

Universités des Sciences et de la Technologie d'Oran. USTO - Mohamed Boudiaf Faculté de Physique Département: Génie Physique Master II : Science Radiologie Et Imagerie

Présenté par : Abdelmadjid Fatima Zohra

Étude comparative du comportement électro-optique de deux détecteurs de rayonnement opérant dans le moyen infrarouge et utilisant comme éléments sensibles les alliages InAsSb et GaInAsSb.

Rapporteur : Dr. A.Cheriet

Plan de l'exposé

-Introduction(Généralités sur le rayonnement IR)
-Propriétés physiques des alliages : GaSb, GaAlAsSb,
GalnAsSb et InAsSb.
-Caractéristiques et transport électronique dans les systèmes
GaAl_{0.4} As_{0.034} Sb (p-n)/InAs_{0.9} Sb_{0.1} -(n) et

GaAl_{0.4} As_{0.034} Sb (p-n)/Galn_{0.15} As_{0.13} Sb-(p)

-Comportement électro-optique des systèmes

 $\label{eq:GaAl_0.4} GaAl_{0.4} As_{0.034} Sb (p-n)/InAs_{0.9} Sb_{0.1} - (n) et \\ GaAl_{0.4} As_{0.034} Sb (p-n)/Galn_{0.15} As_{0.13} Sb - (p) \\ - Conclusion et perspectives.$

Rayonnement électromagnétique infrarouge

Spectre du rayonnement infrarouge

Application

Applications thermographiques

Progression d'un traitement médical

Vision nocturne

Surveillance industrielle

Propriétés physiques des semi-conducteurs : La filière 6 Angstrom GaSb, GaAlAsSb, GaInAsSb et InAsSb

Structure zinc-blende des antimoniures

Structures de bandes d'énergies, (gap direct)

Propriétés physiques des semi-conducteurs GaSb, GaAlAsSb, GaInAsSb et InAsSb

Méthode de calcul des propriétés des alliages binaires, ternaires et quaternaires

Modèle de Varshni pour les énergies en température

 $E_{\text{transition}}(T) = E_{\text{transition}}(0) - \frac{\alpha_{\text{transition}}T^2}{\beta_{\text{transition}} + T}$

Loi de Vegard

Pour $A_{1-x}B_xC$: $E_{TER}(x)=xE_{BC}+(1-x)E_{AC}+C_{ABC}x(1-x)$ Pour $A_{1-x}B_xC_yD_{1-y}$: $E_Q(x,y)=y[xE_{BC}+(1-x)E_{AC}]+(1-y)[xE_{BD}+(1-x)E_{AD}]$ $- x(1-x)[yC_{ABC}+(1-y)C_{ABD}]$ $- y(1-y)[xC_{BCD}+(1-x)C_{ACD}]$

Pour le reste des propriétés physiques:

 $E_{TER}(x) = x E_{BC} + (1-x) E_{AC}$

 $E_Q(x,y) = y[xE_{BC} + (1-x)E_{AC}] + (1-y)[xE_{BD} + (1-x)E_{AD}]$

Densités électroniques

$$n_i = \sqrt{N_c N_V} e^{-E_g/2kT}$$

La mobilité des porteurs

 $\mu_{(e,h)}(N,T) = \mu_{\min(e,h)} + \frac{\mu_{\max(e,h)}(300/T)^{\theta_1} - \mu_{\min(e,h)}}{1 + \left(N(N_{raf}/(T300))^{\theta_2}\right)^{\lambda}}$

Cas de l'alliage quaternaire Ga_{1-x}Al_xAs_ySb_{1-y}

Cas de l'alliage quaternaire Ga_{1-x}In_xAs_ySb_{1-y}

Energies de transitions

Mobilités des électrons

Cas de l'alliage ternaire InAsSb

Caractéristiques et transport électronique dans les systèmes

GaAI_{0.4} As_{0.034} Sb (p-n) / InAs_{0.9} Sb_{0.1} -(n) et

GaAI_{0.4} As_{0.034} Sb (p-n) / GaIn_{0.15} As_{0.13} Sb-(p)

Les caractéristiques électriques d'une homojonction p-n Abrupte et à dopages uniformes

Champ électrique

Diagramme des bandes d'énergies

Dopages ou densité de charges

Potentiel électrique

Paramètres de nos structures $GaAI_{0.4}As_{0.034}Sb(p/n) / InAs_{0.9}Sb_{0.1}(n)$ et $GaAI_{0.4}As_{0.034}Sb(p/n) / Ga_{0.85}In_{0.15}As Sb (p)$

Structure -1-		Structure -2-	
GaSb-n 400 μm	10 ¹⁸	GaSb-p 450 μm	2.10 ¹⁸
InAsSb-n-i-d 1000 nm		GaInAsSb-n-i-d 1000 nm	
GaAlAsSb-n 30 nm	1017	GaAlAsSb-p 50 nm	1,2.10 ¹⁶¹
GaAlAsSb-p 30 nm	2.10 ¹⁸	GaAlAsSb-n 20 nm	2.10 ¹⁸
GaSb-p 100 nm	2.10 ¹⁸	GaSb-n 100 nm	2.10 ¹⁸

Effet de la polarisation sur les propriétés électriques des systèmes étudiés

GaAl_{0.4}As_{0.034}Sb(p/n) / InAs_{0.9}Sb_{0.1} (n)

Diagrammes des bandes d'énergies

Diagramme des bandes d'énergies à l'équilibre et sous polarisation inverse et directe dans la structure 1

Diagramme des bandes d'énergies à l'équilibre et sous polarisation inverse et directe dans la structure 2

Etude phénoménologique du transport

Etude phénoménologique du transport dans la structure-1 GaAlAsSb p-n/lnAsSb-n

dopages différents

courant tunnel bande à bande pour trois dopages

Courant tunnel assisté par centres pièges pour trois dopages

Etude phénoménologique du transport dans la structure-2 GaAlAsSb n-p/GaInAsSb-p

Courant de diffusion pour trois épaisseurs

courant de génération-recombinaison

Courant de tunnel bande à bande

Courant de tunnel assistés par centres pièges

Confrontation des courants expérimentaux aux courants théoriques

Caractéristique courant-tension

Les figures de mérites d'un détecteur à rayonnement

1-Longueur d'onde de coupure : Eg

2-Sensibilité spectrale : A/W ou V/W

3-Rendement quantique: $\eta = Iph/q\Phi$

Les figures de mérite dépendent étroitement du courant d'obscurité

Rendement quantique

Rendement en fonction de λ pour 3 épaisseurs

Détectivité spécifique

Détectivité spécifique en fonction de la longueur d'onde pour trois dopages différents

Conclusions & Perspectives

MERCI POUR VOTRE ATTENTION