neutrons. De tels noyaux cherchent à se stabiliser en augmentant le nombre de protons et en diminuant le nombre de neutrons. Un processus interne crée l'électron à partir des nucléons lequel électron est éjecté. Ce processus est la conversion d’un neutron en protons.

\[
\frac{1}{0}n \rightarrow -\frac{0}{1}e + \frac{1}{1}p
\]

Le nombre de masse du noyau émetteur ne changera pas mais le numéro atomique, égale au nombre de protons, augmentera d’une unité

Exemple : \(^{14}_{6}C \rightarrow ^{14}_{7}N - \frac{0}{1}e \)

Le rayonnement β⁻ est très ionisant, pénétrant. Elles sont arrêtées par quelques millimètres d'aluminium.

III-3-3 Rayonnement β⁺

Cette forme de radioactivité concerne les isotopes instables qui possèdent un excès de protons ces noyaux cherchent à se stabilisés en augmentant le nombre de neutrons et en diminuant le nombre de protons. De tels nucléides transforment un neutron en un proton en émettant un positon qui n’existe pas dans le noyau, est tout de même expulsé du noyau

\[
\frac{1}{1}p \rightarrow \frac{1}{0}n + \frac{0}{1}e
\]

Exemple : \(^{30}_{15}P \rightarrow ^{30}_{14}Si + \frac{0}{1}e \) (β⁺)

III-3-4 Rayonnement γ

Les particules β⁺ont une durée de vie très courte. Lorsqu’elles rencontrent un électron, les deux particules s’annulent pour donner de l’énergie sous forme d’un rayonnement électromagnétique suivant le bilan:

\[-\frac{0}{1}e + \frac{0}{1}e \rightarrow \gamma.\]

- L’émission γ, est l’émission d’un rayonnement électromagnétique.

Le noyau est en général obtenu dans un état excité (Y*) niveau d'énergie élevé de très courte longueur d’onde (\(\lambda < 1A° \)). Ce noyau obtenu ne reste pas dans cet état instable. Il se désexcite en évacuant cette énergie excédentaire en émettant un rayonnement électromagnétique γ (particules sans masse très énergétique appelées photons). \(Y^* \rightarrow Y + \gamma \).
Exemple: Le baryum un noyau instable (excité) $^{137}_{56}\text{Ba}^* \rightarrow ^{137}_{56}\text{Ba} + \gamma$.

Les rayonnements γ sont très pénétrants et pas ionisants

III-4 Les familles radioactives naturelles

Les familles radioactives sont des radioéléments avec filiation. On connaît quatre (03) radioéléments naturels générateurs d’une série ou famille radioactive ; le long d’une série, l’évolution du noyau se fait par transformations successives qui aboutissent à un élément stable, terme final de la famille. Dans chacune de ces trois familles, on aboutit à un isotope stable de Pb: $^{206}_{82}\text{Pb}$ ou $^{207}_{82}\text{Pb}$ ou $^{208}_{82}\text{Pb}$

Famille de l’uranium 235

$^{235}_{92}\text{U} \xrightarrow{5\beta} ^{207}_{82}\text{Pb}$

Famille du thorium

$^{232}_{90}\text{Th} \xrightarrow{6\alpha} ^{208}_{82}\text{Pb}$

Exemple : Famille de l’uranium 238

$^{238}_{92}\text{U} \rightarrow ^{234}_{91}\text{Pa}$

$^{234}_{91}\text{Pa} \rightarrow ^{230}_{90}\text{Th}$

$^{230}_{90}\text{Th} \rightarrow ^{226}_{88}\text{Rn}$

$^{226}_{88}\text{Rn} \rightarrow ^{222}_{86}\text{Rn}$

$^{222}_{86}\text{Rn} \rightarrow ^{218}_{84}\text{Po}$

$^{218}_{84}\text{Po} \rightarrow ^{214}_{82}\text{Pb}$

Stable

$^{206}_{82}\text{Pb}$

$^{210}_{84}\text{Po}$

$^{210}_{83}\text{Bi}$

$^{214}_{82}\text{Pb}$

$^{214}_{84}\text{Po}$

$^{214}_{83}\text{Bi}$
III-5 Radioactivité artificielle et les réactions nucléaires

La transmutation a été découverte par Irène et frédéric Joliot-Curie elle permet de transformer un noyau à un autre noyau par capture de divers particules (n,p, α)

Les réactions de transmutations provoquées sont appelées réactions nucléaires. Elles sont obtenues en bombardant les noyaux de certains atomes à l’aide de particules convenables tel que : les neutrons, les protons les hélions (hélium (α)) l’ensemble de ces réactions dites artificielle peuvent être divisés en trois groupes : les transmutations ; les réactions de fission et les réactions de fusion.

Comme pour la radioactivité naturelle, dans les réactions nucléaires, la charge totale et le nombre de nucléons se conserve. La quantité d’énergie libérée d’une mole d’atomes est énorme.

III-5-1 Transmutation par Hélium

III-5-1-1 Libération de proton : réaction (α, p)

\[\frac{2}{3}X + \frac{4}{2}He \rightarrow \frac{2}{2}+\frac{3}{3}Y + \frac{1}{1}H \]

Exemple :

\[^{14}_3N + ^2_2He \rightarrow \frac{1}{1}H + ^{17}_8O \] ou bien : \[^{14}_3N(\alpha,p), ^{17}_8O \] (écriture abrégée)

Cet exemple constitue la première réaction nucléaire réalisée par Rutherford elle lui a permis de découvrir le proton en 1919

III-5-1-2 Libération de neutrons : réaction (α, n)

\[\frac{2}{3}X + \frac{4}{2}He \rightarrow \frac{2}{2}+\frac{3}{3}Y + \frac{1}{1}n \]

Exemple : \[^{27}_13Al + ^2_2He \rightarrow ^{30}_15P + \frac{1}{1}n \]

La radioactivité artificielle a ainsi été découverte et a valu un prix nobel à I. et F. Joliot-Curie en 1935

Exemple : \[^9_4Be + ^4_2He \rightarrow \frac{1}{1}n + ^{12}_6C \] ou bien : \[^9_4Be (\alpha,n), ^{12}_6C \] (écriture abrégée)

Cette réaction nucléaire a permis la découverte du neutron par James Chadwick en 1932

III-5-1-3 Réaction sans capture

Dans certains réactions les rayonnements α provoquent l’émission de protons sans s’incorporer au noyau ils agissent comme des simples transporteurs d’énergie
Exemple : $^{10}_3B + \frac{4}{2}He \rightarrow \frac{1}{2}H + \frac{4}{2}Be + \frac{4}{2}He$

III-5-1-4 Transmutation par Capture de protons

$\frac{4}{2}X + \frac{1}{2}H \rightarrow \frac{4+1}{2+1}Y$

Exemple : $^{27}_{13}Al + \frac{1}{2}H \rightarrow ^{29}_{14}Si$

On obtient ainsi du phosphore 30 radioactif de type β^+

III-5-1-4-1 Emission d’hélium : réactions (p, α)

$\frac{4}{2}X + \frac{1}{2}H \rightarrow \frac{4-2}{2-1}Y + \frac{4}{2}He$

Exemple : $^{19}_9F + \frac{1}{2}H \rightarrow \frac{4}{2}He + ^{16}_8O$ ou bien : $^{19}_9F (P, \alpha), ^{16}_8O$ (écriture abrégée)

III-5-1-4-2 Emission de neutrons : réactions (p, n)

$\frac{4}{2}X + \frac{1}{2}H \rightarrow z\frac{4}{5}Y + \frac{1}{0}n$

Exemple : $^{63}_{29}Cu + \frac{1}{2}H \rightarrow ^{63}_{30}Zn + \frac{1}{0}n$

III-5-1-4-3 Réaction (p, D)

sont rarement observées

$\frac{4}{2}Be + \frac{1}{2}H \rightarrow \frac{8}{4}Be + \frac{2}{1}H$ ou bien : $\frac{8}{4}Be (P, D), \frac{8}{4}Be$ (écriture abrégée)

III-5-1-5 Transmutation par neutrons :

Les neutrons n’étant pas chargés, ils ne sont pas repoussés par les noyaux , il constitues alors les projectiles de choix. Les neutrons utilisés sont généralement fournis par les réactions nucléaires.

III-5-1-5-1 Captures de neutrons :

$\frac{4}{2}X + \frac{1}{0}n \rightarrow \frac{4+1}{2+1}Y$

Exemple : $^{16}_{10}B + \frac{1}{0}n \rightarrow ^{11}_{8}B$

III-5-1-5-2 Emission de protons : Réactions (n, p)

$\frac{4}{2}X + \frac{1}{0}n \rightarrow z\frac{4}{5}Y + \frac{1}{1}H$

Exemple : $^{32}_{16}S + \frac{1}{0}n \rightarrow ^{32}_{16}P + \frac{1}{1}H$

III-5-1-5-3 Réaction de fission nucléaire

La fission est une réaction nucléaire provoquée où un noyau cible lourd peu stable se scinde en deux noyaux plus stables sous l’impact d’un neutron. C’est ce qui est utilisé dans les centrales nucléaires. La fission nucléaire correspond à la cassure d’un noyau lourd en deux noyaux plus légers excités, ceux-ci pouvant à leur tour se scinder. Les
centrales nucléaires actuelles sont fondées sur la fission de noyaux d’uranium qui s’accompagne d’un grand dégagement d’énergie.

Exemple : fission de l’uranium 235

\[\frac{235}{92}U + \frac{1}{0}n \rightarrow \frac{97}{35}Br + \frac{146}{59}La + 3 \frac{1}{0}n \]

L’énergie libérée par un atome d’uranium vaut 160 Mev, soit 1,54 \(10^{13}\) j.mol\(^{-1}\).

L’ordre de grandeur des énergies de combustion est de 10\(^6\) j.mol\(^{-1}\).

Le noyau fissile est scindé en deux noyaux plus légers sous l’impact d’un neutron. Simultanément se produit la libération de deux ou trois neutrons qui peuvent provoquer à leur tour des fissions, provoquant une réaction en chaîne, qu’il faut bien entendu contrôler.

III-5-1-6 Réaction de Fusion nucléaire

La fusion est une réaction nucléaire provoquée où deux noyaux légers peu stables s’associent en un noyau plus stable. Elle correspond à la réunion de deux noyaux légers en un noyau plus lourd avec perte de masse et libération d’une grande quantité d’énergie. Cette réaction est empêchée par la répulsion électrique qui s’exerce sur les deux particules qui ne peuvent s’approcher l’une de l’autre pour fusionner.

La fusion nucléaire doit se produire dans un matériau dense pour que suffisamment d’atomes puissent fusionner et fournir une quantité d’énergie significative. Pour cela, il faut élever la température du matériau pour que les particules atteignent une énergie suffisante de façon à vaincre la barrière de répulsion électrique. Ce procédé est appelé fusion thermonucléaire. Ces températures doivent être de l’ordre de celle du soleil (1,5 \(10^7\) K).

La réaction de fusion nucléaire produit plus d’énergie que la fission. Ces réactions se produisent dans le soleil.

Exemples :

\[\frac{2}{3}H + \frac{3}{2}H \rightarrow \frac{1}{0}n + \frac{3}{2}He \]

\[\frac{2}{3}H + \frac{2}{3}H \rightarrow \frac{1}{1}H + \frac{3}{2}H \]

Le soleil est un exemple de réacteur thermonucléaire. Les recherches actuelles portent sur la fusion contrôlée, le combustible (l’hydrogène) est abondant sur Terre, l’énergie libérée serait plus importante et le produit essentiellement obtenu l’hélium non dangereux.
CHAPITRE III : RADIOACTIVITE-REACTIONS NUCLEAIRES

Exemple : $^1_2H \rightarrow ^4_2He + ^0_1e$

La maîtrise des réactions de fusion nucléaire en vue de produire de l’électricité est un vrai défi technologique (les températures doivent atteindre des millions de degrés : projet européen ITER de Tokamak ou de fusion laser aux USA).

III-6 Cinétique de la désintégration radioactive :

III-6-1 Loi de décroissance radioactive

On considère un échantillon contenant N noyaux radioactifs (non désintégrés) à un instant t.

Ce nombre est noté N₀ à l’instant t₀ = 0s pris comme instant initial.

- Pendant une durée Δt très brève, un certain nombre de noyaux radioactifs se sont désintégrés.
 Soit N+ΔN le nombre de noyaux radioactifs non désintégrés à la date t+Δt. (ΔN < 0 car N diminue)
- Le nombre moyen (phénomène aléatoire) de noyaux désintégrés pendant la durée Δt est : $N_t - N_{t+Δt} = N - (N + ΔN) = -ΔN > 0$

Ce nombre moyen de désintégrations pendant la durée Δt est proportionnel :
- Au nombre N de noyaux radioactifs présents dans l’échantillon à la date t.
- À la durée Δt. (Si Δt est petit par rapport à t, si Δt double alors le nombre de désintégrations qui se produisent, double aussi). On a donc :

 $ΔN = λNΔt = \text{nombre de désintégrations pendant la durée } Δt \text{ où } λ \text{ est la constante radioactive, caractérisant un radioélément.}$

 $-\frac{ΔN}{dt} = λN \quad , \quad λ \text{ s’exprime en } s^{-1}$

 Par définition, la dérivée de la fonction N(t) par rapport au temps est :

 $N'(t) = \frac{dN}{dt} = \lim_{Δt→0} \frac{ΔN(t)}{Δt} \text{ Si t tend vers 0, la relation devient :}$

 $-\frac{dN}{N} = λdt \text{ par intégration de cette équation on obtient :}$

 $N(t) = N_0e^{λt} \quad : N_0 \text{ le nombre initial d’atomes radioactifs}$
III-6-2 La constante radioactive λ.

Pour un type de noyau donné la constante radioactive λ est la proportion des noyaux qui se désintègrent par unité de temps :

$$\lambda = \frac{1}{N(t)} \frac{\Delta N(t)}{\Delta t}$$

Tableau III-1: Quelques radioéléments et leurs constante radioactive λ.

<table>
<thead>
<tr>
<th>noyau radioactif</th>
<th>uranium 238</th>
<th>Carbone 14</th>
<th>Césium 137</th>
<th>Iode 131</th>
</tr>
</thead>
<tbody>
<tr>
<td>constante radioactive λ</td>
<td>1.5×10^{-10} an$^{-1}$</td>
<td>1.2×10^{-4} an$^{-1}$</td>
<td>2.3×10^{-2} an$^{-1}$</td>
<td>8.5×10^{-2} an$^{-1}$</td>
</tr>
</tbody>
</table>

III-6-3 Activité radioactive A

L'activité A d'une source radioactive est égale au nombre moyen de désintégrations par seconde dans l'échantillon.

$$A = \frac{N_{désintégration}}{dt} = -\frac{\Delta N}{\Delta t} , \text{ L'activité } A > 0$$

Elle s'exprime en becquerels (Bq), désintégration par seconde, désintégration par minute dpm (1Bq = 1 désintégration par seconde (dps)).

Le curie (Ci) est une autre unité de mesure d'activité utilisée. Il correspond à l'activité de 1,0g de radium et vaut 3.7×10^{10}Bq).

$$A = \frac{\Delta N}{dt} = \lambda N = \lambda N_0 e^{-\lambda t} = A_0 e^{-\lambda t} \Rightarrow A = A_0 e^{-\lambda t} \text{ avec } A_0 = \lambda N_0$$

III-6-4 La période radioactive ou temps de demi vie T (ou $t_{1/2}$)

La demi-vie radioactive, notée $t_{1/2}$, d'un échantillon de noyaux radioactifs est égale à la durée nécessaire pour que, la moitié des noyaux radioactifs présents initialement dans l'échantillon se désintègrent.
CHAPITRE III : RADIOACTIVITÉ-REACTIONS NUCLEAIRES

Figure III-1 : Courbe de désintégration radioactive

Au bout de cette durée (T), le nombre de noyaux radioactifs est égal à la moitié du nombre initial de noyaux.

\[N_t = \frac{N_0}{2} = N_0 e^{\lambda t} \Rightarrow \frac{1}{2} = e^{\lambda T} \]

\[T = \frac{ln \frac{N_0}{2}}{\lambda} \approx \frac{0.693}{\lambda} \text{ temps de demi-vie radioactive ou période} \]

La demi-vie radioactive est une caractéristique de chaque type de noyau radioactif, elle ne dépend que de la constante radioactive \(\lambda \)

Tableau III-2 : Quelques radioéléments et leurs périodes

<table>
<thead>
<tr>
<th>Radionucléide père</th>
<th>Radionucléide fils</th>
<th>Période (année)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{238}\text{U})</td>
<td>(^{206}\text{Pb})</td>
<td>(4.47 \times 10^9)</td>
</tr>
<tr>
<td>(^{232}\text{Th})</td>
<td>(^{208}\text{Pb})</td>
<td>(1.4 \times 10^{10})</td>
</tr>
<tr>
<td>(^{235}\text{U})</td>
<td>(^{208}\text{Pb})</td>
<td>(7.04 \times 10^8)</td>
</tr>
<tr>
<td>(^{14}\text{C})</td>
<td>(^{14}\text{N})</td>
<td>(5.73 \times 10^3)</td>
</tr>
<tr>
<td>(^{40}\text{K})</td>
<td>(^{40}\text{Ar})</td>
<td>(1.25 \times 10^9)</td>
</tr>
<tr>
<td>(^{87}\text{Rb})</td>
<td>(^{87}\text{Sr})</td>
<td>(50 \times 10^9)</td>
</tr>
</tbody>
</table>

III-7 Applications de la radioactivité :

- Traceurs radioactifs pour le contrôle de nombreux procédés de fabrication industriels.
- Domaine de l’armement : missiles nucléaires, bombe atomique, etc…
- Source d’énergie (production de l’électricité)
- Médecine (l’iode radioactif est utilisé dans l’examen scintigraphique (suivi d’un marqueur radioactif dans l’organisme) de la thyroïde, irradiations de tumeurs, etc…)

58
Carbone 14 pour la datation d’objets anciens (jusqu’à environ 40 000 ans).

III-7-1 Principe de la datation

Le carbone 14 dont la demi-vie est de 5730 ans est constamment produit dans l’environnement sous l’effet des particules cosmiques qui interagissent avec les noyaux atomiques de la haute atmosphère en produisant des neutrons suivant la réaction :

\[^{14}N + ^{0}n \rightarrow ^{14}C^* + ^{1}H \]

Le radiocarbone ou \(^{14}C\) se mêle entièrement au carbone ordinaire présent dans l’environnement et est absorbé par tous les organismes vivants.

Dans un organisme vivant l’absorption de \(^{14}C\) et sa désintégration par unité de temps et de masse s’équilibre naturellement l’activité de \(^{14}C\) est constante (15,3 dpm et par gramme de carbone total noté dpm.g\(^{-1}\)). Une fois qu’un organisme meurt, l’absorption de carbone cesse et le rapport du radiocarbone ou carbone ordinaire décroît progressivement à cause de la désintégration du carbone 14.

Par la mesure de proportion de l’activité de \(^{14}C\) ou la mesure de l’activité A de désintégration par unité de temps et de masse (en dpm) qui est proportionnel au nombre de nucléides N et en utilisant la loi de désintégration, on en déduit l’âge de l’échantillon :

\[A = A_0e^{-\lambda t} \]

Exemple :

On a prélevé des échantillons de charbon provenant d’une mine ancienne. Le taux de désintégration obtenu est de 9,65 dpm.g\(^{-1}\). Sachant que la période du carbone 14 est de 5730 années, l’âge de ces échantillons est :

\[t = \frac{T}{ln2}xln\left(\frac{A_1}{A_0}\right) = \frac{5730}{ln2}xln\left(\frac{9.65}{15.3}\right) = 3810 \text{ années} \]

III-8 Dangers de la radioactivité

La dose est la grandeur qui permet d’évaluer le risque sanitaire que représente un rayonnement ionisant.

La densité d’ionisation est plus élevée avec des rayons alpha et des neutrons qu’avec des rayons bêta et gamma. Une densité d’ionisation élevée est biologiquement plus nocive qu’une densité d’ionisation faible. C’est pourquoi les rayons alpha sont plus nocifs que les rayons bêta ou gamma.

Cette grandeur tient compte de l’énergie absorbée, du type de rayonnement, de la sensibilité différente des organes affectés et donc aussi de la répartition de l’irradiation dans le corps. L’effet biologique dépends également de la densité des ionisations lors de la pénétration des rayons à travers le tissu des organes.
particulièrement sensibles aux rayons tel que la moelle osseuse rouge, poumon, estomac, intestin
CHAPITRE IV: STRUCTURE ELECTRONIQUE DE L’ATOME
IV-1 Introduction

Le modèle actuel de l’atome est un modèle simple constitué d’un noyau autour du quel gravitent des électrons qui forment un nuage électronique. La masse de la matière est essentiellement concentrée dans le noyau et ce noyau est 100000 fois plus petit que l’atome. Donc le reste est vide: la matière est lacunaire. Il est nécessaire d’élaborer un modèle pour pouvoir expliquer différents phénomènes et en prévoir les conséquences. Celles-ci soumis à des l’expérience, permettant de valider le modèle, de l’améliorer ou de le rejeter. Cependant il n’est pas toujours nécessaire d’utiliser le modèle le plus complexe pour expliquer de façon simple un certain nombre d’observations. Il suffit d’en connaitre les limites. Le modèle atomique a évolué au fur et à mesure de l’apparition de phénomènes inexplicables par le modèle précédent Il aura fallu l’intervention de nombreux savants avant que le modèle de l’atome ne devienne satisfaisant. Nous allons suivre son évolution au cours de temps.

IV-2 Dualité onde-corpuscule

On distingue en physique classique deux concepts en apparence disjoints : onde et corpuscule. Les corpuscules sont des petits « grains » de matière, localisés dans l’espace et possédant des trajectoires définies. Tout au long de sa trajectoire, position et vitesse du corpuscule peuvent être connues. Les ondes, pour leur part, ne sont pas localisées. Elles ont une étendue spatiale et n’ont pas une trajectoire à proprement parler ; elles ne transportent pas de matière mais information, quantité de mouvement et énergie.

IV-2-1 Aspect ondulatoire de la lumière: onde électromagnétique ou lumineuse et spectre électromagnétique

Afin d’interpréter correctement les observations relatives au spectre d’émission de l’atome d’hydrogène, des connaissances concernant la structure ondulatoire de la lumière sont nécessaires. La lumière est une onde plane électromagnétique progressive (champ électrique \(\vec{E} \) et champ magnétique \(\vec{B} \) dépendant de l’espace et du temps). Ces vecteurs, eux-mêmes orthogonaux, sont perpendiculaires à la direction de propagation (FigureIV-1). Le rayonnement lumineux est caractérisé par :

- Son énergie \(E \) (en J)
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

• Sa longueur d’onde\(\lambda \) (en m), ou période spatiale (il s’agit de la longueur, à un temps fixé, au bout de laquelle l’onde se répète identique à elle-même.

On utilise parallèlement le nombre d’onde \(\sigma \) défini par : \(\sigma = \frac{1}{\lambda} \) et exprimé en m\(^{-1}\).

• Sa période \(T \) (en s), ou période temporelle il s’agit du temps, à position fixée, au bout duquel l’onde se répète identique à elle-même. On utilise parallèlement la fréquence de l’onde, définie par : \(\nu = \frac{c}{\lambda} \) et exprimée en hertz (Hz) ou s\(^{-1}\) lorsque \(T \) est exprimée en secondes.

Figure IV-1 : Caractère ondulatoire de la lumière

Nous avons les relations suivantes, liant énergie d’un rayonnement lumineux, fréquence, période et longueur d’onde :

\[E = h \nu \]

\(E \) est l’énergie exprimée en joules (en J), \(\nu \) est la fréquence en hertz (Hz) et \(h \) est la constante de Planck, \(h = 6,62 \times 10^{-34} \text{ J.s} \).

La distance (en mètres m) parcourue par la lumière durant une période \(T \), à la vitesse \(c \) (célérité de la lumière dans le vide, \(c = 3 \times 10^8 \text{ m.s}^{-1} \)) est égale à la longueur d’onde.

On retiendra donc :

\[\lambda = cT = \frac{c}{\lambda} \]

et par conséquent

\[E = \frac{hc}{\lambda} \]

La nature même du rayonnement électromagnétique dépend de la longueur d’onde et donc de l’énergie véhiculée. Le rayonnement visible possède une longueur d’onde comprise entre 400 nm (lumière bleue) et 750 nm (lumière rouge). La figure IV-2 représente le spectre électromagnétique qui illustre la nature du rayonnement en fonction de la longueur d’onde.

Figure IV-2 : Caractère ondulatoire de la lumière
Le modèle ondulatoire est indispensable pour étudier la propagation de la lumière mais reste insuffisant pour décrire les échanges entre la lumière et la matière. Les énergies échangées entre matière et lumière ne peuvent pas prendre des valeurs quelconques : les transferts énergétiques sont discontinus ou quantifiés : ils ne peuvent se faire que par paquets ou quanta d’énergie bien déterminée qui constitue l’aspect corpusculaire.

IV-2-2 Aspect corpusculaire de la lumière

La lumière blanche est un ensemble de longueur d’onde (soit de couleur) émis par le soleil. Ces couleurs passent du rouge au violet (Infrarouge/Ultraviolet) et par tous les intermédiaires et à chaque couleur correspond une énergie, une fréquence et une longueur d’onde. L’aspect corpusculaire d’un rayonnement lumineux peut être considéré comme un ensemble de particules transportant chacun un quantum (quanta) d’énergie appelées photons, dont la valeur est proportionnelle à la fréquence qui lui est associée. \[E = h \nu = \frac{hC}{\lambda} \]

Avec: \(h = 6,62 \times 10^{-34} \text{ J.s} \) (constante de Planck), \(E \) : énergie lumineuse transportée par la radiation en Joule et \(\nu \) : fréquence de la radiation en s\(^{-1}\) (Hz), \(C \) la vitesse de la lumière dans le vide en (m/s) et \(\lambda \) est la longueur d’onde dans le vide en (m)

IV-2-2-1 Effet photoélectrique

L’effet photoélectrique a été mis en évidence par Hertz en 1885. L’effet photoélectrique

On envoie un faisceau de lumière riche en rayons ultratviolet sur une lame de zinc reliée à un électroscope initialement chargé, on constate que :

Si l’électroscope est chargé positivement, il ne se passe rien, les feuilles restent écartées.
Si l’électroscope est chargé négativement il se décharge les feuilles retombent

Figure IV-3 : L’expérience de la lame de zinc
Lorsqu’on éclaire une plaque métallique par une lumière convenable d’une fréquence seuil ν_0 qui est caractéristique du métal utilisé, la cathode émet des électrons. Ces électrons sont captés par l’anode. Il en résulte dans le circuit extérieur un courant décelé par galvanomètre G.

Figure IV-4 : L’expérience de l’effet photoélectrique

Pour extraire un électron dans un métal il faut fournir de l’énergie appelée énergie d’extraction. Einstein interprète l’effet photoélectrique en formulant les hypothèses suivantes :

- La lumière est constituée par un ensemble de corpuscules, appelée photons transportant un quantum d’énergie. Chaque photon d’un rayonnement monochromatique de fréquence ν transporte un quantum d’énergie : $E = h \nu = \frac{E}{\lambda}$.
- L’effet photoélectrique est l’interaction entre un photon incident de fréquence ν supérieur et un électron du métal à la fréquence seuil ν_0. L’excès d’énergie par rapport à l’énergie caractéristique du métal $E_0 = h \nu_0$ est dissipée sous forme d’énergie cinétique prise par les électrons.

Figure IV-5 : Les différentes énergies constituant l’effet photoélectrique
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

L’effet photoélectrique ne se produit que si l’énergie du photon incident \(E = h\nu \) est supérieure au travail d’extraction \(W_0 = h\nu_0 \) d’un électron du métal, énergie d’extraction qui ne dépend que de la nature du métal \(\nu_0 \) est la fréquence seuil (\(\nu_0 = \frac{c}{\lambda_0} \), \(\lambda_0 \) la longueur d’onde seuil)

Si l’énergie du photon n’est pas suffisante (\(\nu < \nu_0 \) ou \(\lambda > \lambda_0 \)), le photon est réfléchi et l’électron n’est pas éjecté du métal.

Si l’énergie du photon est suffisante (\(\nu > \nu_0 \) ou \(\lambda < \lambda_0 \)), toute l’énergie du photon est cédée à l’électron qui sort du métal avec une vitesse d’éjection.

\[
\frac{1}{2}m_e v^2 = h(\nu - \nu_0) = h\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right),
\]

\(m_e \) est la masse de l’électron, \(m_e = 9,109 \times 10^{-31} \) Kg

L’effet photoélectrique est l’émission d’électrons par un métal lorsqu’il est éclairé par une lumière convenable

Application :

Une lumière polychromatique comprenant 3 radiations : \(\lambda_1 = 450nm \), \(\lambda_2 = 610nm \) et \(\lambda_3 = 750nm \) irradie une échantillon de potassium contenue dans une ampoule.

L’énergie nécessaire à arracher un électron de l’atome de potassium est de 2,14eV.

1-Etablir la relation \(E(eV) = \frac{1241,25}{\lambda(nm)} \)

2-Quelle radiation qui donne lieu à l’effet photoélectrique ?

3-Quelle est la vitesse des électrons émet par le métal ?

Solution

\[
E = E_c + h\nu_0 \Rightarrow E_c = E - h\nu_0 = h(\nu - \nu_0) = h\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)
\]

\[
\frac{1}{2}m_e v^2 = h(\nu - \nu_0) = h\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right), \quad m_e \text{ est la masse de l’électron} \quad m_e = 9,109 \times 10^{-31} \text{ Kg}
\]

L’énergie nécessaire à arracher un électron de l’atome de potassium est de 2,14eV.

\[
E_1 = \frac{1241,25}{450} = 2,76eV, \quad E_2 = \frac{1241,25}{610} = 2,03eV, \quad E_3 = \frac{1241,25}{750} = 1,65eV
\]

\(\lambda_1 = 450nm \) est suffisante pour arracher l’électron de l’atome de potassium.

L’énergie cinétique de l’électron est : \(E_c = E_1 - E_0 = 2,76 - 2,14 = 0,62 \text{ eV} \).

\[
\frac{1}{2}m_e v^2 = E_c \Rightarrow v = \sqrt{\frac{2E_c}{m_e}} = \sqrt{\frac{2(0,62 \times 10^{-19})}{9,31 \times 10^{-31}}} = 4,71 \times 10^5 \text{ m/s}
\]

IV-3 Interaction entre la lumière et la matière

Lorsqu’une source d’énergie lumineuse vient frapper un objet, celui-ci va renvoyer un rayonnement à une certaine longueur d’onde et apparaîtra par conséquent d’une couleur précise - en fonction des mécanismes d’émission, de réflexion, d’absorption et de transmission.
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

IV-3-1 Spectre d’émission de l’atome d’hydrogène

Le spectre d’émission de l’atome d’hydrogène est l’ensemble des ondes électromagnétiques pouvant être émises par un atome d’hydrogène excité ayant reçu un excédent d’énergie. Celui-ci est obtenu expérimentalement (Figure IV-6) dans un tube à décharge contenant du dihydrogène et muni de deux électrodes métalliques. Le tube contient du dihydrogène sous faible pression (de l’ordre du mm de mercure), une décharge est opérée et ionise partiellement le dihydrogène \(\text{H}_2 \). Les ions générés sont accélérés par la différence de potentiel régnant entre les deux électrodes et percutent à grande vitesse les molécules de dihydrogène en provoquant la dissociation en atomes d’hydrogène, ainsi que l’excitation des atomes formés. Les atomes ne gardent que très peu de temps cet excédent d’énergie : ils le libèrent sous forme de lumière on dit qu’ils se désexcitent. Le rayonnement émis est constitué d’une série de raies de longueurs d’ondes différentes. C’est le spectre d’émission de l’atome d’hydrogène.

Figure IV-6 : Dispositif expérimental l’expérience de \(\text{H}_2 \) soumis à une décharge électrique -spectre de raies- et de la lumière blanche - spectre continu-

-Certains rayonnements, d’énergies toutes particulières, sont émis par l’atome d’hydrogène. Le spectre prend la forme d’un ensemble de raies. Le spectre d’émission de l’atome d’hydrogène est qualifié de spectre de raies (spectre discontinue).

-Les rayonnements apparaissent par groupes: le spectre est composé de plusieurs séries de raies (figure IV-7). La première série est observée par BALMER (série située dans le domaine visible). LYMAN découvre une série dans l’ultra-violet, puis
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

PASCHEN localise une nouvelle série dans le domaine infra-rouge. De façon postérieure BRACKET et PFUND identifient deux nouvelles raies.

-Au sein d’une même série les raies ne sont pas séparées d’une même longueur d’onde: les raies se rapprochent quand la longueur d’onde diminue et semblent tendre vers une raie limite.

Figure IV-7 : Série des raies du spectre de l’atome d’hydrogène.

IV-3-2 Relation empirique de Balmer-Rydberg

Balmer a démontré d’abord que la représentation graphique de l’inverse des longueurs d’onde en fonction de $1/n^2$ (où n est un nombre entier compris entre 3 et 6) est une droite.

Par la suite, Rydberg a proposé l’équation empirique suivante qui relie les longueurs d’onde (ou les fréquences) observées à des nombres entiers.

$$\frac{1}{\lambda} = 1,097 \times 10^7 \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$$

En appliquant cette équation à $n = 3$, on obtient la longueur d’onde de l’une des raies de l’hydrogène, soit une valeur calculée de 656,3 nm, ce qui correspond d’ailleurs à la longueur d’onde observée.

$$\frac{1}{\lambda} = 1,097 \times 10^7 \left(\frac{1}{4} - \frac{1}{3^2} \right) = 6,56310^{-7} \text{ m} = 656,3 \text{ nm}$$

Les autres valeurs de n, soit 4, 5 et 6, ont ainsi fourni ce qui a fait désigné la série de Balmer, la première série de longueurs d’onde des raies de l’hydrogène dans le visible.

IV-3-3 La formule de RITZ-RYDBERG

L’équation de Rydberg fut finalement généralisée pour tenir compte de la découverte d’autres raies dans les parties spectrales de l’ultraviolet et de l’infrarouge du spectre de l’hydrogène.
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

\[\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) ; \quad R_H : \text{constante de Rydberg} \quad R_H = 1,097 \times 10^7 \text{ m}^{-1} \]

\[n_2 > n_1 \quad \text{avec} \quad n_1 = 1, 2, 3, 4, \quad n_2 = n_1 + 1, n_1 + 2, \ldots \]

C’est ainsi que ont été calculées les valeurs des longueurs d’onde des autres séries de raies, soit celle de Lyman (\(n_1 = 1 \)), dans la portion de l’ultraviolet, et celles de Paschen (\(n_1 = 3 \)), de Brackett (\(n_1 = 4 \)) et de Pfund (\(n_1 = 5 \)), dans l’infrarouge.

Cette équation est purement empirique, c’est-à-dire qu’elle se fonde exclusivement sur des mesures expérimentales et n’est reliée à aucune théorie. Elle permet néanmoins de prévoir la position des raies du spectre de l’hydrogène, seul élément auquel elle s’applique.

IV-3-4 Notion de série de raies

Une série de raies correspond à l’ensemble de toutes les raies qui font revenir l’électron sur un niveau donné et fixe \(n \). Chaque série à reçue le nom de son découvreur

\(n = 1 \) : série de LYMAN
\(n = 2 \) : série de BALMER
\(n = 3 \) : série de PASCHEN
\(n = 4 \) : série de BRACKETT
\(n = 5 \) : série de PFUND
\(n = 6 \) : série de HUMPHREYS

Comme le montre le schéma suivant :

Figure VI-8 : Spectre d’émission de H
IV-4 Modèle classique de l’atome

Le modèle atomique, la découverte de ce à quoi ressemble un atome, est le fruit d'une réflexion et d'expériences qui se sont déroulées sur plusieurs siècles. Le modèle atomique a évolué, été modifié, été remis en question tout au long de l'histoire.

IV-4-1 Modèle de Rutherford

Rutherford a supposé que l’atome est constitué d’un noyau dense chargé positivement et contenant la majorité de masse de l’atome, autour duquel les électrons tournent dense chargé positivement et contenant la majorité de masse de l’atome, autour duquel les électrons tournent comme les planètes autour du soleil sous l’effet des forces d’attraction gravitationnelle. Ce modèle est appelé aussi Modèle planétaire

Il a utilisé la mécanique classique comme loi physique pour étudier le mouvement de l’électron en considérant que:

- L’électron est soumis à deux forces égales et opposées: Force d’attraction coulombienne du noyau et Force centrifuge (de répulsion)

L’énergie totale du système = l’énergie cinétique + l’énergie potentielle

![Figure IV-9: Modèle planétaire de l’atome selon Rutherford](image)

IV-4-1-1 Application à l’atome d’hydrogène

L’atome d’hydrogène est constitué d’un électron et d’un planétaire noyau contenant un proton. L’électron tourne autour du noyau avec une vitesse V (figure 2)

![Figure IV-10 : Différentes forces exercées sur l’électron d’un atome](image)
L’électron est soumis à :

Une force d’attraction coulombienne du noyau :

\[F_a = \frac{Ze^2}{4\pi \varepsilon_0 r^2} \]

Et une force de répulsion ou centrifuge :

\[F_c = \frac{mV^2}{r} \]

Condition de stabilité :

\[|F_a| = |F_c| \Rightarrow \frac{Ze^2}{4\pi \varepsilon_0 r^2} = \frac{mV^2}{r} \Rightarrow mV^2 = \frac{1}{4\pi \varepsilon_0} \frac{Ze^2}{r} \]

Avec \(\varepsilon_0 \) est la permittivité du vide.

L’énergie totale du système \(E_T \) est égale à la somme de l’énergie potentielle \(E_p \) et l’énergie cinétique \(E_c \).

\[E_p = \int_{r_0} F_a dr \Rightarrow E_p = -\frac{1}{4\pi \varepsilon_0} \frac{Ze^2}{r} \]

et

\[E_c = \frac{mV^2}{2} \text{ or } mV^2 = \frac{1}{4\pi \varepsilon_0} \frac{Ze^2}{r} \Rightarrow E_c = -\frac{1}{8\pi \varepsilon_0} \frac{Ze^2}{r} \]

\[\Rightarrow E_T = -E_c \]

D’après Rutherford, l’électron se trouve en mouvement circulaire. Il émet un rayonnement avec une perte d’énergie, ce qui provoque : soit un ralentissement du mouvement, soit une diminution du rayon soit une diminution du rayon. Dans les deux cas, ce phénomène devrait provoquer une chute de l’électron sur le noyau. (Figure IV-11). Ce qui est contradictoire avec la réalité de la structure atomique.

Figure IV-11 : Trajectoire de l’électron selon le modèle de Rutherford

IV-4-2 Modèle atomique de Bohr : atome d’hydrogène

En 1913, Niels Bohr (voir la page 6) présenta un nouveau modèle de l’atome fondé sur la quantification de l’énergie. Ce modèle rendait compte de la structure de l’atome d’hydrogène et de son spectre ; il apportait aussi un fondement théorique à l’équation de Rydberg. Le modèle construit par Niels BOHR cherche à expliquer de façon classique les résultats précédents. Les caractéristiques de ce modèle sont résumées dans trois postulats.
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

IV-4-2-1 Les postulats de Bohr

BOHR énonce en 1913 trois postulats qui sont à la base de l’explication proposée pour l’interprétation du spectre de raie d’émission de l’atome d’hydrogène :

1-L’atome ne peut pas subir de variation énergétique continue; il ne peut exister que dans une suite d’états stationnaires correspondant à des niveaux d’énergie E_1, E_2, E_3, …E_n sur lesquels l’électron ne rayonne pas.

2-Il y’a quantification du moment cinétique orbital L de l’électron par rapport au centre de l’orbite. Ce moment est défini par le produit vectoriel du vecteur position r et du vecteur impulsion p relatif à l’électron suivant la relation :

$$\vec{L} = \vec{r} \wedge \vec{p} ; \vec{L} = m (\vec{r} \wedge \vec{v}) = L = mvr \sin(\vec{v} \cdot \vec{r}) L = mvr \sin(90^\circ) = mvr$$

L est perpendiculaire au plan de l’orbite

Ce moment ne peut donc prendre que des valeurs entières de $\frac{h}{2\pi}$

Par conséquent le moment cinétique est quantifié $mvr = \frac{h}{2\pi}$

Avec h : constante de Planck ; m : masse de l’électron et n : nombre quantique

3- Au cours d’une transition entre deux états stationnaires d’énergies respectives E_{n_1}, E_{n_2} il ya émission ou absorption d’une quantité d’énergie égale à :

$$|E_{n_2} - E_{n_1}| = \Delta E = h \nu = \frac{hc}{\lambda}$$

$h : 6,623 \times 10^{-34}$ j.s (constante de Planck) et ν : fréquence de rayonnement mis en jeu.

Ainsi, au cours du processus d’émission (Figure IV-12), un électron d’énergie E_{n_2} ; peut revenir à l’état d’énergie E_{n_1} inférieure, mais il abandonnera son excédent d’énergie sous forme de lumière. Le rayonnement émis sera tel que : $E_{n_1} - E_{n_2} < 0$

Au cours du processus d’absorption (Figure IV-13), un électron d’énergie E_{n_1} sera susceptible d’absorber un rayonnement si celui-ci permet d’atteindre l’état d’énergie E_{n_2}.

La radiation absorbée sera telle que : $E_{n_2} - E_{n_1} > 0$

Figure IV-12 : Processus d’émission

Figure IV-13 : Processus d’absorption

L’absorption ou l’émission de photon correspond à un changement d’orbite de l’électron
L’énergie du photon absorbé (ou émis) est égale à la différence d’énergie entre le
deux niveau
\[|E_{n_2} - E_{n_1}| = \Delta E = h \nu = \frac{hc}{\lambda} \]

IV-4-2-2 Rayon des orbites stationnaires

D’après le premier postulat de Bohr, le système est en équilibre
\[\vec{F}_a + \vec{F}_c = 0 \]
\[||\vec{F}_a|| = ||\vec{F}_c|| \] avec:
\[||\vec{F}_c|| = \frac{mv^2}{r} \]
\[||\vec{F}_a|| = k \frac{|q||q|}{r^2} = k \frac{e^2}{r^2} \] avec \(k = \frac{1}{4\pi\epsilon_0} \)
Or \(||\vec{F}_a|| = ||\vec{F}_c|| \Rightarrow \frac{mv^2}{r} = k \frac{e^2}{r^2} \Rightarrow mv^2 = k \frac{e^2}{r} \) (1)

D’après le deuxième postulat de Bohr décrivant la quantification du moment cinétique
orbital, on a :
\[mvr = \frac{\hbar}{2\pi} \Rightarrow m^2 v^2 r^2 = \left(\frac{\hbar}{2\pi} \right)^2 \Rightarrow m v^2 = \frac{\hbar^2}{4\pi^2r^2m} \] (2)

La combinaison de l’équation (1) avec (2) conduit à l’expression du rayon de l’orbite:
\[r = \frac{\hbar^2}{4k\pi^2me^2n^2} \]

Comme \(h, \pi, k, m \) et \(e \) sont constantes alors \(r \) ne dépend que de la valeur du nombre positif \(n \) appelé nombre quantique principal soit

\[r_n = \frac{\hbar^2}{4k\pi^2me^2n^2} \]

Pour \(n = 1, r_n = r_1 = 0,5290 \text{ Å} \) : premier rayon de Bohr pour l’atome d’hydrogène qu’on
note \(a_0 \)

Avec : \(k = \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \left(\frac{N \cdot m^2}{C^2} \right) ; m = 9,110.10^{-31} \text{ kg} \) et \(e = 1,602.10^{-19} \text{ C} \)
Pour $n = 2$, 2ème orbite de Bohr $r_2 = 4 \times a_0$;
Pour $n = 3$, 3ème orbite de Bohr $r_3 = 9 \times a_0$;
Pour $n = 4$, 4ème orbite de Bohr $r_4 = 16 \times a_0$, etc…

Figure IV-14 : Représentation des orbites circulaires partielles de l’atome d’hydrogène.

On constate que l’électron ne peut se trouver que sur une suite discontinue caractérisée par le nombre quantique n dont le rayon r est : a_0, $4a_0$, $9a_0$, $16a_0$… n^2a_0

IV-4-2-3 Énergie de l’électron sur une orbite stationnaire

L’énergie totale du système considéré est la somme de l’énergie potentielle E_p et de l’énergie cinétique E_c ; $E_T = E_p + E_c$

Avec : $E_c = \frac{1}{2} mv^2$ et $E_p = E_{électrostatique} = -\frac{ke^2}{r}$

D’après l’équation (1) on a : $\frac{mv^2}{r} = \frac{ke^2}{r^2}$ \Rightarrow $mv^2 = \frac{ke^2}{r}$ \Rightarrow $E_c = \frac{1}{2} mv^2 = \frac{1}{2} \frac{ke^2}{r}$

$\Rightarrow E_T = -\frac{ke^2}{r} + \frac{1}{2} \frac{ke^2}{r} = -\frac{1}{2} \frac{ke^2}{r}$ on remplaçant l’expression de r dans cette équation

L’énergie totale du système en fonction de n sera donc :

$$E_T = \frac{-ke^2}{2r} = \frac{-ke^24\pi^2km}{2h^2} \frac{1}{n^2} = \frac{-2k^2e^4\pi^2m}{h^2} \frac{1}{n^2}$$

L’énergie E_T de l’électron sur l’orbite dépend uniquement de n. Elle est donc quantifiée et ne peut prendre que quelques valeurs particulières selon l’expression:
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

\[E_T = \frac{-2k^2e^4\pi^2m}{\hbar^2}\frac{1}{n^2} \]

Pour \(n = 1 \), \(E_n = E_1 = \frac{-2k^2e^4\pi^2m}{\hbar^2} = -21,76 \times 10^{-19} \text{J} = -13,6 \text{eV} \)

Cette valeur représente l’énergie de l’état fondamental de l’atome d’hydrogène.

L’état fondamental est l’état électronique d’énergie minimale correspondant à \(n = 1 \)

L’énergie d’un électron de l’atome d’hydrogène, dans son état fondamental, est -13,6 eV. Les états correspondant à un \(n \) supérieur sont qualifiés d’états excités et correspondent à l’état d’un électron excité, ayant reçu un excédent d’énergie.

D’où \(E_n = E_1 \frac{1}{n^2} = \frac{-13,6}{n^2} \)

Le modèle de BOHR justifie bien que l’énergie de l’électron est quantifiée, elle ne dépend que d’un nombre \(n \), entier supérieur à zéro et appelé nombre quantique.

Les différents états quantifiés de l’énergie sont: \(E_1, \frac{E_1}{4}, \frac{E_1}{9}, \frac{E_1}{16}, \frac{E_1}{25} \)

Le système le plus stable correspond à la plus petite valeur algébrique de l’énergie:

\[E_1 = -13,6 \text{eV} \]

- État stationnaire : état décrivant une position fixe de l’électron par rapport au noyau.
- État fondamental : état d’énergie le plus bas des électrons d’un atome.
- L’énergie d’excitation de l’atome d’hydrogène est l’énergie nécessaire pour faire passer l’électron de l’orbite \(n_1 \) à une orbite \(n_2 \) \((n_1 < n_2)\)

- L’énergie d’ionisation \(E_i \) de l’atome d’hydrogène est l’énergie nécessaire pour faire passer l’électron de l’orbite \(n = 1 \) à \(n = \infty \). Ce phénomène correspond à l’arrachement de l’électron de l’atome c’est-à-dire envoyé cet électron sur le niveau d’énergie \(E = 0 \)

Exemple : L’énergie d’ionisation de l’atome d’hydrogène est :

\[\text{H → H}^+ + 1e^- \quad E_i = E_{\infty} - E_1 \implies E_i = 0 - (-13,6) = +13,6 \text{ eV} \]

D’après le 3ème postulat de Bohr, quand l’électron de l’hydrogène passe d’un niveau d’énergie \(E_{n_i} \) à un niveau d’énergie \(E_{n_f} \), l’énergie mise en jeu a pour expression :

\[|\Delta E| = |E_{n_f} - E_{n_i}| = \hbar \nu = \frac{\hbar c}{\lambda} = \frac{2k^2e^4\pi^2m}{\hbar^2}\left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right) \]
La fréquence et le nombre d’onde correspondant à cette radiation sont donnés par :

\[\nu = \frac{|E_{n_f} - E_{n_i}|}{h} ; \quad \lambda = \frac{1}{\nu} = \frac{1}{\frac{|E_{n_f} - E_{n_i}|}{hc}} = \frac{1}{hc} \cdot \frac{2k^2e^4\pi^2m_e}{h^2} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

\[\Rightarrow \nu = \frac{1}{\lambda} = \frac{2k^2e^4\pi^2m_e}{hc^3} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) = 1097340 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

On en déduit : \[R_H = \frac{2k^2e^4\pi^2m_e}{hc^3} = 1097340 \text{ m}^{-1} \]

\[\Rightarrow \nu = \frac{1}{\lambda} = R_H \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right) \]

Ainsi, on retrouve la formule empirique de Ritz et les différentes séries de raies du spectre d’émission de l’atome d’hydrogène. Les transitions spectrales entre les différents niveaux électroniques de l’atome d’hydrogène sont représentées dans le diagramme énergétique suivant (Figure IV-15).

La valeur calculée de la constante de Rydberg est proche de la valeur expérimentale donnée empiriquement par Balmer \(R_H = 109677,6 \text{ cm}^{-1} \).

Figure IV-15 : Diagramme énergétique de l’atome d’hydrogène.

IV-4-2-4 Quantification de l’énergie de l’atome d’hydrogène

A chaque couche correspond une énergie bien déterminée et identique pour tous les atomes d’hydrogène. Le diagramme énergétique donne ces différents niveaux (Figure IV-16)
Le niveau \(n=1 \) d'énergie la plus basse est appelée **niveau fondamental** ; les autres niveaux sont dits excités.

Figure IV-16: Diagramme de la quantification énergétique de l'atome d'hydrogène.

IV-4-2-5 Applications aux hydrogénoides

On appelle ions hydrogénoides, des cations qui possèdent un seul électron et \(Z \) protons. Exemple : \(_2\text{He}^+ ; _3\text{Li}^{+2} ; _4\text{Be}^{+3} \ldots \)

Le calcul du rayon et de l'énergie de l'électron d'un ion hydrogénoïde sur une orbite \(n \) aboutit aux expressions suivantes:

\[
\begin{align*}
 r_n &= \frac{\hbar^2}{4k_s^2mZ^2e^2} n^2 = a_o \frac{n^2}{Z} = 0,529 \frac{n^2}{Z} (A^o) \\
 E_T &= -\frac{2k^2e^4\pi^2}{\hbar^2} \frac{Z^2m}{n^2} \frac{1}{n^2} = E_1 \frac{Z}{n^2} = -13,6 \frac{Z}{n^2}
\end{align*}
\]

Ces expressions peuvent être retrouvées en remplaçant, dans celles de l'atome d'hydrogène, la charge du noyau (+e) par (+Ze).

Les nombres d’ondes des séries observées dans le spectre des ions hydrogénoïdes sont données par :

\[
\bar{\nu} = \frac{1}{\lambda} = R_H Z^2 \left(\frac{1}{n_1^2} - \frac{1}{n_f^2} \right)
\]
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

IV-4-2-6 Insuffisance du modèle de Bohr

Le succès du modèle de BOHR est fondé sur sa capacité à expliquer les résultats expérimentaux relatifs à l’atome d’hydrogène. Cette modélisation fait cependant apparaître quelques incohérences et plusieurs lacunes sont vite apparues dans le modèle de Bohr, malgré certains raffinements apportés pour décrire les orbites électroniques elliptiques et pour tenir compte de la variation de la masse de l’électron avec sa vitesse.

– Le modèle n’est valide en effet que pour les espèces chimiques comprenant un seul électron, soit l’atome d’hydrogène et les ions He⁺, Li⁺², Be⁺³, etc.

– Il n’a pas pu expliquer la présence de raies additionnelles lors des spectroscopes plus raffinés.

-Il ne pouvait rendre compte du dédoublement de certaines raies spectrales en présence d’un champ magnétique intense.

– Enfin, il ne se fondait pas sur une théorie solide pour démontrer son principal postulat : le modèle ne pouvait expliquer pourquoi les orbites électroniques dont la quantité de mouvement angulaire est égale à nh/2π sont stables et non radiantes.

Toutefois, deux postulats de Bohr ont servi à élaborer le modèle de la mécanique ondulatoire et de la mécanique quantique, modèle actuel de l’atome :

– les niveaux d’énergie électronique sont quantifiés (postulat 2) ;

– l’énergie est émise ou absorbée lorsque survient un changement de niveau électronique (postulat 3).

Le modèle de BOHR même affiné ne donne pas de résultats satisfaisants : la physique classique est dans l’incapacité d’expliquer les phénomènes observés, l’appel à la chimie quantique est alors indispensable.
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

IV-5 L’atome d’hydrogène en mécanique ondulatoire

IV-5-1 Dualité onde-corpuscule et relation de De Broglie

En 1924 Louis de De Broglie émet l’hypothèse que la dualité onde-corpuscule est une propriété générale de la physique. Il énonça qu’à toute particule en mouvement est associé une onde dite "onde associée" de longueur d’onde λ :

$$\lambda = \frac{h}{p} = \frac{h}{m v}$$

En effet, la lumière se manifeste principalement comme une onde, mais elle possède aussi un caractère corpusculaire, ce qui se révèle notamment par sa quantification (équation de Planck). De la même façon, selon de Broglie, la matière se manifeste surtout comme un corpuscule ; toutefois, dans certaines conditions, elle peut aussi présenter un caractère ondulatoire. Il proposa alors que non seulement la lumière, mais aussi la matière étaient régies par l’équation citée ci-dessus.

Dans cette équation, mv est la quantité de mouvement de la particule, c’est-à-dire le produit de sa masse au repos (en kg) par sa vitesse (en m/s), à condition que sa vitesse ne soit pas trop proche de celle de la lumière.

λ = longueur d’onde de Broglie

h = constante de Planck ($6,626 \times 10^{-34}$ J.s)

La loi de De Broglie permet de retrouver la condition de quantification utilisée par Bohr :

En considérant l’électron comme une onde, on a désormais trouvé un fondement théorique à l’un des postulats de Bohr : l’électron ne peut se déplacer que dans des orbites pour lesquelles $mv r = nh/2\pi$. En effet, en isolant le terme mv de cette équation et de celle de Broglie, on peut démontrer que $2\pi r$, la circonférence de l’orbite, correspond à un nombre entier de longueurs d’onde, λ :

$$mv r = \frac{nh}{2\pi} \Rightarrow mv = \frac{nh}{2\pi r} ; \quad \lambda = \frac{h}{mv} \Rightarrow mv = \frac{h}{\lambda} \Rightarrow \frac{nh}{2\pi r} = \frac{h}{\lambda} \Rightarrow 2\pi r = n \lambda \text{ (figure IV-17)}.$$
Exemple : calcul des longueurs d’onde λ associées aux particules suivantes

- Particule microscopique: Electron de masse $m = 9,11 \times 10^{-31}$ Kg et de vitesse $v = 10^7$ m/s

$$\lambda = \frac{h}{mv} = \frac{6,626 \times 10^{-34}}{9,11 \times 10^{-31} \times 10^7} = 0,736 \times 10^{-10} m$$

Valeur mesurable et correspond à la longueur d'onde λ des Rayons X.

- Particule macroscopique : balle de tennis de masse 0,05 kg et de vitesse 40 m/s.

$$\lambda = \frac{h}{mv} = \frac{6,626 \times 10^{-34}}{0,05 \times 40} = 3,310^{-34} m$$

Cette valeur n’est pas vérifiable. Elle n’a aucun sens

IV-5-2 Principe d’incertitude d’Heisenberg

Pour mesurer la quantité de mouvement de l’électron en minimisant l’incertitude, on doit augmenter la longueur d’onde (diminution de l’énergie) du rayonnement ; la précision de la position de l’électron s’en trouve réduite par le fait même.

En 1927, Werner Heisenberg généralisa ce problème de l’imprécision sur la position et la quantité de mouvement d’un électron sous forme d’un énoncé :
Enoncé : La position x et la quantité de mouvement p d'une particule ne peuvent être déterminées simultanément avec plus de précision que celle donnée par cette relation :

\[\Delta x \cdot \Delta p \geq \frac{h}{2\pi} = \eta ; \quad p = mv \Rightarrow \Delta p = m\Delta v \Rightarrow \Delta x \cdot m \cdot \Delta v \geq \frac{h}{2\pi} \]

\(\Delta x \) : incertitude sur la position \\
\(\Delta p \) : incertitude sur la quantité de mouvement

En effet, l’incertitude sur la quantité de mouvement d’une particule est donnée par :

\[\Delta p = m \Delta v \]

Exemple :

Supposons que l’on désire déterminer la position d’un électron avec une incertitude de \(2,0 \times 10^{-11} \) m

En appliquant l’équation de Heisenberg

En effet, l’incertitude sur la quantité de mouvement d’une particule est donnée par : \(\Delta p = \Delta mv \) et l’équation de Heisenberg permet de calculer cette incertitude :

\[\Delta x \cdot m \Delta v \approx \hbar \Rightarrow m \Delta v \approx \frac{6,626 \times 10^{-34}}{2 \times 10^{-11}} \approx 3,3 \times 10^{-23} \text{ Kg.m.s}^{-1} = \Delta mv = \Delta p \]

A partir de l’incertitude sur la quantité de mouvement de l’électron, \(\Delta p \), on peut finalement calculer l’incertitude sur sa vitesse en utilisant l’équation

\[\Delta p = m \Delta v \Rightarrow \Delta v = \frac{\Delta p}{m} \]

Dans laquelle m représente la masse de l’électron au repos.

\[\Delta v = \frac{3,3 \times 10^{-23}}{9,1 \times 10^{-31}} = 3,6 \times 10^{+7} \text{ m.s}^{-1} \]

L’incertitude sur la vitesse est donc égale à \(3,6 \times 107 \) ms\(^{-1} \).

\[\frac{3,6 \times 10^{7}}{2,998 \times 10^{8}} \times 100 = 12\% \]

Cette incertitude sur la vitesse correspond à celle de 12 % par rapport à la vitesse de la lumière (\(2,998 \times 10^{8} \) m.s\(^{-1} \)), et la vitesse de l’électron était justement estimée alors à \(3,0 \times 10^{7} \) m.s\(^{-1} \) ; l’incertitude est donc de 100 %, puisque celle sur sa vitesse est de \(3,6 \times 10^{7} \) m.s\(^{-1} \).
CHAPITRE IV : STRUCTURE ELECTRONIQUE DE L’ATOME

Ce principe rendait désormais tout à fait inadéquat l’un des postulats de Bohr à l’effet que l’électron occupait des orbites précises.

IV-6 Conclusion

Avec l’hypothèse de Broglie selon laquelle des particules matérielles présentent un caractère ondulatoire, le modèle de Bohr déboucha sur la théorie quantique de l’atome. La dualité onde–corpuscule de l’électron trouva sa solution dans l’équation de Schrödinger, équation clé de la théorie quantique. Le concept d’orbitale, qui représente les régions de probabilité de trouver l’électron, a émergé de cette théorie. Désormais, on ne décrit plus l’électron seulement comme une particule : on lui attribue aussi des caractéristiques ondulatoires ; on peut, globalement, l’associer à un nuage électronique de densité variable.
CHAPITRE V:

LA CLASSIFICATION PERIODIQUE DES ELEMENTS
V-1 Classification périodique de D. Mendeleïev

À mesure qu’augmentait le nombre d’éléments connus, les chimistes du XIXe siècle éprouvaient le besoin de les ordonner. En rangeant les atomes dans l’ordre croissant de leur masse atomique, il apparaît une périodicité dans leurs propriétés.

Sur cette base, D. Mendeleiev (1869) a mis en évidence de la périodicité des propriétés des 63 éléments chimiques connus à l’époque. Il se rend compte qu’en plaçant les éléments en ordre croissant de leur masse atomique, il apparaît une tendance en ce qui concerne les propriétés.

Le tableau périodique est le moyen le plus important de comparaison entre les éléments chimiques et facilite la compréhension. Il facilite la compréhension des groupes d’éléments en montrant la relation entre leurs propriétés chimiques et leur structure atomique.

Le tableau périodique permet de prévoir les formules des composés et les types de liaisons unissant les composantes d’une molécule.

V-2 Principe de la classification périodique

On classe les éléments par Z croissant.

Chaque ligne horizontale dans le tableau périodique occupée par les éléments ayant la même valeur de n (sous-couches ns) est appelée période. Les périodes sont classées de haut en bas par n croissant

Tous les éléments d’une même période ont même configuration des électrons de cœur

Le tableau périodique contient 7 périodes (7 lignes) et 18 colonnes

Tous les éléments d’une même colonne (rangée) ont même configuration des électrons de valence.

V-3 Description des lignes (périodes)

Chaque ligne horizontale du tableau périodique constitue un période
Tableau V-1 : La répartition électronique des éléments dans le tableau périodique

<table>
<thead>
<tr>
<th>Couche</th>
<th>Z</th>
<th>Structure électronique</th>
<th>Nombre d’éléments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>1,2</td>
<td>1s et 1s</td>
<td>2</td>
</tr>
<tr>
<td>2s2p</td>
<td>3 ≤ Z ≤ 10</td>
<td>2s^1, 2p^1</td>
<td>8</td>
</tr>
<tr>
<td>3s3p</td>
<td>11 ≤ Z ≤ 18</td>
<td>3s^1, 3p^1</td>
<td>8</td>
</tr>
<tr>
<td>4s3d4p</td>
<td>19 ≤ Z ≤ 36</td>
<td>4s^1, 3d^1, 4p^1</td>
<td>18</td>
</tr>
<tr>
<td>5s4d5p</td>
<td>37 ≤ Z ≤ 54</td>
<td>5s^1, 4d^1, 5p^1</td>
<td>18</td>
</tr>
<tr>
<td>6s4f5d6p</td>
<td>55 ≤ Z ≤ 86</td>
<td>6s^1, 4f^1, 5d^1</td>
<td>32</td>
</tr>
<tr>
<td>7s5f</td>
<td>87 ≤ Z ≤ 103</td>
<td>7s^1</td>
<td></td>
</tr>
</tbody>
</table>

La 6ème période comporte 32 éléments dont les lanthanides correspondant au remplissage de la sous-couche 4f : 58 ≤ Z ≤ 71 ; [Xe] 6s^2 4f^2-14 5d^0 ;

La 7ème période est incomplète. Elle débute par le remplissage de la sous-couche 7s (Fr, Ra). Suit la série des actinides (Z ≥ 90), correspondant au remplissage de la sous-couche 5f. La plupart de ces éléments sont radioactifs. L’uranium (Z=92) est l’élément naturel le plus lourd. On a pu obtenir artificiellement des éléments plus lourds, jusqu’à Z=103.

V-4 Analyse du tableau périodique

V-4-1 Blocs des groupes

On définit des blocs dans le tableau périodique :

Au centre du tableau périodique apparaît le bloc d qui forme par le 3 séries des éléments de transition. A droite du tableau périodique on trouve le bloc p, à gauche le bloc s. Le bloc f contient les lantanides et les actinides

Dans le schéma suivant on présente le découpage du tableau périodique par blocs

Figure V-1 : Blocs s, p, d et f dans le tableau de la classification périodique
V-4-2 Description des colonnes (groupes chimiques)

Les colonnes du tableau périodique forment des groupes chimiques aux propriétés analogues, car ayant même structure électronique externe.

Pour les blocs s et p les groupes sont les suivants :

V-4-2-1 Sous groupes A
Les sous groupes A constituent les blocs s et p qui ont la configuration électronique suivante :

- bloc s : \(ns^1 \) ou \(ns^2 \)
- bloc p : \(ns^2np^x \) \(1 \leq x \leq 6 \)

Les sous groupes A sont résumés dans le tableau suivant:

Tableau V-2 : Les sous-groupes A du tableau périodique

<table>
<thead>
<tr>
<th>Sous groupe</th>
<th>(I_A)</th>
<th>(II_A)</th>
<th>(III_A)</th>
<th>(IV_A)</th>
<th>(V_A)</th>
<th>(VI_A)</th>
<th>(VII_A)</th>
<th>(VIII_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration électronique externe</td>
<td>(ns^1)</td>
<td>(ns^2)</td>
<td>(ns^2np^1)</td>
<td>(ns^2np^2)</td>
<td>(ns^2np^3)</td>
<td>(ns^2np^4)</td>
<td>(ns^2np^5)</td>
<td>(ns^2np^6)</td>
</tr>
<tr>
<td>Nombres d'électrons de valence</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Exemple</td>
<td>(^3\text{Li})</td>
<td>(^{12}\text{Mg})</td>
<td>(^{13}\text{Al})</td>
<td>(^6\text{C})</td>
<td>(^7\text{N})</td>
<td>(^8\text{O})</td>
<td>(^9\text{F})</td>
<td>(^9\text{Ne})</td>
</tr>
</tbody>
</table>

Le bloc s : Il contient les éléments de la première colonne \(ns^1 \) qui correspond au groupe \(I_A \), ces éléments sont monovaluents appelés les *alcalins* et la deuxième colonne \(ns^2 \) qui correspond au groupe \(II_A \) ces éléments sont divalents appelé les alcalino-terreux.

Le bloc p : Il contient les éléments, \(ns^2np^1 \) qui appartiennent aux groupes trivalents, \(ns^2np^2, ns^2np^3, ns^2np^4 \) qui regroupent les éléments des métaux (groupes : \(IV_A \), \(V_A, VI_A \)), \(ns^2np^5 \) qui représentent les halogènes (groupe : \(VII_A \)) et les gaz rares de configuration électronique externe saturée \(ns^2np^6 \) du groupe \(VIII_A \).

V-4-2-2 Sous groupes B
Les éléments du bloc d dont la sous couche d est incomplètement remplie sont les métaux de transition : \((n - 1)d^zns^y \) avec : \(0 \leq x \leq 10, \ 0 \leq y \leq 2 \).
Tableau V-3 : Les sous-groupes B du tableau périodique

<table>
<thead>
<tr>
<th>Sous groupe</th>
<th>I_B</th>
<th>II_B</th>
<th>III_B</th>
<th>IV_B</th>
<th>V_B</th>
<th>VI_B</th>
<th>VII_B</th>
<th>VIII_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuratio n électronique externe</td>
<td>(n – 1)d^{10} ns^1</td>
<td>(n – 1)d^{10} ns^2</td>
<td>(n – 1)d^1 ns^2</td>
<td>(n – 1)d^2 ns^2</td>
<td>(n – 1)d^3 ns^2</td>
<td>(n – 1)d^5 ns^1</td>
<td>(n – 1)d^5 ns^2</td>
<td>3d^64s^2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Nombres d’éléments de valence</td>
<td>Cuivre</td>
<td>Cadmium</td>
<td>Scandium</td>
<td>Titane</td>
<td>Vanadium</td>
<td>Chrome</td>
<td>Manganèse</td>
<td>Fer</td>
</tr>
<tr>
<td>Exemple</td>
<td>[Ar]3d^{10}4s^1</td>
<td>[Ar]3d^{10}4s^2</td>
<td>[Ar]3d^{1}4s^2</td>
<td>[Ar]3d^{2}4s^2</td>
<td>[Ar]3d^{3}4s^2</td>
<td>[Ar]3d^{5}4s^2</td>
<td>[Ar]3d^{5}4s^2</td>
<td>[Ar]3d^{5}4s^2</td>
</tr>
<tr>
<td>Exemple</td>
<td>29Cu :</td>
<td>49Cd :</td>
<td>21Sc</td>
<td>22Ti</td>
<td>23V</td>
<td>24Cr</td>
<td>25Mn</td>
<td>26Fe</td>
</tr>
</tbody>
</table>

Bloc d :
La première série des éléments possédant des sous couches d correspond à la période de n=4. Le remplissage de la sous couche 3d commence lorsque la sous couche 4s est saturée à 4s^2. Il existe trois séries d’éléments de transition 3d^x, 4d^x, 5d^x \(0 \leq x \leq 10\)

Bloc f : Il correspond aux Lanthanides et aux Actinides, appelées terres rares. Lorsque l’orbitale 6s est complètement rempli, apparaissent les orbitales 4f qui se remplissent avant 5d selon la règle de Klechkowski.

V-4-3 Famille des groupes
Dans la classification périodique, les éléments qui présentent des caractéristiques communes sont regroupés par famille et se situent dans une même colonne du tableau périodique.
Le tableau périodique se divise alors en trois grandes régions (Figure 20): les métaux, les métalloïdes, et les non métaux. Les éléments d’une même région présentant des propriétés communes.

• Les métaux : Ce sont les éléments les plus nombreux du tableau. On les retrouve à gauche d’une ligne allant du Bore (B) à l’Astate (At). Ils sont généralement solides à température ambiante (excepté le mercure, Hg). Ils conduisent l’électricité et la chaleur et plusieurs d’entre eux réagissent avec des acides.

• Les non métaux : Ils se trouvent dans la partie droite du tableau. Leurs propriétés sont très différentes des métaux et ils ne conduisent ni la chaleur, ni l’électricité.

• Les métalloïdes : Ils forment une "frontière" qui sépare les deux groupes précédents. Ils ressemblent, par leurs propriétés aux non métaux, mais ils conduisent à divers degrés le courant électrique (notamment le Si et le Ge, très utilisés en électronique). Ils sont aussi appelés les semi-conducteurs.
Figure V-2 : La répartition des Familles des groupes dans le tableau périodique

V-5 Evolution périodique de quelques propriétés

V-5-1 Rayon atomique (rayon covalent \(r_C \))

Exprimé en picomètre la mesure du rayon atomique est basé sur l’expérience. Le rayon atomique d’un atome est égal à la demi-distance qui sépare les deux noyaux d’une molécule diatomique homonucléaire liés par une liaison covalente simple.

![Diagram of covalent bond](image)

Figure V-3 : Rayon atomique

Exemple: \(H_2(g) \)

\[
d_{H-H} = 2r_H = 74\text{pm} \Rightarrow r_H=37\text{pm}
\]

Dans une période, lorsque \(Z \) augmente en allant de gauche à droite, le nombre de couche est le même, mais \(Z \) augmente ce qui engendre que le nombre de charge augmente dans le noyau ce qui vas créer un effet de charge.

Dans une même ligne la force d’attraction entre le noyau et l’électron périphérique augmente et par conséquent la distance entre le noyau et l’électron périphérique diminue ce qui implique que rayon atomique va diminuer.

Exemple :
\[
\begin{align*}
 \text{Li} : & \quad 1s^22s^1 \quad ; \quad F : \quad 1s^22s^12p^5 \\
 \Rightarrow & \quad r_{\text{Li}} > r_F
\end{align*}
\]
Dans une même colonne, lorsque Z augmente en allant de haut vers le bas, le nombre de couche augmente ce qui implique que la distance entre le noyau et les électrons périphérique augmente ce qui diminuer la force d’attraction entre le noyau et les électrons périphérique d’où l’augmentation du rayon par effet de distance (figure V-4)

Figure V- 4 : l’évolution du rayon atomique dans tableau périodique

Exemple :

\[_3 \text{Li} : 1s^2 2s^1 ; _{37} \text{Rb} : 1s^2 2s^2 2p^6 3s^2 3p^6 4s^4 3d^{10} 6p^6 6s^1 \Rightarrow r_{\text{Rb}} > r_{\text{Li}} \]

\[_{17} \text{Cl} : 1s^2 2s^2 2p^6 3s^2 3p^5 \Rightarrow r_{\text{Cl}} > r_{\text{F}} \]

V-5-2 Le rayon ionique

Rayon de la forme principale, donnée par son degré d’oxydation principal, mesuré à partir de la distance entre anions et cations d’un cristal ionique.

Le rayon ionique caractérise le volume occupé par les électrons du nuage électronique, sauf pour les ions, le nombre d’électrons diffère de la forme neutre, ce qui explique deux phénomènes inverses pour les cations, ce rayon sera toujours plus petit que la charge positive, avec moins d’électrons, sera grande et sera toujours plus petit que le rayon atomique de l’atome.

À l’inverse, pour les anions, chargé négativement, ayant plus d’électrons, le rayon ionique sera plus grand que le rayon atomique et d’autant plus grande que la charge est grande.

Tous les cations sont plus petits que les atomes correspondants

Figure V-5 : Rayon ionique: \(r_a \) : rayon d’anion et \(r_c \) : rayon du cation
CHAPITRE V: LA CLASSIFICATION PERIODIQUE DES ELEMENTS

Exemple : Pour l’atome de lithium on a : \(r_{Li} = 157 \) pm et \(r_{Li^+} = 58 \) pm

Comme les rayons atomiques, les rayons ioniques augmentent du haut en bas d’un groupe parce que les électrons occupent des couches de nombre quantique principal de plus en plus élevé

La variation du rayon des anions est semblable à celle du rayon des atomes

Exemple : Pour l’atome d’oxygène on a : \(r_O = 73 \) pm et \(r_{O^{2-}} = 126 \) pm

V-5-3 Énergie d’ionisation (\(E_I \))

L’énergie d’ionisation (\(E_I \)) est l’énergie nécessaire pour arracher un électron de valence le moins lié de l’atome en phase gazeuse et former un ion positif (cation).

Pour l’énergie de première ionisation d’un atome \(X \) et encore appelée potentiel d’ionisation de cet atome, nous partant de l’atome \(X \) neutre.

\[X_g \rightarrow X_g^+ + e^- \]

De manière analogue, on définit pour un atome \(X \) les potentiels de \(2^{\text{ème}}, 3^{\text{ème}} \) ionisation correspond à l’arrachement de :

2\text{ème} électron : \(X_g^+ \rightarrow X_g^{2+} + e^- \), du :

3\text{ème} électron : \(X_g^{2+} \rightarrow X_g^{3+} + e^- \)

jusqu’au \(n^{\text{ème}} \)… électron :

\[X_g^{n+} \rightarrow X_g^{n+1} + e^- \]; Avec : \(E_{I_1} < E_{I_2} < E_{I_3} \)

Seul les éléments ayant de faible énergie d’ionisation ceux du bloc s, bloc d, du bloc f et de la première partie inférieur gauche de bloc p peuvent former des solides métalliques, parce que eux seuls perd facilement des électrons.

Les éléments de la partie supérieure droite du tableau périodique ont des énergies d’ionisation élevées: ils ne perdent pas facilement leurs électrons et ne sont donc pas des métaux.

L’énergie de deuxième ionisation est plus élevée que l’énergie de première ionisation, pour un même élément, est beaucoup plus élevées si électron doit être arraché à un couche complète.

Dans une même période l’énergie d’ionisation augmente de gauche à droite, car la charge effective du noyau augmente.
Exemple :

\[^3\text{Li} : 1s^22s^1 \quad ; \quad E_I = 520 \text{ Kj/mol} \]

\[^9\text{F} : 1s^22s^12p^5 \quad ; \quad E_I = 1681 \text{ Kj/mol} \]

Dans une même colonne la charge effective augmente en allant de haut vers le bas l’énergie d’ionisation diminue

Exemple :

\[^3\text{Li} : 1s^22s^1 \quad ; \quad E_I = 520 \text{ Kj/mol} = 5,4\text{eV} \]

\[^{37}\text{Rb} : 1s^22s^22p^63s^23p^64s^43d^{10}6p^66s^1 \quad ; \quad E_I = 402 \text{ Kj/mol} = 4,2\text{eV} \]

Figure V-6 : L’évolution de l’énergie d’ionisation \(E_I \) (en eV) dans le tableau périodique

V-5-4 Affinité électronique

Affinité électronique (\(A_E \)) est l’énergie dégagée lorsque l’atome en phase gazeuse capte un électron.

Les affinités électroniques sont plus élevées vers l’angle supérieur droit du tableau périodique, près du triangle formé par l’oxygène, le fluor et le chlore. Dans ces atomes, l’électron entrant occupe une orbitale p proche d’un noyau très chargé et ressent très fortement son attractions

Dans une même période (ligne) lorsque \(Z \) augmente, l’affinité électronique (\(A_E \)) augmente.

Dans un même groupe (colonne) lorsque \(Z \) augmente, la fixation électronique est plus difficile et l’affinité électronique (\(A_E \)) diminue.
L’affinité électronique varie dans le même sens que \((E_i) \): les atomes qui retiennent fortement leur électron (\(E_i \) forte) sont aussi ceux qui en captent facilement un ou plusieurs électron (\(A_E \) forte)

Exemple: \(^{17}\text{Cl} \) : \(A_E = 349 \text{ KJ/mol} \) ; \(^{35}\text{Br} \) : \(A_E = 325 \text{ KJ/mol} \)

V-5-5 L’électronégativité

L’électronégativité \((E_N) \) c’est une grandeur qui mesure l’aptitude d’un élément pour attirer vers lui les électrons au sein d’une liaison d’où l’apparition de charges partielles \(\delta^- \) et \(\delta^+ \):

\[
A^\delta^+ \rightarrow A^\delta^- ; \quad \text{B est plus électronégatif.}
\]

L’électronégativité n’est pas définie pour un atome isolé, car elle correspond à la tendance d’un atome lié (non isolé) à attirer les électrons des autres atomes de la molécule ou l’ion dans les quels il est engagé.

L’électronégativité est une grandeur relative. Il existe différents échelles d’électronégativité :

V-5-5-1 Echelle de MILLIKAN

Selon l’échelle de MILLIKAN l’électronégativité est calculée par la formule suivante :

\[
E_N = \frac{K}{2} (E_{I_1} + A_E) ; \quad \text{avec: } K = 0,317 ; (A_{E_1} \text{ et } E_{I_1}) \text{ en eV}
\]

Exemple :

Calculer l’électronégativité du fluor F :

Données :

\(A_{E_1} \) et \(E_{I_1} \) de l’atome de fluor sont respectivement : 3,40 eV et 17,40 eV

\[
E_N = \frac{0,317}{2} (17,4 + 3,4) = 3,3
\]

V-5-5-2 Echelle de PAULING

Basé sur les énergies de dissociations des liaisons de molécules diatomiques simples :

\(E_{A-A} \), \(E_{B-B} \), \(E_{A-B} \) en KJ/mol. Les énergies de dissociations c’est l’énergie que l’ont doit fournir pour rompre une liaison entre deux atomes A-A ; B-B et A-B.
La différence d’électronégativité entre les éléments A-B est exprimée par :

\[\Delta X_{A-B} = |EN_B - EN_A| = 0,102 \sqrt{E_{A-B} - \sqrt{(E_{A-A})(E_{B-B})}} \]

Exemple :

Calculer l’électronégativité de l’hydrogène dans la molécule HF

Données :

\[E_{H-H} = 432 \text{ Kj/mol} \; ; \; E_{F-F} = 153 \text{ Kj/mol} \; ; \; E_{H-F} = 563 \text{ Kj/mol} \; ; \; EN_F = 4,00 \]

\[|EN_F - EN_H| = 0,102 \sqrt{563 - \sqrt{(153)(432)}} = 1,78 \]

\[\Rightarrow EN_H = EN_F - 1,78 = 4-1,78 = 2,2 \]

V-5-5-3 Echelle d’ALLRED-ROCHOW

L’électronégativité par l’échelle de d’ALLRED-ROCHOW est calculé par la loi suivante:

\[E_N = \frac{3590}{r_c^2} Z_{eff} \], avec \(r_c \) est le rayon covalent; \(Z_{eff} \) représente la charge effective de l’élément.

L’électronégativité augmente de gauche à droite dans une ligne du tableau périodique, par ailleurs l’électronégativité diminue de haut en bas dans une même colonne.

Figure V-7 : L’évolution EN, AE et EI dans le tableau périodique
V-6 Calcul des énergie des polyélectroniques par la règle de Slater

V-6-1 Généralités sur la méthode de Slater

La répulsion inter-électronique interdit l’utilisation du modèle de Bohr pour les atomes autres que les hydrogénoïdes, atome quelconque ne portant qu’un seul électron. Il existe différentes méthodes pour pallier cet inconvénient. Nous détaillons ici celle mise au point par J.S. Slater en 1930.

Dans la méthode que nous détaillons, on calcule la charge effective en considérant que les nombreuses interactions électrostatiques (attractions-répulsions) dans un atome peuvent être ramenées à un petit nombre d’interactions simples à quantifier.

On considère donc l’attraction entre les \(Z \) protons du noyau et un électron \(E \) quelconque de l’atome. L’attraction est perturbée par les électrons situés entre le noyau et l’électron \(E \). Ces électrons forment un écran. On définit alors une constante d’écran qui dépendra de la position des électrons de l’atome par rapport à l’électron \(E \). La charge \(Z \) du noyau de l’atome devient alors une charge effective \(Z^* \) relative à l’électron \(E \) :

Le modèle de Bohr donne l’expression du rayon des orbites permises pour les atomes hydrogénoïdes : \(r = a_0 \frac{n^2}{Z} \); \(a_0 = 0,53A^0 \)

Pour les atomes polyélectroniques on remplace \(Z \) par \(Z^* \) et on suppose que le rayon de l’atome est proportionnel à l’orbite de Bohr correspondant à la couche de valence de l’atome considéré : \(r = a_0 \frac{n^2}{Z^*} \)

L’énergie totale de l’atome va tout simplement être évaluée par la somme des énergies individuelles de tous ses électrons.

Bohr : \(E_n = -13,6 \frac{Z^*^2}{n^2} \) Slater : \(E_n = -13,6 \frac{Z^*^2}{n^2} \) avec : \(Z^* = Z - \sum \delta_i \) où \(\delta \) est appelée la constante d’écran.

V-6-2 Calcul de la charge effective

Il faut suivre les étapes suivantes :

1. Ecrire la configuration électronique de l’élément et l’ordonner selon : \((1s) \) (2s,2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) (5d) (5f)...
2. Choisir l’électron pour lequel on cherche la charge effective. Tous les autres électrons apporteront une contribution partielle \(\delta_i \) à la constante d’écran totale \(\delta \). Cette contribution dépend :

- du type d’orbitale \((s, p, \) ou \((f) \) de l’électron,
- de la couche électronique \(n \) de l’électron.
3. La valeur de δ est résumée dans le tableau suivant.

Tableau V-4 : Les constantes d’écran suivant les couches n et les sous couche spdf

<table>
<thead>
<tr>
<th>Électron d’origine</th>
<th>Contribution des autres électrons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n-2</td>
</tr>
<tr>
<td>s, p</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>1</td>
</tr>
</tbody>
</table>

V-6-2-1 Exemples de calculs de charges effectives

1. **Charge effective d’un électron externe de l’azote**

L’azote γN a pour configuration électronique : $1s^2 2s^2 2p^3$. On peut l’écrire sous la forme :

$$(1s)^2 (2s, 2p)^5.$$

Un électron de la couche externe (2s, 2p) a donc comme électrons d’écran :

- 4 électrons (s, p) de la couche n : $\delta_i = 0,35$,
- 2 électrons s de la couche n-1 : $\delta_i = 0,85$.

On en déduit :

$$\delta = (2 \times 0,85) + (4 \times 0,35) = 3,10$$

Donc la charge effective :

$$Z^* = Z - \delta = 7 - 3,1 = 3,9$$

2. **Charge effective d’un électron 4s du zinc**

La configuration du γZn est : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$ que l’on réécrit comme :

$$(1s)^2 (2s, 2p)^6 (3s, 3p)^6 (3d)^{10} (4s)^2.$$ Pour un électron 4s, l’écran est dû à :

- 1 électron s de la couche n : $\delta_i = 0,35$,
- 10 électrons d de la couche n-1 : $\delta_i = 0,85$,
- 8 électrons (s, p) de la couche n-1 : $\delta_i = 0,85$,
- 8 électrons (s, p) de la couche n-2 : $\delta_i = 1$,
- 2 électrons s de la couche n-3, $\delta_i = 1$.

On calcule :$\delta = (1 \times 0,35) + (18 \times 0,85) + (10 \times 1) = 25,65$
3. Charge effective d’une électron 3d du zinc

La configuration du 30Zn est réécrite est : (1s)2 (2s, 2p)8 (3s, 3p)8 (3d)10 (4s)2. Pour un électron 3d, l’écran est dû à :

- 2 électron s de la couche n+1 : $\delta_1 = 0$,
- 9 électrons d de la couche n : $\delta_i = 0,35$,
- 8 électrons (s, p) de la couche n : $\delta_1 = 1$,
- 8 électrons (s, p) de la couche n-1 : $\delta_i = 1$,
- 2 électrons s de la couche n-2 : $\delta_i = 1$.

On calcule : $\delta = (9 \times 0,35) + (18 \times 1) = 21,15$

On en déduit : $Z^\# = Z - \delta = 30 - 21,15 = 8,85$

V-7 Application au calcul de l’énergie d’atomes légers polyélectroniques (non-hydrogénoïdes)

V-7-1 Généralités

Pour un atome hydrogénoïde de numéro atomique Z, l’énergie se calcule par :

$$ E = -13,6 \cdot \frac{Z^2}{n^2} \text{ en eV} $$

Pour un atome non-hydrogénoïde, chaque électron contribue à une énergie de :

$$ E_i = -13,6 \cdot \frac{Z_i^\#}{n_i^2} $$

L’énergie totale de l’atome est la somme de la contribution de chaque électron :

$$ E_T = \sum E_i $$

Exemple du lithium

2.1. Calcul de l’énergie de l’atome de lithium

Le lithium 3Li a pour configuration électronique 1s2 2s1. L’électron 2s a pour charge effective :

$$ Z_2^\# = 3 - (2 \times 0,85) = 1,3 $$

Son énergie est : $E_2 = - 13,6 \times 1,3^2 / 2^2 = - 5,75 \text{ eV}$
Un des électrons 1s a pour charge effective : \(Z_1^* = 3 - (1 \times 0,30) = 2,7 \)

Son énergie est : \(E_1 = -13,6 \times 2,65^2 / 1^2 = -99,14 \text{ eV}. \)

L’énergie totale est donc :

\[
E_T = E_2 + 2E_1 = -2,65 - 2 \times 99,14 = -200,94 \text{ eV}
\]

V-7-2 Calcul des énergies d’ionisation

Soit l’atome X qui va subir une première ionisation : \(X \rightarrow X^+ + e^- \)

L’énergie d’ionisation est donnée par la relation : \(E_{i_x} = E_{x^+} - E_x \)

L’énergie totale de l’atome va tout simplement être évaluée par la somme des énergies individuelles de tous ses électrons.

Déduction de l’énergie de première ionisation

Lors de la réaction : Li → Li\(^+\) + e\(^-\)

c’est l’électron 2s qui est éjecté. L’énergie de première ionisation \(E_{i_1} \) est donc égale

\[
E_{i_x} = E_{Li^+} - E_{Li} ; E_{Li^+} = 2E_1 ; E_{Li} = E_2 + 2E_1
\]

\[
(2E_1 - E_2 + 2E_1) = -E_2 = -(-5,75) = +5,75 \text{ eV}
\]
CHAPITRE VI : LES LIAISONS CHIMIQUES
Introduction

Les atomes n’existent pas à l’état libre. Ils s’associent entre eux et constituent des édifices chimiques. L’édifice chimique est un assemblage de particules telles que atomes, identiques si le corps est simple, différents si le corps est composé, ou ions, selon que le composé est moléculaire ou ionique.

Exemple :

H_2 ; H_2O ; NaCl.

La cohésion des particules dans l’édifice chimique est due à des interactions entre les différents atomes ou ions mis en jeu qui conduisent à la formation de l’édifice le plus stable. Ces interactions sont appelées liaisons chimiques.

L’étude de la liaison chimique a pour objet d’expliquer comment deux atomes pris dans l’édifice chimique sont liés l’un à l’autre.

VI-1 Conception classique de la liaison atomique

D’après Lewis et Langmuir (1916), la liaison atomique A-B où B peut être identique ou B différent ou identique de A est le résultat de la mise en commun entre les deux atomes A et B d’électrons célibataire de spin opposés, qui s’associent en doublets. Chaque atome acquiert ainsi la configuration électronique d’un gaz rare (ns^2np^6) soit 8 électrons externes.

Le ou les doublet(s) d’électrons mis en commun appartient (tiennent) aussi bien à l’atome A qu’a l’atome B.

Le ou les doublets d’électrons mis en commun se situe (ent) entre les deux noyaux A et B : on dit que la liaison covalent est dirigée selon l’axe des deux noyaux, à la différence de la liaison ionique.

VI-1-1 Couche de valence

Pour les atomes du bloc s ou p, les électrons qui occupent la couche externe de l’atome des orbitales s ou p.

Les atomes du bloc s ou p les éléments qui se termine par ns^xnp^y, avec $0 \leq x \leq 2$ et $0 \leq y \leq 6$, le nombre d’électrons de valence est égale à : $\sum x + y$

Exemple : $sB : 1s^22s^22p^1 \Rightarrow$ que sB a une couche de valence : $2s^22p^1 \Rightarrow$ les électrons de valence = 2+1=3

Les électrons de valence sont les électrons caractérisés par les plus grandes valeurs de couche n si (n-1)d^y n’est pas remplis ($y < 10$) les électrons de la couche d seront pris en considération.
CHAPITRE VI : LES LIAISONS CHIMIQUES

Exemple : Manganèse $^{25}\text{Mn} [\text{Ar}] 3d^54s^2 \Rightarrow$ le nombre des électrons de valence sont $5+2=7$

VI-2 Les différents types de liaisons
Toutes les liaisons chimiques mettent en jeu les électrons de valence des atomes, mais ces derniers interviennent de différentes façons, donnant naissance à plusieurs types de liaisons.

VI-2-1 La liaison covalente
La liaison covalente entre deux atomes A et B non métalliques est la mise en commun de deux électrons, chaque atomes fournit un électron de valence.

Exemple :

$1\text{H} : 1s^1 ; 1\text{H} : 1s^1 : \quad \text{H} \quad \text{H} \rightarrow \text{H} \cdots \text{H}$

$8\text{O} : 1s^22s^22p^4$ (couche de valence de O : $2s^22p^4$)

$\text{O} \quad \text{O} \quad \rightarrow \quad \text{O} \quad \text{O}$

VI-2-2 La liaison dative
Dans la liaison dative le doublet électronique assurant la liaison A-B peut ne provenir que d’un seul des deux atomes unis au lieu que chacun apporte un électron. Dans la formation de cette liaison, l’un des atomes est le donneur du doublet, l’autre est l’accepteur du doublet aussi la schématise-t-on par une flèche (\rightarrow).

$\text{A} \quad \text{B} \quad \leftrightarrow \quad \text{A} \quad \text{B}$

Exemple: NH$_4^+$

VI-2-3 La liaison ionique
Dans ce type de liaison il n’y a pas de mise en commun d’électrons. Un atome, généralement un alcalin, cède son électron s^1 à l’autre atome
La liaison ionique est le résultat du transfert d’un ou plusieurs électrons d’un atome à un autre. Les atomes deviennent ainsi des ions ; celui qui cède les électrons (charge positivement) est appelé “cation” et celui qui capte les électrons (chargé négativement) est appelé “anion”.

Le transfert d’électrons s’effectue de l’atome le moins électronégatif vers l’atome le plus électronégatif.

Exemple: Soit le cristal NaCl

\[
\begin{align*}
11\text{Na} : 1s^2 2s^2 2p^6 3s^2 & \rightleftharpoons [\text{Ne}] 3s^1 \\
17\text{Cl} : 1s^2 2s^2 2p^6 3s^2 3p^5 & \rightleftharpoons [\text{Ne}] 3s^2 3p^5
\end{align*}
\]

Lorsque Na et Cl sont en présence l’un de l’autre, Na cède son électron 3s\(^1\), il acquiert la structure électronique de l’argon

\[
\text{Na} \rightarrow \text{Na}^+ + \text{1e}^- \text{ suivie de :}
\]

\[
\text{Cl} + \text{e}^- \rightarrow \text{Cl}^-
\]

La cohérence entre les ions est assurée par l’attraction électrostatique qui s’exerce entre les charges opposées qu’ils portent Na\(^+\) Cl\(^-\)

VI-2-4 La liaison polaire

La liaison covalente pure (H\(_2\), Cl\(_2\), O\(_2\)...) et liaison ionique pure (NaCl, KBr) sont deux cas extrême entre ces deux, entre ces deux cas extrême il existe de nombreux exemple (HCl, HBr, H\(_2\)O, NH\(_3\)...) où la liaison est intermédiaire entre le type ionique et le type covalent.

Dans ces cas intermédiaire, la liaison est dite polarisée, et on parle de liaison covalente à caractère ionique partiel. Plus la différence d’électronégativité entre deux éléments est grande plus leur liaison sera polarisée et plus le caractère ionique sera accentué.

Si un élément A d’électronégativité EN(A) et un élément B d’électronégativité EN(B). Lorsque ces deux éléments sont mis en présence l’un de l’autre,

- Si EN(A) - EN(B) = 0 , la liaison A-B sera covalente pure

Exemple Cl\(_2\)(EN(Cl) = 3,16)

- Si EN(A) - EN(B) < 1,65 ; la liaison sera covalente avec certain caractère ionique ou liaison polaire

Exemple HCl

\[
\text{EN(Cl)} = 3,16 ; \text{EN(H)} = 2,1 \Rightarrow \text{EN(Cl)} - \text{EN(H)} = 1,06
\]
CHAPITRE VI : LES LIAISONS CHIMIQUES

- Si EN(A)- EN(B) > 1,65 la liaison sera ionique

En résumé on peut schématiser ces trois liaisons comme suite :

<table>
<thead>
<tr>
<th>Liaison covalente</th>
<th>Liaison polaire</th>
<th>Liaison ionique</th>
<th>EN(A)- EN(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1,65</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI- Diagramme de LEWIS

La structure de Lewis consiste à définir l'allocation des électrons sur ou entre les atomes de la molécule. Seuls les électrons de valence sont considérés. On obtient ainsi une certaine vision de la structure électronique de la molécule par ses doublets libres.

Dans cette représentation, les électrons célibataires sont notés par des points et les paires d'électrons appariés (des doublets d'électrons) dans une orbitale partagés ou non sont schématisés par un trait (—) (plus rarement par deux points).

La représentation de Lewis schématise la structure électronique externe, on parle aussi de couche de valence.

Les électrons appariés sont représentés par des tirets —

Les électrons célibataires sont représentés par des points •

Le nombre d'électrons célibataires donne la valence de l'atome

Exemple :

\[^7N : 1s^22s^22p^3 : \text{couche de valence} : 2s^22p^3 \quad \bullet \quad \text{N} \bullet \]

\[^17\text{Cl} : 1s^22s^22p^6 \text{3s}^2\text{3p}^5 : \text{couche de valence} : \text{3s}^2\text{3p}^5 \quad \text{Cl} \bullet \]

VI-1 Diagramme de Lewis des molécules

Lorsque deux atomes sont liés chacun d’entre eux tend à avoir une couche externe saturée analogue à celle des gaz rares ns^2np^6, chaque atome possède ainsi huit électrons, c’est la règle de l’octet.

Exemple : La molécule de dioxyde de carbone CO₂

VI-1-1 Règle de l’octet

Lorsque deux atomes se combinent entre eux pour former une liaison stable, chacun d'eux acquiert la configuration électronique externe ns^2np^6 du gaz rare le plus proche. Chaque atome possède ainsi huit électrons, soit quatre doublets sur sa couche externe.
Exemple :

De nombreux cas font l’exception de cette règle et ne sont pas régis par la règle de l’octet mais la règle de duet.

\[\begin{align*}
\text{H} : & \quad 1s^1, \\
\text{H}_2 : & \quad 1s^2, \\
\text{B} : & \quad 1s^2 2s^2 2p^1
\end{align*} \]

Exemple: BF\(_3\)

VI-2 Diagramme de LEWIS des ions moléculaire.

L’ion carbonate CO\(_3^{2-}\)

VI-3 Moment dipolaire et caractère ionique partiel de la liaison

Pour une molécule hétéronucléaire AB partiellement polarisée on assiste à un transfère de charge d’une δ (δ < 1,6 x 10\(^{-19}\)) de l’élément le moins électronégative vers l’élément le plus électronégatif, la molécule est assimilée alors à un dipôle électrique que l’on schématise par :

\[A^{\delta-} \longrightarrow \delta^{\delta+} \]

Ce dipôle est caractéré par son moment dipolaire ou moment électrique \(\mu_{AB} \) , que l’on représente par un vecteur orienté de la charge négative vers la charge positive, soit de l’élément le plus électronégatif vers l’élément le moins électronégatif. \(\mu_{AB} \) mesure la polarisation de la liaison A-B. Il s’exprime en coulomb x mètre (Cb x m) dans le système international (S.I). Une unité plus commode pour exprimer le moment dipolaire est le Debye (D) : 1D = 3,33 x 10\(^{-30}\) coulomb.

Pour une liaison ionique à 100% ionique on a : \(\mu_{AB} = e.l \)

Pour une molécule polyatomique, le moment dipolaire est la somme géométrique des moments dipolaire des différentes liaisons de la molécule : \(\mu = \sum \mu_i \), \(\mu_i \) est le moment dipolaire de la liaison i

Exemple : H\(_2\)O : \(\mu_{H_2O} = \mu_{O-H} + \mu_{O-H} \)

Pour les liaisons covalentes polarisées on calcule le pourcentage de caractère ionique de la liaison à partir de la formule suivante:

\[\%_{\text{ionique}} (A - B) = 100, \frac{\mu_{A-B}(\text{expérimental})}{\mu_{A-B}(\text{expérimental})} = 100, \frac{\delta.l}{e.l} \]
Avec :

l : Longueur de la liaison A-B

e : Charge de l’électron

d : Charge partielle

Exemple : soit à calculer le pourcentage ionique de la liaison O-H dans la molécule d’eau. On donne :

l(O-H) = 0,98Å

HOH = 105°

\(\mu_{H_2O} = 1,84 \text{D} \)

Figure VI-1 : Décomposition du moment dipolaire de H₂O

\[
\overrightarrow{\mu_{H_2O}} = \overrightarrow{\mu_1} + \overrightarrow{\mu_2}, |\overrightarrow{\mu_1}| = |\overrightarrow{\mu_2}| = \mu_{H_2O}, \quad \mu_{H_2O} = 2 \mu_{O-H} \cos \frac{\alpha}{2} \Rightarrow
\]

\[
\frac{\mu_{H_2O}}{2 \cos \frac{\alpha}{2}} = \frac{1,84}{2 \cos \frac{105°}{2}} = 1,60 \text{D (expérimental)}
\]

\(\mu_{O-H}(100\% \text{ ionique}) = e.l(O - H) = 1,910^{-19}.0,958.10^{-10} = 1,53610^{-29} \text{Cb.m} \)

1D = 3,33 x 10^{-30} \text{Cb.m} \Rightarrow \mu_{(O-H)} = 4,598D

Le pourcentage ionique de la liaison O-H est :

\(\% \text{ ionique (O-H)} = \frac{1,60}{4,598} = 34,8\% \)

VI-4 Géométrie des molécules : théorie de Gillespie ou VSEPR

La représentation de Lewis permet de déterminer l’enchaînement des atomes mais elle ne donne pas d’information sur la géométrie des molécules.

Théorie de Gillespie ou méthode VSEPR (Valence Shell Electron Pair Répulsion). C’est une méthode assez récente (1960), objectif de cette théorie est de prévoir la géométrie des molécules

Les doublets d’électrons externes (liants ou non liants) d’un même atome se repoussent les uns les autres : la géométrie adaptée alors par une molécule est celle pour laquelle
les doublets d’électrons externes de chaque atome s’écartent au maximum les uns des autres.

La méthode VSEPR permet, après analyse du schéma de Lewis, de prévoir la géométrie des molécules ou ions simples.

Elle s’applique à des molécules ou des ions du type : \(AX_nE_p \)

A désigne l’atome central qui est lié à \(n \) atomes X et qui possède \(p \) paires d’électrons libres (ou \(p \) doublets non liants).

VI-4-1 Principe de la méthode :

La géométrie d’une molécule ou d’un ion dépend du nombre total de paires d’électrons (doublets d’électrons) de la couche de valence de l’atome central A.

Les paires d’électrons de la couche de valence de l’atome central se disposent de façon à ce que leurs répulsions mutuelles soient minimales (c’est-à-dire que leurs distances soient maximales)

VI-4-1-1 Molécules de type \(AX_n \) avec liaisons simples.

Pour appliquer la méthode VSEPR :

- On compte les paires liantes de la couche de valence de l’atome central en s’aidant de la formule de Lewis
- On en déduit la géométrie de la molécule ou de l’ion en s’aidant du tableau.

Applications :

a)- Donner la géométrie des molécules suivantes : \(\text{BeCl}_2, \text{BF}_3, \text{CH}_4. \)

Pour appliquer la méthode VSEPR :

- On compte les paires liantes de la couche de valence de l’atome central en s’aidant de la formule de Lewis
- On en déduit la géométrie de la molécule ou de l’ion en s’aidant du tableau.
Tableau VI-1: Configuration des molécules de type AX_n avec liaisons simples.

<table>
<thead>
<tr>
<th>Type de molécule</th>
<th>AX_2</th>
<th>AX_3</th>
<th>AX_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre de paires liantes d’électrons</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Géométrie de la molécule</td>
<td>Atome central digonal $X—A—X$ Molécule linéaire</td>
<td>Atome central trigonal Molécule trigonale plane</td>
<td>Atome central tétragonal Molécule tétraédrique</td>
</tr>
</tbody>
</table>

Exemple

- $\ell_{\text{Be}-\text{Cl}} = 225 \text{ pm}$
 $\alpha = 180^\circ$
 Molécule linéaire

- $\ell_{\text{B}-\text{F}} = 129 \text{ pm}$, $\alpha = 120^\circ$
 Molécule trigonale plane

- $\ell_{\text{C}-\text{H}} = 109 \text{ pm}$, $\alpha = 109^\circ28'$
 Molécule tétraédrique

VI-4-1-2 Molécules de type AX_n avec liaisons multiples.

On compte le nombre de liaisons entourant l’atome central, chaque liaison multiple comptant comme une liaison simple.

On en déduit la géométrie de la molécule ou de l’ion conditionnée par la répulsion minimale.

Remarque :
- Une liaison multiple est toutefois plus répulsive qu’une simple liaison.
- Une triple liaison est plus répulsive qu’une double liaison.
- Les angles formés par des doubles liaisons sont plus grands que ceux formés par des simples liaisons

Tableau VI-2: Exemples de molécules de type AX_n :

<table>
<thead>
<tr>
<th>Exemple de la molécule</th>
<th>Schéma de Lewis de la molécule :</th>
<th>Géométrie de la molécule</th>
<th>Type de molécule</th>
</tr>
</thead>
</table>
| La molécule de dioxyde de carbone CO$_2$ | $\begin{array}{c}
O = C = O \\
\end{array}$ | O = C = O | AX$_2$ |
| La molécule de dioxyde de carbone C$_2$H$_4$ | $\begin{array}{c}
H - C = C - H \\
H \quad H \\
\end{array}$ | $\begin{array}{c}
H \\
H \\
\end{array}$ | AX$_3$ |

VI-4-1-3 Molécules de types AX_nE_p.

Méthode VSEPR.

On compte le nombre total de paires d’électrons liés et libres entourant l’atome central sans les différencier.

On en déduit la géométrie de la molécule ou de l’ion conditionnée par la répulsion minimale.

Une paire d’électrons libres est plus répulsive qu’une paire d’électrons liés.

L’angle entre deux paires libres est plus grand que l’angle entre deux paires liantes.
Tableau VI-3: Configuration des molécules de type AXₙEₚ

<table>
<thead>
<tr>
<th>Paires libres E</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type de molécules</td>
<td>AX₃E₁</td>
<td>AX₃E₂</td>
<td>AX₃E₁</td>
</tr>
<tr>
<td>Géométrie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angle</td>
<td>α < 109,5°</td>
<td>α < 109,5°</td>
<td>β < 120°</td>
</tr>
<tr>
<td>Structure</td>
<td>Pyramidale trigonale</td>
<td>Angulaire ou coudée</td>
<td>Structure angulaire</td>
</tr>
<tr>
<td>Exemple</td>
<td>L’ion oxonium H₃O⁺ a une structure Pyramidale à base triangulaire α < 109,5° α ≈ 107,5°</td>
<td>La molécule d’eau H₂O Molécule coudée α < 109,5°, α ≈ 104,5°</td>
<td>La molécule d’ozone O₃ α ≈ 120°</td>
</tr>
</tbody>
</table>
VI-5 La liaison chimique dans le modèle quantique

VI-5-1 Principe

Dans la théorie de la liaison de valence (L.V.), lorsque deux atomes A et B forment une liaison covalente, seuls leurs électrons mis en commun perdent leur individualité et se localisent entre les deux atomes et les orbitales atomiques des électrons qui n’entrent pas en liaison ne sont pas modifiées. Cette méthode étudie chaque doublet de liaison indépendamment du reste de la molécule.

Supposant que les atomes A et B mettent chacun un électron en commun que l’on note (1) pour l’atome A et (2) pour l’atome B

Avant qu’il y ait liaison, chacun des deux électrons est décrit par une fonction d’onde distincte, $\psi_A(1)$ pour l’électron (1) et $\psi_B(2)$ pour l’électron (2) aux quelle correspond deux domaine de probabilité de présence, soit deux orbitales atomiques distinctes : OA(1) et OA(2)

Dans la molécule AB (atomes liées), les électrons (1) et (2) ne sont pas discernables, ils appartiennent aussi bien à A qu’a B. Ils seront décrit par une fonction d’onde unique ψ_{AB} qui s’exprime par : $\psi_{AB} = c_1 \psi_A(1) \psi_B(2) + c_2 \psi_A(2) \psi_B(1)$

A la ψ_{AB} correspond un domaine de probabilité de présence des électrons de liaison qui résulte de l’interpénétration ou recouvrement des orbitales atomiques OA(1) et OA(2) et que l’on appelle orbitale moléculaire (O.M.)

VI-5-2 Formation et nature des liaisons :

Pour qu’il y ait liaison, les signes de la fonction ψ_A et ψ_B doivent être les même sur les orbitales qui se recouvrent

Le recouvrement a lieu dans la direction où les orbitales sont concentrées les lobes orbitaux et la liaison est d’autant plus forte que le recouvrement des O.A. est plus important.

VI-5-2-1 liaison σ

Lorsque le recouvrement des O.A. est axial, la liaison est dite δ (liaison sigma)

Figure VI-2: Liaison σ qui se résulte du recouvrement axial de deux orbitales s, p
VI-5-2-2 liaison π

Dans le cas d’un recouvrement latéral la liaison est dite π (liaison pi)

Du point de vue énergétique, la liaison π est plus faible que la liaison δ

Exemple : • molécule H₂

₁H : 1s¹, la liaison δ (Hₐ - Hₐ) est obtenu par recouvrement axial des O.A. 1s(ₐ) et 1s(ₐ)

![Figure VI-3 : structure de la molécule H₂](image)

• molécule Cl₂

₁₇Cl : [Ne]3s²3p⁵

Les électrons mis en commun lors de la formation de la molécule Cl₂ occupent les O.A. p. La liaison δ (Cl-Cl) résulte donc du recouvrement axial de deux O.A. de type p

![Figure VI-4 : Structure de la molécule Cl₂](image)

• molécule HCl

₁H : 1s¹, ₁₇Cl : [Ne]3s²3p⁵

Lors de la formation de la liaison δ (H-Cl) il y a recouvrement de l’O.A 1s de l’hydrogène et l’O.A. 3pₓ du chlore

![Figure VI-5 : Structure de la molécule HCl](image)
molecule O$_2$

$\text{O : [He] } 2s^22p^4$

L’oxygène possède deux électrons célibataires. Il pourra donc donner 2 liaisons ou encore 2 O.M. qui résulte de la fusion des deux orbitales atomiques p de chacun des deux atomes d’oxygènes.

Figure VI-6: structure de la molécule O$_2$

La cohésion des atomes O(a) et O(b) dans la molécule O$_2$ est assurée par deux liaisons différentes : une liaison δ_z qui provient du recouvrement axial $2p_z(a)$-$2p_z(b)$ et une liaison π_x qui résulte du recouvrement latéral des deux O.A. $2p_x(a)$-$2p_x(b)$.

molecule N$_2$

$\text{N: [He] } 2s^22p^3$

L’atome d’azote possède 3 électrons célibataires sur sa couche de valence. La formation de la molécule N$_2$ résulte de la mise en commun de 3 doublets, soit formation de 3 O.M.

Figure VI-7: structure de la molécule N$_2$
VI-6 Théorie des orbitales moléculaires (T.O.M) (méthode LCAO)

VI-6-1 Principe

La théorie des orbitales moléculaires a été établie par Hund et Milliken vers les mêmes années que la théorie de la liaison de valence (L.V.)

Contrairement à la méthode L.V., dans la méthode O.M., les atomes liés perdent complètement leur individualité. La molécule considérée comme un tout et chaque électron contribue à assurer toutes les liaisons de la molécule.

Par analogie à l’atome à l’atome constitué d’un noyau entouré d’un cortège électronique, la T.O.M. traite une molécule comme un ensemble de noyau entouré d’un nuage électronique formé par l’ensemble des électrons de tous les atomes liés.

Un électron d’un atome A est décrit par une fonction \(\psi_A \). Un électron d’une molécule AB, dans la T.O.M. sera décrit par une fonction \(\psi_{AB} \), combinaison linéaire des fonctions d’onde \(\psi_A \) et \(\psi_B \):

\[
\psi_{AB} = C_1 \psi_A \pm C_2 \psi_B
\]

De même qu’à toute fonction d’onde atomique associée une orbitale atomique (O.A), à toute fonction d’onde d’une molécule correspond une orbitale moléculaire (O.M.)

La fonction d’onde \(\psi'_{AB} = C_1 \psi_A + C_2 \psi_B \) correspond à une orbitale moléculaire liante : O.M.L. ou O.M

La fonction d’onde \(\psi''_{AB} = C_1 \psi_A - C_2 \psi_B \) donne lieu à une orbitale moléculaire antiliante:

O.M.AL. ou O.M*

Figure VI-8 : Formation des orbitales moléculaires
Pour une molécule, la T.O.M. construit un ensemble d’orbitales moléculaires qui seront occupées par les électrons en obéissant aux même règles de remplissage que celles appliquées à l’atome.

Une O.M. représente la zone de probabilité de présence d’un électron d’une molécule et tout comme une O.M., ne peut contenir plus de deux électrons de spins opposés.

VI-6-2 Aspect énergétique

La résolution complète de l’équation de Schrödinger conduit à la valeur des énergies des deux orbitales moléculaires. On trouve que l’énergie de l'orbitale liante est plus basse que celle des atomes séparés ce qui correspond bien à une stabilisation. Inversement l'orbitale anti-liante correspond à une énergie plus élevée ce qui correspond à une désstabilisation.

![Figure VI-9](image.png)

Figure VI-9 : Aspect énergétique de formation des orbitale moléculaire

Le recouvrant les deux orbitales moléculaires de même énergie donnent naissance à deux orbitales moléculaires d'énergies différentes, l'une liante stabilisée et l'autre anti-liante désstabilisée. La désstabilisation de l'orbitale anti-liante est supérieure à la stabilisation de l'orbitale liante.

VI-6-2 Recouvrement des orbitales atomiques

Les O.M. sont des combinaisons linéaires d’orbitales atomiques (C.L.O.A.) que l’on représente graphiquement par le recouvrement des lobes orbitaux des O.A. qui se combine.

Exemple:

\[H_2: \ 1s(1)+1s(2) = \delta_s^l \]
Pour pouvoir être combine linéairement, les O.A. doivent obéir aux trois règles suivantes :

- Les énergies des O.A. qui se combinent doivent être du même ordre de grandeur
- Les lobes orbitaux des O.A. doivent se couvrir au maximum
- Les O.A. qui se recouvrent doivent avoir la même symétrie par rapport à l’axe de la molécule

Tableau VI-4 : Recouvrement permis et interdits entre les différents orbitales

<table>
<thead>
<tr>
<th>Recouvrement permis</th>
<th>Exemple</th>
<th>Recouvrement interdits</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-p</td>
<td>HCl</td>
<td>p_x-p_y</td>
</tr>
<tr>
<td>p_x-p_x</td>
<td>Cl₂, O₂, N₂</td>
<td>p_y-p_z, p_z-p_z</td>
</tr>
<tr>
<td>p_y-p_y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_z-p_z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le recouvrement S de deux O.A. est caractérisé par l’intégrale de recouvrement :

\[
S = \iiint \psi_A \psi_B \, dV
\]

\(\psi_A\) : Fonction d’onde associée à l’orbitale atomique de A

\(\psi_B\) : Fonction d’onde associée à l’orbitale atomique de B

\(dV\) : volume infiniment petit = dx dy dz

Selon le signe du recouvrement, on distingue trois types d’orbitales moléculaires :

- Si \(S > 0\) ⇒ orbitale moléculaire liante (O.M.L. ou O.M\(^{L}\))
- Si \(S < 0\) ⇒ orbitale antiliante (O.M.A.L. ou O.M\(^{A}\))
- Si \(S = 0\) ⇒ orbitale moléculaire non liante (O.M.N.L.)

VI-6-3 Ordre de liaison

Dans la théorie des O.M., on définit l’ordre de liaison \(O.L\.) par la demi-différence entre le nombre d’électron dans les O.M. liantes et le nombre d’électrons dans les O.M. antiliantes.

\[
O.L. = \frac{\sum e^-(O.M.L.) - \sum e^-(O.M.A.L.)}{2}
\]

- Plus l’ordre de la liaison est élevé, plus la molécule est stable.
- Si l’ordre de liaison est nul la molécule ne peut pas exister.
VI-6-4 propriétés magnétiques

La configuration électronique d’une molécule dans son état fondamental est établie en occupant, avec les électrons de valence, les O.M. de niveau d’énergie les plus bas en respectant le principe de Pauling et la règle de Hund.

La molécule considérée est paramagnétique si elle possède au moins un électron célibataire dans sa configuration électronique ; elle est diamagnétique si elle n’en possède pas.

VI-7 Diagramme des niveaux d’énergie

On peut représenter pour tout atome le diagramme d’énergie des O.A., on peut représenter pour toute molécule le diagramme d’énergie des O.M.

L’occupation des O.A.par les électrons donne la configuration électronique de l’atome, et l’occupation des O.M. par les électrons donne la configuration électronique de la molécule.

Soit une molécule diatomique hétéronucléaire AB. On suppose que B est plus électronégatif que A et que A et B possèdent tous deux des O.A. 1s, 2s et 2p.

Figure : VI-10 : Diagramme d’énergie des orbitales moléculaires pour une molécule AB sans interactions \(\sigma_{1s} - \sigma_{2s} \)
Remarque

Par convention, on représente toujours les O.A. de l’atome le plus électronégatif à droite.

Dans une molécule AB sans interaction $\delta_s - \delta_z$, l’écart d’énergie $E_{2s} - E_{2p}$ est grand et le niveau δ_1^l vient alors avant les niveaux π_x^l, π_y^l.

Figure VI-11 : Diagramme d’énergie des orbitales moléculaires pour une molécule AB avec interactions $\sigma_{s} - \sigma_{z}$
CHAPITRE VI : LES LIAISONS CHIMIQUES

Exemples

1-Molécule H₂

Figure VI-12 : Diagramme énergétique de la molécule H₂
• Configuration fondamentale de la molécule H₂ : \((\sigma_{1s})^2\)
• Magnétisme : Les deux électrons sont couplés, la molécule est donc diamagnétique.
• Ordre de liaison : \(\text{O. L. (H₂)} = \frac{2-0}{2} = 1\)

2- Molécule N₂

Figure VI-13 : Diagramme énergétique de la molécule N₂
CHAPITRE VI : LES LIAISONS CHIMIQUES

- Configuration électronique fondamentale de la molécule N₂

\[(\sigma_{1s}^1)^2(\sigma_{1s}^*)^2(\sigma_{2s}^1)^2(\sigma_{2s}^*)^2(\pi_x^1)^2(\pi_y^1)^2(\sigma_f^1)^2 \]

- Magnétisme : Tout les électrons sont appariés, la molécule N₂ est donc diamagnétique.

- Ordre de liaison : O. L. \((N_2) = \frac{10-4}{2} = 3 \)

- Nombre de liaison π :

\[\frac{\sum e^-(O. M. L.)\pi - \sum e^-(O. M. A. L)\pi}{2} = \frac{4 - 0}{2} = 2 \]

- Nombre de liaison σ :

\[\frac{\sum e^-(O. M. L)\sigma - \sum e^-(O. M. A. L)\sigma}{2} = \frac{6 - 4}{2} = 1 \]

3-Molécule O₂

Figure VI-13 : Diagramme énergétique de la molécule O₂
CHAPITRE VI : LES LIAISONS CHIMIQUES

• Configuration fondamentale de la molécule O₂

\[(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_x^*)^2(\pi_y^*)^2(\pi_x)^1(\pi_y)^1\]

• Magnétisme : La molécule O₂ contient deux électrons célibataires, elle est donc paramagnétique

• Ordre de liaison : O.L. (O₂) = \(\frac{10-6}{2} = 2\)

• Nombre de liaison \(\sigma\) : \(\frac{6-4}{2} = 1\)

• Nombre de liaison \(\pi\) : \(\frac{4-2}{2} = 1\)

VI-8 Théorie de l’hybridation des orbitales atomiques

La configuration électronique de l’atome à l’état fondamental ne permet pas, parfois d’expliquer l’existence de certain composé, comme, BeCl₂, BCl₃, CH₄,

Dans ce cas, il est nécessaire d’imaginer un état excité de l’atome qui permette de justifier l’existence de ces composés.

Cependant, si les états excité du béryllium, du bore et du carbone permettent d’expliquer l’existence respective des molécules : BeCl₂, BCl₃, CH₄ il ne font pas apparaître l’identité des deux liaisons Be-Cl, prouvés expérimentalement, dans BeCl₂ ou celle de trois liaisons BCI dans BCl₃ ou encore les trois liaisons C-H dans la molécule CH₄, dans ce cas, il est nécessaire d’introduire la notion d’hybridation des orbitales atomiques.

VI-8-1 Principe d’hybridation

Le phénomène d’hybridation des O.A a été introduit par Pauling (1931) afin d’interpréter certains structures moléculaires pour lesquelles les calcules théoriques ne concordaient pas avec les mesures expérimentales.

Grace à l’hybridation, il est possible de justifier :

• L’équivalence de liaisons de certains composés : BeCl₂, BCl₃, CH₄ PCl₅,

• Les angles de liaisons dans certains composés : H₂O, NH₃,

Le phénomène d’hybridation consiste en une réorganisation de O.A d’un atome pour donner des orbitales hybrides (O.H) identiques, de même énergie et de même forme orientées suivant une symétrie bien défini et qui est celle de la molécule.

• Les O.H sont des combinaisons linéaires de O.A. qui ont été hybridées.
CHAPITRE VI : LES LIAISONS CHIMIQUES

Le nombre d’orbitale hybridé est égal à celui des orbitales atomiques participant à l’hybridation.

Dans une molécule AXₙ, l’hybridation concerne généralement les O.A. de l’atome central A.

Exemple : CH₄ : hybridation des O.A. s, pₓ, pᵧ et pᵦ du carbone ce qui implique 4 O.H.

Exemple : soit la molécule CH₄

CH₄ : 6O (état fondamental) : 1s², 2s², 2p²

2s²

2p²

couche de valence

C⁺ (état excité)

2s¹ 2p¹

tétravalent

L’hybridation est un procédé de calcule et les O.H. n’ont aucun réalité physique

VI-8-2 Les différents types d’hybridation

L’hybridation porte généralement sur les O.A. s, p ; suivant le nombre et la nature des O.A. qui sont hybridées, on distingue plusieurs types d’hybridations

VI-8-2-1 L’hybridation sp

Exemple : BeCl₂ :

L’expérience montre que les deux liaisons Be-Cl sont identiques.

⁴Be : [He] 2s²

³⁷Cl : [Ne] 3s² 3p⁵

L’état fondamental du béryllium ne laisse pas prévoir deux liaisons ; pour ce faire, on envisage un état excité de Be.

Couche de valence

Be⁺ (état excité) : [He] 2s¹ 2p¹ soit

2s¹ 2p¹

Si l’on conserve les O.A. du béryllium tel quelles, on devrait avoir deux liaisons différentes :
- L’une proviendrait du recouvrement de l’O.A. 2s de Be l’A.O. 3p de Cl(a).
- L’autre proviendrait de recouvrement de l’O.A. 2p de Be avec l’O.A. 3p de Cl(b).

Pour justifier l’équivalence des deux liaisons Be-Cl on hybride les deux O.A. 2s et 2p de Be, on obtient ainsi deux O.H. « sp » et l’on dit que le beryllium a été hybridé « sp » ou bien que l’on a une hybridation « sp »

Les deux liaisons Be-Cl provient alors chacune du recouvrement d’une O.H. sp de Be avec une O.A. p de Cl

état hybridé de Be : Be hybridé

![Hybridation sp](image)

Figure VI-14 : Structure ou géométrie de la molécule BeCl₂

Les deux liaisons Be-Cl résulte d’un recouvrement axial, elles sont donc de type δ

VI-8-2-2 L’hybridation sp²

Exemple de la molécule BCl₃ : expérimentalement les trois liaisons sont identiques

État fondamental : 3B : [He] 2s²2p¹

État excité de B : B*

L’existence de 3 liaisons implique 3 électrons célibataires sur le bore d’où l’état excité :
CHAPITRE VI : LES LIAISONS CHIMIQUES

B*: [He] 2s² 2p²

* Etat hybride

Pour justifier l’équivalence des 3 liaisons B-Cl on combine les O.A. s, px, py, de B on obtient ainsi 3 O.H.sp² identiques.

B hybridé

Les trois O. A. sont dirigés suivant les sommets d’un triangle équilatéral.

• Structure ou géométrie de la molécule BCl₃

Chaque liaison B-Cl provient de recouvrement axial d’une O.H sp² de B avec une O.A. p de Cl. On obtient ainsi 3 liaisons δ

La molécule est plane, les 3 liaisons δ faisons entre elles des angles de 120°

Figure VI-15: Structure ou géométrie de la molécule BCl₃
VI-8-2-3 L'hybridation sp³

Exemple de la molécule CH₄ :

D’après l’expérience les 4 liaisons C-H sont identiques

Etat fondamental du carbone C :

\[
\begin{align*}
\text{C} : & \ [\text{He}] 2s^2 2p^2 \quad \text{soit} \quad \uparrow \uparrow \\
\text{H} : & \ 1s^1 \quad \text{soit} \quad \uparrow
\end{align*}
\]

Etat excité de carbone C^*

L’état fondamental du carbone ne fait pas apparaître la valence 4 de C dans CH₄, d’où l’état excité.

\[
\begin{align*}
\text{C}^* : & \ [\text{He}] 2s^1 2p^3 \quad \text{soit} \quad \uparrow \uparrow \uparrow \uparrow
\end{align*}
\]

- Etat hybride

Pour obtenir 4 liaisons C-H identiques, il faudrait 4 orbitales identiques sur le carbone d’où l’hybridation de l’O.A s et des 3 O.A. p de C. Le carbone est ainsi hybride en sp³ et l’on obtient 4 O.H identiques sp³ dirigées suivant les sommets d’un tétraèdre

\[
\begin{align*}
\text{C hybride} & \quad \uparrow \uparrow \uparrow \uparrow \\
\text{sp}^3
\end{align*}
\]

Structure ou géométrie de la molécule CH₄

Figure VI-16 : Structure de la molécule CH₄
Références bibliographiques
Références bibliographiques

2- P. Arnaud, Cours de Chimie générale, DUNOD, 2013.
3- M. Quarrie. RoCk, Chimie générale, de boeck, 1993.
Annexes
Annexe 1 Constantes physique fondamentales

<table>
<thead>
<tr>
<th>Constante</th>
<th>Symb</th>
<th>Valeur</th>
<th>Incertitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitesse de la lumière dans le vide</td>
<td>c</td>
<td>$299 792 458 \text{m/s}$</td>
<td>valeur exacte</td>
</tr>
<tr>
<td>Perméabilité du vide</td>
<td>μ_0</td>
<td>$4\pi \times 10^{-7} \text{H/m}$</td>
<td>valeur exacte</td>
</tr>
<tr>
<td>Permittivité du vide</td>
<td>ε_0</td>
<td>$8.854187817 \times 10^{-12} \text{F/m}$</td>
<td>valeur exacte</td>
</tr>
<tr>
<td>Constante gravitationnelle</td>
<td>G</td>
<td>$6.6742 \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2}$</td>
<td>1.5×10^{-4}</td>
</tr>
<tr>
<td>Constante de Planck</td>
<td>\hbar</td>
<td>$6.626070 \times 10^{-34} \text{J} \cdot \text{s}$</td>
<td>1.7×10^{-7}</td>
</tr>
<tr>
<td>Constante de Planck réduite</td>
<td>\hbar</td>
<td>$1.05457168 \times 10^{-34} \text{J} \cdot \text{s}$</td>
<td>1.7×10^{-7}</td>
</tr>
<tr>
<td>Charge élémentaire (de l’électron)</td>
<td>e</td>
<td>$1.6021765 \times 10^{-19} \text{C}$</td>
<td>8.5×10^{-19}</td>
</tr>
<tr>
<td>Constante de Rydberg</td>
<td>R_∞</td>
<td>$10973731.568525(73) \text{m}^{-1}$</td>
<td>6.6×10^{-15}</td>
</tr>
<tr>
<td>Rayon de Bohr</td>
<td>a_0</td>
<td>$0.5291822108(18) \times 10^{-8} \text{m}$</td>
<td>3.3×10^{-10}</td>
</tr>
<tr>
<td>Masse de l’électron</td>
<td>m_e</td>
<td>$9.1093826 (16) \times 10^{-31} \text{kg}$</td>
<td>1.7×10^{-7}</td>
</tr>
<tr>
<td>Moment magnétique de l’électron</td>
<td>μ_e</td>
<td>$928.476412 (80) \times 10^{-26} \text{J} \cdot \text{T}^{-1}$</td>
<td>8.6×10^{-8}</td>
</tr>
<tr>
<td>Rayon (classique) de l’électron</td>
<td>r_e</td>
<td>$2.817940325 (28) \times 10^{-10} \text{m}$</td>
<td>1.0×10^{-10}</td>
</tr>
<tr>
<td>Rapport gyromagnétique de l’électron</td>
<td>γ_e</td>
<td>$2\mu_e/m_e \approx 1.76085974 (15) \times 10^{10} \text{s} \cdot \text{cm} \cdot \text{T}^{-1}$</td>
<td>8.6×10^{-4}</td>
</tr>
<tr>
<td>Masse du proton</td>
<td>m_p</td>
<td>$1.67262171 (29) \times 10^{-27} \text{kg}$</td>
<td>1.7×10^{-7}</td>
</tr>
<tr>
<td>Moment magnétique du proton</td>
<td>μ_p</td>
<td>$1.4106671 (12) \times 10^{-26} \text{J} \cdot \text{T}^{-1}$</td>
<td>8.7×10^{-8}</td>
</tr>
<tr>
<td>Rapport gyromagnétique du proton</td>
<td>γ_p</td>
<td>$2\mu_p/m_p \approx 2.67522205 (23) \times 10^{9} \text{s} \cdot \text{cm} \cdot \text{T}^{-1}$</td>
<td>8.6×10^{-8}</td>
</tr>
<tr>
<td>Masse du neutron</td>
<td>m_n</td>
<td>$1.67492728 (29) \times 10^{-27} \text{kg}$</td>
<td>1.7×10^{-7}</td>
</tr>
<tr>
<td>Moment magnétique du neutron</td>
<td>μ_n</td>
<td>$0.93823645 (24) \times 10^{-29} \text{J} \cdot \text{T}^{-1}$</td>
<td>2.5×10^{-8}</td>
</tr>
<tr>
<td>Rapport gyromagnétique du neutron</td>
<td>γ_n</td>
<td>$2\mu_n/m_n \approx 1.83247813 (46) \times 10^{10} \text{s} \cdot \text{cm} \cdot \text{T}^{-1}$</td>
<td>2.5×10^{-7}</td>
</tr>
<tr>
<td>Constante d’Avogadro</td>
<td>N_A</td>
<td>$6.0221451 (10) \times 10^{23} \text{mol}^{-1}$</td>
<td>1.7×10^{-7}</td>
</tr>
<tr>
<td>Faraday</td>
<td>\mathcal{F}</td>
<td>$= N_A \cdot \phi = 96485.3383 (83) \text{C} \cdot \text{mol}^{-1}$</td>
<td>8.6×10^{-4}</td>
</tr>
<tr>
<td>Constante des gaz parfaits</td>
<td>R</td>
<td>$8.314472 (15) \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$</td>
<td>1.7×10^{-4}</td>
</tr>
<tr>
<td>Constante de Boltzmann</td>
<td>k_B</td>
<td>$= R/N_A \approx 1.3806505 (24) \times 10^{-23} \text{J} \cdot \text{K}^{-1}$</td>
<td>1.8×10^{-4}</td>
</tr>
<tr>
<td>Constante de Stefan-Boltzmann</td>
<td>σ_s</td>
<td>$= \frac{\pi^5 \cdot k_B^4}{60 \cdot \hbar^3 c^5} \approx 5.670400 (40) \times 10^{-8} \text{W} \cdot \text{m}^{-2} \cdot \text{K}^{-4}$</td>
<td>7.0×10^{-4}</td>
</tr>
<tr>
<td>Constante de la loi de déplacement de Wien</td>
<td>λ_w/T</td>
<td>$= 2.8977685 (51) \times 10^{-3} \text{m} \cdot \text{K}$</td>
<td>1.7×10^{-4}</td>
</tr>
</tbody>
</table>
Annexes 2 Constantes physiques SI

<table>
<thead>
<tr>
<th>Constante</th>
<th>Symb</th>
<th>Valeur</th>
<th>Incertitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANTES UNIVERSELLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitesse de la lumière dans le vide</td>
<td>(c, c_o)</td>
<td>299792458 m.s(^{-1})</td>
<td>valeur exacte</td>
</tr>
<tr>
<td>Permeabilité du vide</td>
<td>(\mu_0)</td>
<td>(4\pi \times 10^{-7} \text{H.m}^{-1})</td>
<td>valeur exacte</td>
</tr>
<tr>
<td>Permittivitivité du vide</td>
<td>(\varepsilon_0)</td>
<td>(\frac{1}{\mu_0 c^2} = 8.854187817 \times 10^{-12} \text{F.m}^{-1})</td>
<td>valeur exacte</td>
</tr>
<tr>
<td>Constante gravitationnelle</td>
<td>(G)</td>
<td>((6.6742(10) \times 10^{-11} \text{m}^3 \text{kg}^{-1} \text{s}^{-2})</td>
<td>1.5 \times 10^{-4}</td>
</tr>
<tr>
<td>Constante de Planck</td>
<td>(\hbar)</td>
<td>((6.6260693(11) \times 10^{-34} \text{Js}))</td>
<td>1.7 \times 10^{-4}</td>
</tr>
<tr>
<td>Constante de Planck réduite</td>
<td>(\hbar)</td>
<td>((\frac{\hbar}{2\pi}) = 1.05457168(18) \times 10^{-35} \text{eV.s})</td>
<td>1.7 \times 10^{-4}</td>
</tr>
<tr>
<td>ATOMIQUE, NUCLEAIRE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge élémentaire (de l’électron)</td>
<td>(e)</td>
<td>((1.60217663(14) \times 10^{-19} \text{C}))</td>
<td>8.5 \times 10^{-4}</td>
</tr>
<tr>
<td>Constante de Rydberg</td>
<td>(R_e)</td>
<td>((\frac{2\pi^3 m_e e^4}{c h^2}) \approx 10973.731568525(73) \text{m}^{-1})</td>
<td>6.6 \times 10^{-15}</td>
</tr>
<tr>
<td>Rayon de Bohr</td>
<td>(\alpha_e)</td>
<td>((\frac{4\pi^2 \hbar^2}{m_e e^2}) \approx 0.5291882108(18) \times 10^{-10} \text{m})</td>
<td>3.3 \times 10^{-9}</td>
</tr>
<tr>
<td>Electron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse de l’électron</td>
<td>(m_e)</td>
<td>((9.1093826(16) \times 10^{-31} \text{kg}))</td>
<td>1.7 \times 10^{-7}</td>
</tr>
<tr>
<td>Moment magnétique de l’électron</td>
<td>(\mu_e)</td>
<td>((-9.28.476412(80) \times 10^{-28} \text{J.T}^{-1})</td>
<td>8.5 \times 10^{-4}</td>
</tr>
<tr>
<td>Rayon (classique) de l’électron</td>
<td>(r_e)</td>
<td>((\frac{e^2}{4\pi\varepsilon_0 c m_e}) \approx 2.817940325(28) \times 10^{-15} \text{m})</td>
<td>1.0 \times 10^{-4}</td>
</tr>
<tr>
<td>Rapport gyro-magnétique de l’électron</td>
<td>(\gamma_e)</td>
<td>((\frac{2</td>
<td>\mu_e</td>
</tr>
<tr>
<td>Proton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse du proton</td>
<td>(m_p)</td>
<td>((1.6726217(29) \times 10^{-27} \text{kg}))</td>
<td>1.7 \times 10^{-7}</td>
</tr>
<tr>
<td>Moment magnétique du proton</td>
<td>(\mu_p)</td>
<td>((1.410667(12) \times 10^{-28} \text{J.T}^{-1})</td>
<td>8.7 \times 10^{-4}</td>
</tr>
<tr>
<td>Rapport gyro-magnétique du proton</td>
<td>(\gamma_p)</td>
<td>((\frac{2</td>
<td>\mu_p</td>
</tr>
<tr>
<td>Neutron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masse du neutron</td>
<td>(m_n)</td>
<td>((1.67492728(29) \times 10^{-27} \text{kg}))</td>
<td>1.7 \times 10^{-7}</td>
</tr>
<tr>
<td>Moment magnétique du neutron</td>
<td>(\mu_n)</td>
<td>((-9.66326465(24) \times 10^{-28} \text{J.T}^{-1})</td>
<td>2.5 \times 10^{-7}</td>
</tr>
<tr>
<td>Rapport gyro-magnétique du neutron</td>
<td>(\gamma_n)</td>
<td>((\frac{2</td>
<td>\mu_n</td>
</tr>
<tr>
<td>CHIMIE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constante d’Avogadro</td>
<td>(N_A)</td>
<td>((6.0221415(10) \times 10^{23} \text{mol}^{-1}))</td>
<td>1.7 \times 10^{-4}</td>
</tr>
<tr>
<td>Faraday</td>
<td>(\bar{e})</td>
<td>((N_A e = 96485.3383(83) \text{C.mol}^{-1})</td>
<td>8.6 \times 10^{-4}</td>
</tr>
<tr>
<td>Constante des gaz parfaits</td>
<td>(R)</td>
<td>((8.314472(15) \text{J.mol}^{-1} \text{K}^{-1}))</td>
<td>1.7 \times 10^{-4}</td>
</tr>
<tr>
<td>Constante de Boltzmann</td>
<td>(k_B)</td>
<td>((\frac{R}{N_A} = 1.3806505(24) \times 10^{-23} \text{J.K}^{-1}))</td>
<td>1.8 \times 10^{-4}</td>
</tr>
<tr>
<td>Constante de Stefan–Boltzmann</td>
<td>(\sigma_n)</td>
<td>((\frac{\pi^2 k_B^4}{60 h c^3}) \approx 5.670400(40) \times 10^{-8} \text{W.m}^{-2} \text{K}^{-4})</td>
<td>7.0 \times 10^{-4}</td>
</tr>
<tr>
<td>Constante de la loi de déplacement de Wien</td>
<td>(\lambda_{wb} T)</td>
<td>((2.8977685(51) \times 10^{-3} \text{m.K}))</td>
<td>1.7 \times 10^{-4}</td>
</tr>
</tbody>
</table>
Annexe 3 Les unités de base du SI

Tableau 1. Unités de base du SI

<table>
<thead>
<tr>
<th>Grandeur de base</th>
<th>Symbole</th>
<th>Unité SI de base</th>
<th>Symbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>longueur</td>
<td>(l, x, r, \text{etc.})</td>
<td>mètre</td>
<td>m</td>
</tr>
<tr>
<td>masse</td>
<td>m</td>
<td>kilogramme</td>
<td>kg</td>
</tr>
<tr>
<td>temps, durée</td>
<td>t</td>
<td>seconde</td>
<td>s</td>
</tr>
<tr>
<td>courant électrique</td>
<td>(I, i)</td>
<td>ampère</td>
<td>A</td>
</tr>
<tr>
<td>température thermodynamique</td>
<td>(T)</td>
<td>kelvin</td>
<td>K</td>
</tr>
<tr>
<td>quantité de matière</td>
<td>(n)</td>
<td>mole</td>
<td>mol</td>
</tr>
<tr>
<td>intensité lumineuse</td>
<td>(I_v)</td>
<td>candela</td>
<td>cd</td>
</tr>
</tbody>
</table>

Tableau 2. Exemples d'unités SI dérivées cohérentes exprimées à partir des unités de base

<table>
<thead>
<tr>
<th>Grandeur dérivée</th>
<th>Symbole</th>
<th>Unité SI dérivée cohérente</th>
<th>Symbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>superficie</td>
<td>(A)</td>
<td>mètre carré</td>
<td>m²</td>
</tr>
<tr>
<td>volume</td>
<td>(V)</td>
<td>mètre cube</td>
<td>m³</td>
</tr>
<tr>
<td>vitesse</td>
<td>(\nu)</td>
<td>mètre par seconde</td>
<td>m/s</td>
</tr>
<tr>
<td>accélération</td>
<td>(a)</td>
<td>mètre par seconde carrée</td>
<td>m/s²</td>
</tr>
<tr>
<td>nombre d'ondes</td>
<td>(\sigma, \tilde{\nu})</td>
<td>mètre à la puissance moins un</td>
<td>m⁻¹</td>
</tr>
<tr>
<td>masse volumique</td>
<td>(\rho)</td>
<td>kilogramme par mètre cube</td>
<td>kg/m³</td>
</tr>
<tr>
<td>masse surfacique</td>
<td>(\rho_s)</td>
<td>kilogramme par mètre carré</td>
<td>kg/m²</td>
</tr>
<tr>
<td>volume massique</td>
<td>(\nu)</td>
<td>mètre cube par kilogramme</td>
<td>m³/kg</td>
</tr>
<tr>
<td>densité de courant</td>
<td>(j)</td>
<td>ampère par mètre carré</td>
<td>A/m²</td>
</tr>
<tr>
<td>champ magnétique</td>
<td>(H)</td>
<td>ampère par mètre</td>
<td>A/m</td>
</tr>
<tr>
<td>concentration</td>
<td>(c)</td>
<td>mole par mètre cube</td>
<td>mol/m³</td>
</tr>
<tr>
<td>de quantité de matière ((a))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>concentration massique</td>
<td>(\rho_v)</td>
<td>kilogramme par mètre cube</td>
<td>kg/m³</td>
</tr>
<tr>
<td>luminance lumineuse</td>
<td>(L_v)</td>
<td>candela par mètre carré</td>
<td>cd/m²</td>
</tr>
<tr>
<td>indice de réfraction ((b))</td>
<td>(n)</td>
<td>un</td>
<td>1</td>
</tr>
<tr>
<td>perméabilité relative ((b))</td>
<td>(\mu_r)</td>
<td>un</td>
<td>1</td>
</tr>
</tbody>
</table>

\((a)\) Dans le domaine de la chimie clinique, cette grandeur est aussi appelée concentration de matière.

\((b)\) Ce sont des grandeurs sans dimension, ou grandeurs de dimension un. Le symbole « 1 » pour l’unité (le nombre « un ») n’est généralement pas mentionné lorsque l’on précise la valeur des grandeurs sans dimension.
Tableau 3. Unités SI dérivées cohérentes ayant des noms spéciaux et des symboles particuliers

<table>
<thead>
<tr>
<th>Grandeur dérivée</th>
<th>Nom</th>
<th>Symbole</th>
<th>Expression utilisant d'autres unités SI</th>
<th>Expression en unités SI de base</th>
</tr>
</thead>
<tbody>
<tr>
<td>angle plan</td>
<td>radian</td>
<td>rad</td>
<td>1 (^{(b)})</td>
<td>m/m</td>
</tr>
<tr>
<td>angle solide</td>
<td>stéradian</td>
<td>sr (^{(b)})</td>
<td>1 (^{(b)})</td>
<td>m(^2)/m(^2)</td>
</tr>
<tr>
<td>fréquence</td>
<td>hertz (^{(a)})</td>
<td>Hz</td>
<td></td>
<td>s(^{-3})</td>
</tr>
<tr>
<td>force</td>
<td>newton</td>
<td>N</td>
<td></td>
<td>m kg s(^{-2})</td>
</tr>
<tr>
<td>pression, contrainte</td>
<td>pascal</td>
<td>Pa</td>
<td>N/m(^2)</td>
<td>m(^{-1}) kg s(^{-2})</td>
</tr>
<tr>
<td>énergie, travail,</td>
<td>joule</td>
<td>J</td>
<td>m kg s(^{-2})</td>
<td>N m</td>
</tr>
<tr>
<td>quantité de chaleur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>puissance, flux énergétique</td>
<td>watt</td>
<td>W</td>
<td>J/s</td>
<td>m(^2) kg s(^{-3})</td>
</tr>
<tr>
<td>charge électrique,</td>
<td>coulomb</td>
<td>C</td>
<td></td>
<td>s A</td>
</tr>
<tr>
<td>quantité d'électricité</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>différence de potentiel électrique</td>
<td>volt</td>
<td>V</td>
<td>W/A</td>
<td>m(^2) kg s(^{-3}) A(^{-1})</td>
</tr>
<tr>
<td>force électromotrice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>capacité électrique</td>
<td>farad</td>
<td>F</td>
<td>C/V</td>
<td>m(^{-2}) kg(^{-1}) s(^{4}) A(^2)</td>
</tr>
<tr>
<td>résistance électrique</td>
<td>ohm</td>
<td>Ω</td>
<td>V/A</td>
<td>m(^{-2}) kg s(^{-3}) A(^{2})</td>
</tr>
<tr>
<td>conductance électrique</td>
<td>siemens</td>
<td>S</td>
<td>A/V</td>
<td>m(^{-2}) kg(^{-1}) s(^{3}) A(^{2})</td>
</tr>
<tr>
<td>flux d'induction magnétique</td>
<td>weber</td>
<td>Wb</td>
<td>V s</td>
<td>m(^{2}) kg s(^{-2}) A(^{-1})</td>
</tr>
<tr>
<td>induction magnétique</td>
<td>tesla</td>
<td>T</td>
<td>Wb/m(^{2})</td>
<td>kg s(^{-2}) A(^{-1})</td>
</tr>
<tr>
<td>inductance</td>
<td>henry</td>
<td>H</td>
<td>Wb/A</td>
<td>m(^{2}) kg s(^{-2}) A(^{-2})</td>
</tr>
<tr>
<td>température Celsius</td>
<td>degré Celsius (^{(a)})</td>
<td>°C</td>
<td></td>
<td>K</td>
</tr>
<tr>
<td>flux lumineux</td>
<td>lumen</td>
<td>lm</td>
<td>cd sr (^{(e)})</td>
<td>cd</td>
</tr>
<tr>
<td>éclairement lumineux</td>
<td>lux</td>
<td>lx</td>
<td>lm/m(^{2})</td>
<td>m(^{-3}) cd</td>
</tr>
<tr>
<td>activité d'un radionucléide (^{(a)})</td>
<td>becquerel (^{(a)})</td>
<td>Bq</td>
<td></td>
<td>s(^{-1})</td>
</tr>
<tr>
<td>dose absorbée,</td>
<td>gray</td>
<td>Gy</td>
<td>J/kg</td>
<td>m(^{2}) s(^{-2})</td>
</tr>
<tr>
<td>énergie massique (communicée),</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>équivalent de dose,</td>
<td>sievert (^{(a)})</td>
<td>Sv</td>
<td>J/kg</td>
<td>m(^{2}) s(^{-2})</td>
</tr>
<tr>
<td>équivalent de dose ambiant,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>équivalent de dose directionnel,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>équivalent de dose individuel,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>activité catalytique</td>
<td>katal</td>
<td>kat</td>
<td></td>
<td>s(^{-1}) mol</td>
</tr>
</tbody>
</table>
Tableau 4. Exemples d'unités SI dérivées cohérentes dont le nom et le symbole comprennent des unités SI dérivées cohérentes ayant des noms spéciaux et des symboles particuliers

<table>
<thead>
<tr>
<th>Grandeur dérivée</th>
<th>Nom</th>
<th>Symbole</th>
<th>Expression en unités SI de base</th>
</tr>
</thead>
<tbody>
<tr>
<td>viscosité dynamique</td>
<td>pascal seconde</td>
<td>Pa s</td>
<td>m⁻¹ kg s⁻¹</td>
</tr>
<tr>
<td>moment d'une force</td>
<td>newton mètre</td>
<td>N m</td>
<td>m² kg s⁻²</td>
</tr>
<tr>
<td>tension superficielle</td>
<td>newton par mètre</td>
<td>N/m</td>
<td>kg s⁻²</td>
</tr>
<tr>
<td>vitesse angulaire</td>
<td>radian par seconde</td>
<td>rad/s</td>
<td>m⁻¹ s⁻¹ = s⁻¹</td>
</tr>
<tr>
<td>accélération angulaire</td>
<td>radian par seconde carrée</td>
<td>rad/s²</td>
<td>m⁻² s² = s⁻²</td>
</tr>
<tr>
<td>flux thermique surfacique, éclairément énergétique</td>
<td></td>
<td>W/m²</td>
<td>kg s⁻³</td>
</tr>
<tr>
<td>capacité thermique, entropie</td>
<td>joule par kelvin</td>
<td>J/K</td>
<td>m² kg s⁻² K⁻¹</td>
</tr>
<tr>
<td>capacité thermique massique, entropie massique</td>
<td>joule par kilogramme kelvin</td>
<td>J/(kg K)</td>
<td>m² s⁻² K⁻¹</td>
</tr>
<tr>
<td>énergie massique</td>
<td>joule par kilogramme</td>
<td>J/kg</td>
<td>m² s⁻²</td>
</tr>
<tr>
<td>conductivité thermique</td>
<td>watt par mètre kelvin</td>
<td>W/(m K)</td>
<td>m kg s⁻³ K⁻¹</td>
</tr>
<tr>
<td>énergie volumique</td>
<td>joule par mètre cube</td>
<td>J/m³</td>
<td>m⁻¹ kg s⁻²</td>
</tr>
<tr>
<td>champ électrique</td>
<td>volt par mètre</td>
<td>V/m</td>
<td>m kg s⁻³ A⁻¹</td>
</tr>
<tr>
<td>charge électrique volumique</td>
<td>coulomb par mètre cube</td>
<td>C/m³</td>
<td>m⁻³ A</td>
</tr>
<tr>
<td>charge électrique surfacique</td>
<td>coulomb par mètre carré</td>
<td>C/m²</td>
<td>m⁻² A</td>
</tr>
<tr>
<td>induction électrique, déplacement électrique</td>
<td>coulomb par mètre carré</td>
<td>C/m²</td>
<td>m⁻² A</td>
</tr>
<tr>
<td>permittivité</td>
<td>farad par mètre</td>
<td>F/m</td>
<td>m⁻³ kg⁻¹ s⁴ A²</td>
</tr>
<tr>
<td>perméabilité</td>
<td>henry par mètre</td>
<td>H/m</td>
<td>m kg s⁻² A⁻²</td>
</tr>
<tr>
<td>énergie molaire</td>
<td>joule par mole</td>
<td>J/mol</td>
<td>m⁻¹ kg s⁻² mol⁻¹</td>
</tr>
<tr>
<td>entropie molaire, capacité thermique molaire</td>
<td>joule par mole kelvin</td>
<td>J/(mol K)</td>
<td>m² kg s⁻² K⁻¹ mol⁻¹</td>
</tr>
<tr>
<td>exposition (rayons x et γ)</td>
<td>coulomb par kilogramme</td>
<td>C/kg</td>
<td>kg⁻¹ A</td>
</tr>
<tr>
<td>débit de dose absorbée</td>
<td>gray par seconde</td>
<td>Gy/s</td>
<td>m² s⁻³</td>
</tr>
<tr>
<td>intensité énergétique</td>
<td>watt par stéradian</td>
<td>W/sr</td>
<td>m³ m⁻² kg s⁻³ = m² kg s⁻³</td>
</tr>
<tr>
<td>luminance énergétique</td>
<td>watt par mètre carré stéradian</td>
<td>W/(m² sr)</td>
<td>m² m⁻² kg s⁻³ = kg s⁻¹</td>
</tr>
<tr>
<td>concentration de l’activité catalytique</td>
<td>katal par mètre cube</td>
<td>kat/m³</td>
<td>m⁻³ s⁻¹ mol</td>
</tr>
</tbody>
</table>
Tableau 5. Préfixes SI

<table>
<thead>
<tr>
<th>Facteur</th>
<th>Nom</th>
<th>Symbole</th>
<th>Facteur</th>
<th>Nom</th>
<th>Symbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>décim</td>
<td>da</td>
<td>10^{-1}</td>
<td>décim</td>
<td>d</td>
</tr>
<tr>
<td>10^2</td>
<td>hecto</td>
<td>h</td>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^6</td>
<td>méga</td>
<td>M</td>
<td>10^{-6}</td>
<td>micro</td>
<td>μ</td>
</tr>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{12}</td>
<td>téra</td>
<td>T</td>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10^{15}</td>
<td>péta</td>
<td>P</td>
<td>10^{-15}</td>
<td>femto</td>
<td>f</td>
</tr>
<tr>
<td>10^{18}</td>
<td>exam</td>
<td>E</td>
<td>10^{-18}</td>
<td>atto</td>
<td>a</td>
</tr>
<tr>
<td>10^{21}</td>
<td>zetta</td>
<td>Z</td>
<td>10^{-21}</td>
<td>zepto</td>
<td>z</td>
</tr>
<tr>
<td>10^{24}</td>
<td>yotta</td>
<td>Y</td>
<td>10^{-24}</td>
<td>yocto</td>
<td>y</td>
</tr>
</tbody>
</table>

Tableau 6. Unités en dehors du SI dont l’usage est accepté avec le SI

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Nom de l’unité</th>
<th>Symbole de l’unité</th>
<th>Valeur en unités SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>temps</td>
<td>minute</td>
<td>min</td>
<td>$1 \text{ min} = 60 \text{ s}$</td>
</tr>
<tr>
<td></td>
<td>heure (a)</td>
<td>h</td>
<td>$1 \text{ h} = 60 \text{ min} = 3600 \text{ s}$</td>
</tr>
<tr>
<td></td>
<td>jour</td>
<td>d</td>
<td>$1 \text{ d} = 24 \text{ h} = 86400 \text{ s}$</td>
</tr>
<tr>
<td>angle plan</td>
<td>degré (b, c)</td>
<td>°</td>
<td>$1^° = (\pi/180) \text{ rad}$</td>
</tr>
<tr>
<td></td>
<td>minute</td>
<td>′</td>
<td>$1′ = (1/60)^° = (\pi/10800) \text{ rad}$</td>
</tr>
<tr>
<td></td>
<td>seconde (d)</td>
<td>″</td>
<td>$1″ = (1/60)' = (\pi/648000) \text{ rad}$</td>
</tr>
<tr>
<td>superficie</td>
<td>hectare (e)</td>
<td>ha</td>
<td>$1 \text{ ha} = 1 \text{ hm}^2 = 10^4 \text{ m}^2$</td>
</tr>
<tr>
<td>volume</td>
<td>litre (f)</td>
<td>L, l</td>
<td>$1 \text{ L} = 1 \text{ l} = 1 \text{ dm}^3 = 10^{-3} \text{ cm}^3 = 10^{-3} \text{ m}^3$</td>
</tr>
<tr>
<td>masse</td>
<td>tonne (g)</td>
<td>t</td>
<td>$1 \text{ t} = 10^3 \text{ kg}$</td>
</tr>
</tbody>
</table>
Annexes

Tableau 7. Unités en dehors du SI dont la valeur en unités SI est obtenue expérimentalement

| Grandeur | Nom de l’unité | Symbole de l’unité | Valeur en unités SI
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>énergie</td>
<td>électronvolt (e)</td>
<td>eV</td>
<td>$1 \text{ eV} = 1,602,176,53 \times 10^{-19} \text{ J}$</td>
</tr>
<tr>
<td>masse</td>
<td>dalton (Da)</td>
<td>Da</td>
<td>$1 \text{ Da} = 1,660,538,86 \times 10^{-27} \text{ kg}$</td>
</tr>
<tr>
<td>longueur</td>
<td>unité de masse atomique unifiée u</td>
<td>u</td>
<td>$1 \text{ u} = 1 \text{ Da}$</td>
</tr>
<tr>
<td></td>
<td>unité astronomique (ua)</td>
<td>ua</td>
<td>$1 \text{ ua} = 1,495,978,706,91 \times 10^{11} \text{ m}$</td>
</tr>
</tbody>
</table>

Unités naturelles

| Grandeur | Nom de l’unité | Symbole de l’unité | Valeur en unités SI
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>vitesse</td>
<td>unité naturelle de vitesse c_0</td>
<td>c_0</td>
<td>$299,792,458 \text{ m/s}$ (exactement)</td>
</tr>
<tr>
<td>action</td>
<td>unité naturelle d’action h</td>
<td>h</td>
<td>$1,054,571,68 \times 10^{-34} \text{ J s}$</td>
</tr>
<tr>
<td>masse</td>
<td>unité naturelle de masse m_e</td>
<td>m_e</td>
<td>$9,109,382\text{6 (16) } \times 10^{-31} \text{ kg}$</td>
</tr>
<tr>
<td>temps</td>
<td>unité naturelle de temps $h/m_e c_0^2$</td>
<td></td>
<td>$1,288,088,667 \times 8.6 \times 10^{-21} \text{ s}$</td>
</tr>
</tbody>
</table>

Unités atomiques

| Grandeur | Nom de l’unité | Symbole de l’unité | Valeur en unités SI
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>charge</td>
<td>unité atomique de charge e</td>
<td>e</td>
<td>$1,602,176,53 \times 10^{-19} \text{ C}$</td>
</tr>
<tr>
<td>masse</td>
<td>unité atomique de masse m_e</td>
<td>m_e</td>
<td>$9,109,382\text{6 (16) } \times 10^{-31} \text{ kg}$</td>
</tr>
<tr>
<td>action</td>
<td>unité atomique d’action h</td>
<td>h</td>
<td>$1,054,571,68 \times 10^{-34} \text{ J s}$</td>
</tr>
<tr>
<td>longueur</td>
<td>unité atomique de longueur a_0</td>
<td>a_0</td>
<td>$0,529,177,2108 \times 10^{-10} \text{ m}$</td>
</tr>
<tr>
<td>énergie</td>
<td>unité atomique d’énergie, hartree E_h</td>
<td></td>
<td>$4,359,744,17 \times 75 \times 10^{18} \text{ J}$</td>
</tr>
<tr>
<td>temps</td>
<td>unité atomique de temps h/\hbar</td>
<td>h/\hbar</td>
<td>$2,418,884,326,505 \times 16 \times 10^{-17} \text{ s}$</td>
</tr>
</tbody>
</table>

Tableau 8. Autres unités en dehors du SI

| Grandeur | Nom de l’unité | Symbole de l’unité | Valeur en unités SI
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pression</td>
<td>bar (g)</td>
<td>bar</td>
<td>$1 \text{ bar} = 0,1 \text{ MPa} = 100 \text{ kPa} = 10^5 \text{ Pa}$</td>
</tr>
<tr>
<td></td>
<td>millimètre de mercure (mmHg)</td>
<td>mmHg</td>
<td>$1 \text{ mmHg} = 133,322 \text{ Pa}$</td>
</tr>
<tr>
<td>longueur</td>
<td>angström (Å)</td>
<td>Å</td>
<td>$1 \text{ Å} = 0,1 \text{ nm} = 100 \text{ pm} = 10^{-10} \text{ m}$</td>
</tr>
<tr>
<td>distance</td>
<td>mille marin (M)</td>
<td>M</td>
<td>$1 \text{ M} = 1852 \text{ m}$</td>
</tr>
<tr>
<td>superficie</td>
<td>barn (b)</td>
<td>b</td>
<td>$1 \text{ b} = 100 \text{ fm}^2 = (10^{-12} \text{ cm})^2 = 10^{-28} \text{ m}^2$</td>
</tr>
<tr>
<td>vitesse</td>
<td>noeud (kn)</td>
<td>kn</td>
<td>$1 \text{ kn} = (1852/3600) \text{ m/s}$</td>
</tr>
<tr>
<td>logarithe</td>
<td>néper (Np)</td>
<td>Np</td>
<td>[voir note (f)] au sujet de la valeur numérique du néper, du bel et du décibel]</td>
</tr>
<tr>
<td>d’un rapport</td>
<td>bel (B)</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>décibel</td>
<td>dB</td>
<td>dB</td>
<td></td>
</tr>
</tbody>
</table>

133
Tableau 9. Unités en dehors du SI associées aux systèmes d'unités CGS et CGS de Gauss

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Nom de l’unité</th>
<th>Symbole de l’unité</th>
<th>Valeur en unités SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>énergie</td>
<td>erg</td>
<td>erg</td>
<td>1 erg = 10^{-7} J</td>
</tr>
<tr>
<td>force</td>
<td>dyn</td>
<td>dyn</td>
<td>1 dyn = 10^{-5} N</td>
</tr>
<tr>
<td>viscosité dynamique</td>
<td>poise</td>
<td>P</td>
<td>1 P = 1 dyn s cm^{-2} = 0,1 Pa s</td>
</tr>
<tr>
<td>viscosité cinématique</td>
<td>stokes</td>
<td>St</td>
<td>1 St = 1 cm² s^{-1} = 10^{-5} m² s^{-1}</td>
</tr>
<tr>
<td>luminance lumineuse</td>
<td>stib₂</td>
<td>sb</td>
<td>1 sb = 1 cd cm^{-2} = 10⁴ cd m^{-2}</td>
</tr>
<tr>
<td>éclairement lumineux</td>
<td>phot</td>
<td>ph</td>
<td>1 ph = 1 cd sr cm^{-2} = 10⁴ lx</td>
</tr>
<tr>
<td>accélération</td>
<td>gal</td>
<td>Gal</td>
<td>1 Gal = 1 cm s^{-2} = 10^{-2} m s^{-2}</td>
</tr>
<tr>
<td>flux magnétique</td>
<td>maxwell</td>
<td>Mx</td>
<td>1 Mx = 1 G cm² = 10⁻⁸ Wb</td>
</tr>
<tr>
<td>induction magnétique</td>
<td>gauss</td>
<td>G</td>
<td>1 G = 1 Mx/cm² = 10⁻⁴ T</td>
</tr>
<tr>
<td>champ magnétique</td>
<td>crossted</td>
<td>Oc</td>
<td>1 Oc = (\frac{10}{4\pi}) A m⁻¹</td>
</tr>
</tbody>
</table>
Annexe 4 Tableau périodique des éléments

![Tableau périodique des éléments](image)
Annexe 5 Configurations électroniques des éléments

<table>
<thead>
<tr>
<th>No</th>
<th>Element</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1s^1</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>1s^2</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>[He] 2s^1</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>[He] 2s^2</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>[He] 2s^2 2p^1</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>[He] 2s^2 2p^2</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>[He] 2s^2 2p^3</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>[He] 2s^2 2p^4</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>[He] 2s^2 2p^5</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>[He] 2s^2 2p^6</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>[Ne] 3s^1</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>[Ne] 3s^2</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>[Ne] 3s^2 3p^1</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>[Ne] 3s^2 3p^2</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>[Ne] 3s^2 3p^3</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>[Ne] 3s^2 3p^4</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>[Ne] 3s^2 3p^5</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>[Ne] 3s^2 3p^6</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>[Ar] 4s^1</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>[Ar] 4s^2</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>[Ar] 3d^1 4s^2</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>[Ar] 3d^2 4s^2</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>[Ar] 3d^3 4s^2</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>[Ar] 3d^5 4s^1</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>[Ar] 3d^5 4s^2</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>[Ar] 3d^6 4s^2</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>[Ar] 3d^7 4s^2</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>[Ar] 3d^8 4s^2</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>[Ar] 3d^{10} 4s^1</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>[Ar] 3d^{10} 4s^2</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>[Ar] 3d^{10} 4s^2 4p^1</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>[Ar] 3d^{10} 4s^2 4p^2</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>[Ar] 3d^{10} 4s^2 4p^3</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>[Ar] 3d^{10} 4s^2 4p^4</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>[Ar] 3d^{10} 4s^2 4p^5</td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>[Ar] 3d^{10} 4s^2 4p^6</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>[Kr] 5s^1</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>[Kr] 5s^2</td>
</tr>
<tr>
<td>39</td>
<td>Y</td>
<td>[Kr] 4d^1 5s^2</td>
</tr>
<tr>
<td>40</td>
<td>Zr</td>
<td>[Kr] 4d^2 5s^2</td>
</tr>
<tr>
<td>41</td>
<td>Nb</td>
<td>* [Kr] 4d^4 5s^1</td>
</tr>
<tr>
<td>42</td>
<td>Mo</td>
<td>* [Kr] 4d^5 5s^1</td>
</tr>
<tr>
<td>43</td>
<td>Tc</td>
<td>* [Kr] 4d^6 5s^2</td>
</tr>
<tr>
<td>44</td>
<td>Ru</td>
<td>* [Kr] 4d^7 5s^1</td>
</tr>
<tr>
<td>45</td>
<td>Rh</td>
<td>* [Kr] 4d^8 5s^2</td>
</tr>
<tr>
<td>46</td>
<td>Pd</td>
<td>* [Kr] 4d^{10} 5s^2</td>
</tr>
<tr>
<td>47</td>
<td>Ag</td>
<td>* [Kr] 4d^{10} 5s^1</td>
</tr>
<tr>
<td>48</td>
<td>Cd</td>
<td>* [Kr] 4d^{10} 5s^2</td>
</tr>
<tr>
<td>49</td>
<td>In</td>
<td>* [Kr] 4d^{10} 5s^2 5p^1</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
<td>* [Kr] 4d^{10} 5s^2 5p^2</td>
</tr>
<tr>
<td>51</td>
<td>Sb</td>
<td>* [Kr] 4d^{10} 5s^2 5p^3</td>
</tr>
<tr>
<td>52</td>
<td>Te</td>
<td>* [Kr] 4d^{10} 5s^2 5p^4</td>
</tr>
<tr>
<td>53</td>
<td>I</td>
<td>* [Kr] 4d^{10} 5s^2 5p^5</td>
</tr>
<tr>
<td>54</td>
<td>Xe</td>
<td>* [Kr] 4d^{10} 5s^2 5p^6</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>[Xe] 6s^1</td>
</tr>
<tr>
<td>56</td>
<td>Ba</td>
<td>[Xe] 6s^2</td>
</tr>
<tr>
<td>57</td>
<td>La</td>
<td>* [Xe] 5d^1 6s^2</td>
</tr>
<tr>
<td>58</td>
<td>Ce</td>
<td>* [Xe] 4f^1 5d^1 6s^2</td>
</tr>
<tr>
<td>59</td>
<td>Pr</td>
<td>* [Xe] 4f^3 6s^2</td>
</tr>
<tr>
<td>60</td>
<td>Nd</td>
<td>* [Xe] 4f^4 6s^2</td>
</tr>
<tr>
<td>61</td>
<td>Pm</td>
<td>* [Xe] 4f^5 6s^2</td>
</tr>
<tr>
<td>62</td>
<td>Sm</td>
<td>* [Xe] 4f^6 6s^2</td>
</tr>
<tr>
<td>63</td>
<td>Eu</td>
<td>* [Xe] 4f^7 6s^2</td>
</tr>
<tr>
<td>64</td>
<td>Gd</td>
<td>* [Xe] 4f^7 5d^1 6s^2</td>
</tr>
<tr>
<td>65</td>
<td>Tb</td>
<td>* [Xe] 4f^9 6s^2</td>
</tr>
<tr>
<td>66</td>
<td>Dy</td>
<td>* [Xe] 4f^{10} 6s^2</td>
</tr>
<tr>
<td>67</td>
<td>Ho</td>
<td>* [Xe] 4f^{11} 6s^2</td>
</tr>
<tr>
<td>68</td>
<td>Er</td>
<td>* [Xe] 4f^{12} 6s^2</td>
</tr>
<tr>
<td>69</td>
<td>Tm</td>
<td>* [Xe] 4f^{13} 6s^2</td>
</tr>
<tr>
<td>70</td>
<td>Yb</td>
<td>* [Xe] 4f^{14} 6s^2</td>
</tr>
<tr>
<td>71</td>
<td>Lu</td>
<td>* [Xe] 4f^{14} 5d^1 6s^2</td>
</tr>
<tr>
<td>72</td>
<td>Hf</td>
<td>* [Xe] 4f^{14} 5d^2 6s^2</td>
</tr>
<tr>
<td>73</td>
<td>Ta</td>
<td>* [Xe] 4f^{14} 5d^3 6s^2</td>
</tr>
<tr>
<td>74</td>
<td>W</td>
<td>* [Xe] 4f^{14} 5d^4 6s^2</td>
</tr>
<tr>
<td>75</td>
<td>Re</td>
<td>[Xe] 4f^{14} 5d^5 6s^2</td>
</tr>
<tr>
<td>76</td>
<td>Os</td>
<td>[Xe] 4f^{14} 5d^6 6s^2</td>
</tr>
<tr>
<td>77</td>
<td>Ir</td>
<td>[Xe] 4f^{14} 5d^7 6s^2</td>
</tr>
<tr>
<td>78</td>
<td>Pt</td>
<td>[Xe] 4f^{14} 5d^9 6s^1</td>
</tr>
<tr>
<td>79</td>
<td>Au</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^1</td>
</tr>
<tr>
<td>80</td>
<td>Hg</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^2</td>
</tr>
<tr>
<td>81</td>
<td>Tl</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^2 6p^1</td>
</tr>
<tr>
<td>82</td>
<td>Pb</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^2 6p^2</td>
</tr>
<tr>
<td>83</td>
<td>Bi</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^2 6p^3</td>
</tr>
<tr>
<td>84</td>
<td>Po</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^2 6p^4</td>
</tr>
<tr>
<td>85</td>
<td>At</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^2 6p^5</td>
</tr>
<tr>
<td>86</td>
<td>Rn</td>
<td>[Xe] 4f^{14} 5d^{10} 6s^2 6p^6</td>
</tr>
<tr>
<td>87</td>
<td>Fr</td>
<td>[Rn] 7s^1</td>
</tr>
<tr>
<td>88</td>
<td>Ra</td>
<td>[Rn] 7s^2</td>
</tr>
<tr>
<td>89</td>
<td>Ac</td>
<td>* [Rn] 6d^1 7s^2</td>
</tr>
</tbody>
</table>
Annexe 6 Symbole et nom des éléments

Classés en fonction de la valeur de leur numéro

<table>
<thead>
<tr>
<th>Z</th>
<th>Symbole</th>
<th>Nom</th>
<th>Z</th>
<th>Symbole</th>
<th>Nom</th>
<th>Z</th>
<th>Symbole</th>
<th>Nom</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>Hydrogène</td>
<td>39</td>
<td>Y</td>
<td>Yttrium</td>
<td>77</td>
<td>Ir</td>
<td>Iridium</td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>Hélium</td>
<td>40</td>
<td>Zr</td>
<td>Zirconium</td>
<td>78</td>
<td>Pt</td>
<td>Platine</td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>Lithium</td>
<td>41</td>
<td>Nb</td>
<td>Niobium</td>
<td>79</td>
<td>Au</td>
<td>Or</td>
</tr>
<tr>
<td>4</td>
<td>Be</td>
<td>Béryllium</td>
<td>42</td>
<td>Mo</td>
<td>Molybdène</td>
<td>80</td>
<td>Hg</td>
<td>Mercure</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Bore</td>
<td>43</td>
<td>Tc</td>
<td>Technétium</td>
<td>81</td>
<td>Ti</td>
<td>Thallium</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>Carbone</td>
<td>44</td>
<td>Ru</td>
<td>Ruthénium</td>
<td>82</td>
<td>Pb</td>
<td>Plomb</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>Azote</td>
<td>45</td>
<td>Rh</td>
<td>Rhodium</td>
<td>83</td>
<td>Bi</td>
<td>Bismuth</td>
</tr>
<tr>
<td>8</td>
<td>O</td>
<td>Oxygène</td>
<td>46</td>
<td>Pd</td>
<td>Palladium</td>
<td>84</td>
<td>Po</td>
<td>Plonium</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>Fluor</td>
<td>47</td>
<td>Ag</td>
<td>Argent</td>
<td>85</td>
<td>At</td>
<td>Astate</td>
</tr>
<tr>
<td>10</td>
<td>Ne</td>
<td>Néon</td>
<td>48</td>
<td>Cd</td>
<td>Cadmium</td>
<td>86</td>
<td>Rn</td>
<td>Radon</td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>Sodium</td>
<td>49</td>
<td>In</td>
<td>Indium</td>
<td>87</td>
<td>Fr</td>
<td>Francium</td>
</tr>
<tr>
<td>12</td>
<td>Mg</td>
<td>Magnésium</td>
<td>50</td>
<td>Sn</td>
<td>Étain</td>
<td>88</td>
<td>Ra</td>
<td>Radium</td>
</tr>
<tr>
<td>13</td>
<td>Al</td>
<td>Aluminium</td>
<td>51</td>
<td>Sb</td>
<td>Antimoine</td>
<td>89</td>
<td>Ac</td>
<td>Actinium</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
<td>Silicium</td>
<td>52</td>
<td>Te</td>
<td>Tellure</td>
<td>90</td>
<td>Th</td>
<td>Thorium</td>
</tr>
<tr>
<td>15</td>
<td>P</td>
<td>Phosphore</td>
<td>53</td>
<td>I</td>
<td>Iode</td>
<td>91</td>
<td>Pa</td>
<td>Protactinium</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>Soufre</td>
<td>54</td>
<td>Xe</td>
<td>Xénon</td>
<td>92</td>
<td>U</td>
<td>Uranium</td>
</tr>
<tr>
<td>17</td>
<td>Cl</td>
<td>Chlorure</td>
<td>55</td>
<td>Cs</td>
<td>Césium</td>
<td>93</td>
<td>Np</td>
<td>Neptunium</td>
</tr>
<tr>
<td>18</td>
<td>Ar</td>
<td>Argon</td>
<td>56</td>
<td>Ba</td>
<td>Baryum</td>
<td>94</td>
<td>Pu</td>
<td>Plutonium</td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>Potassium</td>
<td>57</td>
<td>La</td>
<td>Lanthane</td>
<td>95</td>
<td>Am</td>
<td>Américium</td>
</tr>
<tr>
<td>20</td>
<td>Ca</td>
<td>Calcium</td>
<td>58</td>
<td>Ce</td>
<td>Cérium</td>
<td>96</td>
<td>Cm</td>
<td>Curium</td>
</tr>
<tr>
<td>21</td>
<td>Sc</td>
<td>Scandium</td>
<td>59</td>
<td>Pr</td>
<td>Praséodyme</td>
<td>97</td>
<td>Bk</td>
<td>Berkélium</td>
</tr>
<tr>
<td>22</td>
<td>Ti</td>
<td>Titane</td>
<td>60</td>
<td>Nd</td>
<td>Néodyme</td>
<td>98</td>
<td>Cf</td>
<td>Californium</td>
</tr>
<tr>
<td>23</td>
<td>V</td>
<td>Vanadium</td>
<td>61</td>
<td>Pm</td>
<td>Prométhium</td>
<td>99</td>
<td>Es</td>
<td>Einsteinium</td>
</tr>
<tr>
<td>24</td>
<td>Cr</td>
<td>Chrome</td>
<td>62</td>
<td>Sm</td>
<td>Samarium</td>
<td>100</td>
<td>Fm</td>
<td>Fermium</td>
</tr>
<tr>
<td>25</td>
<td>Mn</td>
<td>Manganèse</td>
<td>63</td>
<td>Eu</td>
<td>Europium</td>
<td>101</td>
<td>Md</td>
<td>Mendeleiev</td>
</tr>
<tr>
<td>26</td>
<td>Fe</td>
<td>Fer</td>
<td>64</td>
<td>Gd</td>
<td>Gadolinium</td>
<td>102</td>
<td>No</td>
<td>Nobelium</td>
</tr>
<tr>
<td>27</td>
<td>Co</td>
<td>Colbalt</td>
<td>65</td>
<td>Tb</td>
<td>Terbium</td>
<td>103</td>
<td>Lr</td>
<td>Lawrencium</td>
</tr>
<tr>
<td>28</td>
<td>Ni</td>
<td>Nickel</td>
<td>66</td>
<td>Dy</td>
<td>Dysprosium</td>
<td>104</td>
<td>Rf</td>
<td>Rutherford</td>
</tr>
<tr>
<td>29</td>
<td>Cu</td>
<td>Cuivre</td>
<td>67</td>
<td>Ho</td>
<td>Holmium</td>
<td>105</td>
<td>Db</td>
<td>Dubnium</td>
</tr>
<tr>
<td>30</td>
<td>Zn</td>
<td>Zinc</td>
<td>68</td>
<td>Er</td>
<td>Erbium</td>
<td>106</td>
<td>Sg</td>
<td>Seeborgium</td>
</tr>
<tr>
<td>31</td>
<td>Ga</td>
<td>Gallium</td>
<td>69</td>
<td>Tm</td>
<td>Thulium</td>
<td>107</td>
<td>Bh</td>
<td>Bohrium</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
<td>Germanium</td>
<td>70</td>
<td>Yb</td>
<td>Ytterbium</td>
<td>108</td>
<td>Hs</td>
<td>Hassium</td>
</tr>
<tr>
<td>33</td>
<td>As</td>
<td>Arsenic</td>
<td>71</td>
<td>Lu</td>
<td>Lutétium</td>
<td>109</td>
<td>Mt</td>
<td>Meitnerium</td>
</tr>
<tr>
<td>34</td>
<td>Se</td>
<td>Selenium</td>
<td>72</td>
<td>Hf</td>
<td>Hafnium</td>
<td>110</td>
<td>Ds</td>
<td>Darmstadtium</td>
</tr>
<tr>
<td>35</td>
<td>Br</td>
<td>Brome</td>
<td>73</td>
<td>Ta</td>
<td>Tantale</td>
<td>111</td>
<td>Rg</td>
<td>Roentgenium</td>
</tr>
<tr>
<td>36</td>
<td>Kr</td>
<td>Krypton</td>
<td>74</td>
<td>W</td>
<td>Tungstène</td>
<td>112</td>
<td>Cn</td>
<td>Copernicium</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>Rubidium</td>
<td>75</td>
<td>Re</td>
<td>Rhénium</td>
<td>114</td>
<td>Fl</td>
<td>Flérovium</td>
</tr>
<tr>
<td>38</td>
<td>Sr</td>
<td>Strontium</td>
<td>76</td>
<td>Os</td>
<td>Osmium</td>
<td>116</td>
<td>Lv</td>
<td>Livermorium</td>
</tr>
</tbody>
</table>
Annexe 7 Les valeurs des premières énergies d'ionisation des éléments en eV

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>He</th>
<th>Li</th>
<th>Be</th>
<th>B</th>
<th>C</th>
<th>N</th>
<th>O</th>
<th>F</th>
<th>Ne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13,6</td>
<td>24,59</td>
<td>5,39</td>
<td>9,32</td>
<td>8,3</td>
<td>11,26</td>
<td>14,53</td>
<td>13,62</td>
<td>17,42</td>
<td>21,56</td>
</tr>
<tr>
<td>Na</td>
<td>Mg</td>
<td>5,14</td>
<td>7,65</td>
<td>5,99</td>
<td>8,15</td>
<td>10,49</td>
<td>10,36</td>
<td>12,97</td>
<td>15,76</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Ca</td>
<td>Sc</td>
<td>Ti</td>
<td>V</td>
<td>Cr</td>
<td>Mn</td>
<td>Fe</td>
<td>Co</td>
<td>Ni</td>
<td>Cu</td>
</tr>
<tr>
<td></td>
<td>4,34</td>
<td>6,11</td>
<td>6,56</td>
<td>6,83</td>
<td>6,75</td>
<td>6,77</td>
<td>7,43</td>
<td>7,9</td>
<td>7,88</td>
<td>7,64</td>
</tr>
<tr>
<td>Rb</td>
<td>Sr</td>
<td>Y</td>
<td>Zr</td>
<td>Nb</td>
<td>Mo</td>
<td>Tc</td>
<td>Ru</td>
<td>Rh</td>
<td>Pd</td>
<td>Ag</td>
</tr>
<tr>
<td></td>
<td>4,18</td>
<td>5,69</td>
<td>6,22</td>
<td>6,63</td>
<td>6,76</td>
<td>7,09</td>
<td>7,28</td>
<td>7,36</td>
<td>7,46</td>
<td>8,34</td>
</tr>
<tr>
<td>Cs</td>
<td>Ba</td>
<td>Lu</td>
<td>Hf</td>
<td>Ta</td>
<td>W</td>
<td>Re</td>
<td>Os</td>
<td>Ir</td>
<td>Pt</td>
<td>Au</td>
</tr>
<tr>
<td></td>
<td>3,89</td>
<td>5,21</td>
<td>5,43</td>
<td>6,63</td>
<td>7,55</td>
<td>7,86</td>
<td>7,83</td>
<td>8,44</td>
<td>8,97</td>
<td>8,96</td>
</tr>
<tr>
<td>Fr</td>
<td>Ra</td>
<td>**</td>
<td>Lr</td>
<td>Rf</td>
<td>4,9</td>
<td>6</td>
<td>Db</td>
<td>Sg</td>
<td>Bh</td>
<td>Hs</td>
</tr>
</tbody>
</table>

↓

| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb |
| | 5,58 | 5,54 | 5,47 | 5,53 | 5,58 | 5,64 | 5,67 | 6,15 | 5,86 | 5,94 | 6,02 | 6,11 | 6,18 | 6,25 |

** Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |
| | 5,17 | 6,31 | 5,89 | 6,19 | 6,27 | 6,03 | 5,97 | 5,99 | 6,2 | 6,28 | 6,42 | 6,5 | 6,58 | 6,65 |
Annexe 8 Les valeurs des rayons covalents des éléments chimiques en Ångström publiées par J. C. Slater, avec une incertitude de 0,12 Å

<table>
<thead>
<tr>
<th>Élément</th>
<th>Rayon covalent (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0,25</td>
</tr>
<tr>
<td>Li</td>
<td>1,45 1,05</td>
</tr>
<tr>
<td>Na</td>
<td>1,8</td>
</tr>
<tr>
<td>K</td>
<td>2,2 1,8</td>
</tr>
<tr>
<td>Rb</td>
<td>2,65 2</td>
</tr>
<tr>
<td>Cs</td>
<td>2,6 2,15</td>
</tr>
<tr>
<td>Fr</td>
<td>2,8 2,85</td>
</tr>
<tr>
<td>He</td>
<td></td>
</tr>
<tr>
<td>Be</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Ne</td>
<td>0,95 0,85</td>
</tr>
<tr>
<td>Al</td>
<td>1,25</td>
</tr>
<tr>
<td>Si</td>
<td>1,1</td>
</tr>
<tr>
<td>P</td>
<td>1,1</td>
</tr>
<tr>
<td>S</td>
<td>1</td>
</tr>
<tr>
<td>Cl</td>
<td>1</td>
</tr>
<tr>
<td>Ar</td>
<td>1,25 1,15 1,15 1,15</td>
</tr>
<tr>
<td>Kr</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>1,15</td>
</tr>
<tr>
<td>Zr</td>
<td>1,25</td>
</tr>
<tr>
<td>Nb</td>
<td>1,35</td>
</tr>
<tr>
<td>Mo</td>
<td>1,15</td>
</tr>
<tr>
<td>Tc</td>
<td>1,35</td>
</tr>
<tr>
<td>Ru</td>
<td>1,35</td>
</tr>
<tr>
<td>Rh</td>
<td>1,35</td>
</tr>
<tr>
<td>Pd</td>
<td>1,35</td>
</tr>
<tr>
<td>Ag</td>
<td>1,35</td>
</tr>
<tr>
<td>Cd</td>
<td>1,35</td>
</tr>
<tr>
<td>In</td>
<td>1,35</td>
</tr>
<tr>
<td>Sn</td>
<td>1,35</td>
</tr>
<tr>
<td>Sb</td>
<td>1,35</td>
</tr>
<tr>
<td>Te</td>
<td>1,35</td>
</tr>
<tr>
<td>I</td>
<td>1,35</td>
</tr>
<tr>
<td>Xe</td>
<td></td>
</tr>
<tr>
<td>Cs</td>
<td>1,75</td>
</tr>
<tr>
<td>Ba</td>
<td>1,75</td>
</tr>
<tr>
<td>Lu</td>
<td>1,75</td>
</tr>
<tr>
<td>Hf</td>
<td>1,75</td>
</tr>
<tr>
<td>Ta</td>
<td>1,75</td>
</tr>
<tr>
<td>W</td>
<td>1,75</td>
</tr>
<tr>
<td>Re</td>
<td>1,75</td>
</tr>
<tr>
<td>Os</td>
<td>1,75</td>
</tr>
<tr>
<td>Ir</td>
<td>1,75</td>
</tr>
<tr>
<td>Pt</td>
<td>1,75</td>
</tr>
<tr>
<td>Au</td>
<td>1,75</td>
</tr>
<tr>
<td>Hg</td>
<td>1,75</td>
</tr>
<tr>
<td>Tl</td>
<td>1,75</td>
</tr>
<tr>
<td>Pb</td>
<td>1,75</td>
</tr>
<tr>
<td>Bi</td>
<td>1,75</td>
</tr>
<tr>
<td>Po</td>
<td>1,75</td>
</tr>
<tr>
<td>At</td>
<td>1,75</td>
</tr>
<tr>
<td>Rn</td>
<td>1,75</td>
</tr>
<tr>
<td>Lr</td>
<td></td>
</tr>
<tr>
<td>Rf</td>
<td></td>
</tr>
<tr>
<td>Db</td>
<td></td>
</tr>
<tr>
<td>Sg</td>
<td></td>
</tr>
<tr>
<td>Bh</td>
<td></td>
</tr>
<tr>
<td>Hs</td>
<td></td>
</tr>
<tr>
<td>Mt</td>
<td></td>
</tr>
<tr>
<td>Ds</td>
<td></td>
</tr>
<tr>
<td>Rg</td>
<td></td>
</tr>
<tr>
<td>Cn</td>
<td></td>
</tr>
<tr>
<td>Nh</td>
<td></td>
</tr>
<tr>
<td>Fl</td>
<td></td>
</tr>
<tr>
<td>Mc</td>
<td></td>
</tr>
<tr>
<td>Lv</td>
<td></td>
</tr>
<tr>
<td>Ts</td>
<td></td>
</tr>
<tr>
<td>Og</td>
<td></td>
</tr>
<tr>
<td>La</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Ce</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Pr</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Nd</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Pm</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Sm</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Eu</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Gd</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Tb</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Dy</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Ho</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Er</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Tm</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Yb</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Ac</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Th</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Pa</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>U</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Np</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Pu</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Am</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Cm</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Bk</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Cf</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Es</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Fm</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>Md</td>
<td>1,95 1,85</td>
</tr>
<tr>
<td>No</td>
<td>1,95 1,85</td>
</tr>
</tbody>
</table>
Annexe 9 Les valeurs de l'électronégativité des éléments chimiques de l'échelle Pauling

<table>
<thead>
<tr>
<th>Élément</th>
<th>Electronegativité</th>
<th>Élément</th>
<th>Electronegativité</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>2,2</td>
<td>He</td>
<td>2,1</td>
</tr>
<tr>
<td>Li</td>
<td>0,98</td>
<td>B</td>
<td>2,04</td>
</tr>
<tr>
<td>Be</td>
<td>1,57</td>
<td>C</td>
<td>2,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>3,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>O</td>
<td>3,44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>3,98</td>
</tr>
<tr>
<td>Na</td>
<td>0,93</td>
<td>Ne</td>
<td>3,35</td>
</tr>
<tr>
<td>Mg</td>
<td>1,31</td>
<td>Al</td>
<td>1,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Si</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>2,19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>2,58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cl</td>
<td>3,16</td>
</tr>
<tr>
<td>K</td>
<td>0,82</td>
<td>Ar</td>
<td>3,5</td>
</tr>
<tr>
<td>Ca</td>
<td>1</td>
<td>Br</td>
<td>2,5</td>
</tr>
<tr>
<td>Sc</td>
<td>1,36</td>
<td>Kr</td>
<td>3</td>
</tr>
<tr>
<td>Ti</td>
<td>1,54</td>
<td>Rb</td>
<td>2,6</td>
</tr>
<tr>
<td>V</td>
<td>1,63</td>
<td>Sr</td>
<td>2,8</td>
</tr>
<tr>
<td>Cr</td>
<td>1,66</td>
<td>Y</td>
<td>3,0</td>
</tr>
<tr>
<td>Mn</td>
<td>1,55</td>
<td>Zr</td>
<td>2,9</td>
</tr>
<tr>
<td>Fe</td>
<td>1,83</td>
<td>Nb</td>
<td>2,6</td>
</tr>
<tr>
<td>Co</td>
<td>1,88</td>
<td>Mo</td>
<td>1,9</td>
</tr>
<tr>
<td>Ni</td>
<td>1,91</td>
<td>Tc</td>
<td>2,2</td>
</tr>
<tr>
<td>Cu</td>
<td>1,9</td>
<td>Ru</td>
<td>2,2</td>
</tr>
<tr>
<td>Zn</td>
<td>1,85</td>
<td>Rh</td>
<td>2,2</td>
</tr>
<tr>
<td>Ga</td>
<td>1,81</td>
<td>Pd</td>
<td>2,2</td>
</tr>
<tr>
<td>Ge</td>
<td>1,81</td>
<td>Ag</td>
<td>2,2</td>
</tr>
<tr>
<td>As</td>
<td>2,01</td>
<td>Cd</td>
<td>1,93</td>
</tr>
<tr>
<td>Se</td>
<td>2,18</td>
<td>In</td>
<td>1,69</td>
</tr>
<tr>
<td>Br</td>
<td>2,55</td>
<td>Sn</td>
<td>1,78</td>
</tr>
<tr>
<td>Kr</td>
<td>2,96</td>
<td>Sb</td>
<td>1,96</td>
</tr>
<tr>
<td>I</td>
<td>3</td>
<td>Te</td>
<td>2,05</td>
</tr>
<tr>
<td>Xe</td>
<td>2,6</td>
<td>Po</td>
<td>2,1</td>
</tr>
<tr>
<td>At</td>
<td>2,66</td>
<td>Rn</td>
<td>2,6</td>
</tr>
<tr>
<td>Cs</td>
<td>0,79</td>
<td>Fr</td>
<td>0,7</td>
</tr>
<tr>
<td>Ba</td>
<td>0,89</td>
<td>Ra</td>
<td>0,9</td>
</tr>
<tr>
<td>Lu</td>
<td>1,27</td>
<td>Lr</td>
<td>1,3</td>
</tr>
<tr>
<td>Hf</td>
<td>1,3</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Ta</td>
<td>1,5</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>W</td>
<td>2,36</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Re</td>
<td>1,9</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Os</td>
<td>2,2</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Ir</td>
<td>2,2</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Pt</td>
<td>2,28</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Au</td>
<td>2,54</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Hg</td>
<td>2</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Tl</td>
<td>2,16</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Pb</td>
<td>2,02</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Bi</td>
<td>2</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Po</td>
<td>2,2</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>At</td>
<td>2,2</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Rn</td>
<td>2,2</td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>La</td>
<td>1,1</td>
<td>Ce</td>
<td>1,2</td>
</tr>
<tr>
<td>Pr</td>
<td>1,12</td>
<td>Nd</td>
<td>1,2</td>
</tr>
<tr>
<td>Sm</td>
<td>1,13</td>
<td>Eu</td>
<td>1,2</td>
</tr>
<tr>
<td>Gd</td>
<td>1,14</td>
<td>Tb</td>
<td>1,2</td>
</tr>
<tr>
<td>Dy</td>
<td>1,17</td>
<td>Ho</td>
<td>1,22</td>
</tr>
<tr>
<td>Er</td>
<td>1,1</td>
<td>Tm</td>
<td>1,23</td>
</tr>
<tr>
<td>Yb</td>
<td>1,24</td>
<td></td>
<td>1,25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,1</td>
</tr>
<tr>
<td>Ac</td>
<td>1,1</td>
<td>Th</td>
<td>1,5</td>
</tr>
<tr>
<td>Pa</td>
<td>1,3</td>
<td>U</td>
<td>1,38</td>
</tr>
<tr>
<td>Np</td>
<td>1,13</td>
<td>Pu</td>
<td>1,36</td>
</tr>
<tr>
<td>Am</td>
<td>1,13</td>
<td>Cm</td>
<td>1,28</td>
</tr>
<tr>
<td>Bk</td>
<td>1,13</td>
<td>Cf</td>
<td>1,28</td>
</tr>
<tr>
<td>Es</td>
<td>1,3</td>
<td>Fm</td>
<td>1,3</td>
</tr>
<tr>
<td>Md</td>
<td>1,3</td>
<td>No</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,3</td>
</tr>
<tr>
<td>Ac</td>
<td>1,1</td>
<td>Th</td>
<td>1,3</td>
</tr>
<tr>
<td>Pa</td>
<td>1,3</td>
<td>U</td>
<td>1,38</td>
</tr>
<tr>
<td>Np</td>
<td>1,13</td>
<td>Pu</td>
<td>1,36</td>
</tr>
<tr>
<td>Am</td>
<td>1,13</td>
<td>Cm</td>
<td>1,28</td>
</tr>
<tr>
<td>Bk</td>
<td>1,13</td>
<td>Cf</td>
<td>1,28</td>
</tr>
<tr>
<td>Es</td>
<td>1,3</td>
<td>Fm</td>
<td>1,3</td>
</tr>
<tr>
<td>Md</td>
<td>1,3</td>
<td>No</td>
<td>1,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1,3</td>
</tr>
</tbody>
</table>